Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bridging materials innovations to sorption-based atmospheric water harvesting devices

Abstract

The atmosphere contains 13,000 trillion litres of water, and it is a natural resource available anywhere. Sorption-based atmospheric water harvesting (SAWH) is capable of extracting water vapour using sorbent materials across a broad spectrum of relative humidity, opening new avenues to address water scarcity faced by two-thirds of the population of the world. Although substantial progress has been made, there is still a considerable barrier between fundamental research and real-world applications. In this Review, we provide a multiscale perspective for SAWH technologies that can fill existing knowledge gaps across multiple length scales. First, we elucidate water sorption mechanisms at the molecular level, approaches to understanding sorbent materials, and water transport phenomena. With microscopic insights, we bridge materials innovations to device realization, discuss strategies to enhance device-level sorption kinetics and heat transfer performance, and show that a multiscale design and optimization strategy can lead to a new opportunity space towards system thermodynamic limits. Finally, we provide an outlook for the technoeconomic, social and environmental impact of large-scale SAWH as a global water technology. By bridging materials to devices, we envision that this multiscale perspective can guide next-generation SAWH technologies and facilitate a broader impact on society and the environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multiscale features of SAWH.
Fig. 2: Understanding microscopic mechanisms and macroscopic properties of water sorption.
Fig. 3: Materials innovations and characteristics for water sorption.
Fig. 4: SAWH device modelling and its optimization strategy.
Fig. 5: Advanced design strategies and opportunity space to reach thermodynamic limits.
Fig. 6: Real-world impact on the worldwide water economy and environment.

Similar content being viewed by others

References

  1. Humphrey, J. H. et al. The potential for atmospheric water harvesting to accelerate household access to safe water. Lancet Planet. Health 4, e91–e92 (2020).

    Article  PubMed  Google Scholar 

  2. Cotruvo, J. A. 2017 WHO guidelines for drinking water quality: first addendum to the fourth edition. J. Am. Water Work. Assoc. 109, 44–51 (2017).

    Article  Google Scholar 

  3. UNESCO. The United Nations world water development report 2023: partnerships and cooperation for water. UN-Water https://www.unwater.org/publications/un-world-water-development-report-2023 (2023).

  4. Wang, Z. et al. Pathways and challenges for efficient solar-thermal desalination. Sci. Adv. 5, eaax0763 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang, L. et al. Passive, high-efficiency thermally-localized solar desalination. Energy Environ. Sci. 14, 1771–1793 (2021).

    Article  CAS  Google Scholar 

  6. Tu, Y., Wang, R., Zhang, Y. & Wang, J. Progress and expectation of atmospheric water harvesting. Joule 2, 1452–1475 (2018).

    Article  CAS  Google Scholar 

  7. Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Kümmerer, K., Dionysiou, D. D., Olsson, O. & Fatta-Kassinos, D. A path to clean water. Science 361, 222–224 (2018).

    Article  PubMed  Google Scholar 

  9. Kim, H. et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 356, 430–434 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Kim, H. et al. Adsorption-based atmospheric water harvesting device for arid climates. Nat. Commun. 9, 1191 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fathieh, F. et al. Practical water production from desert air. Sci. Adv. 4, eaat3198 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Saavedra, J., Doan, H. A., Pursell, C. J., Grabow, L. C. & Chandler, B. D. The critical role of water at the gold-titania interface in catalytic CO oxidation. Science 345, 1599–1602 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Suguro, T. et al. A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting. Nat. Commun. 13, 5698 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guo, J. et al. Hydrogen production from the air. Nat. Commun. 13, 5046 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tatsidjodoung, P., Le Pierrès, N. & Luo, L. A review of potential materials for thermal energy storage in building applications. Renew. Sustain. Energy Rev. 18, 327–349 (2013).

    Article  Google Scholar 

  16. Narayanan, S. et al. Thermal battery for portable climate control. Appl. Energy 149, 104–116 (2015).

    Article  Google Scholar 

  17. Gordeeva, L. G. et al. Metal-organic frameworks for energy conversion and water harvesting: a bridge between thermal engineering and material science. Nano Energy 84, 105946 (2021).

    Article  CAS  Google Scholar 

  18. Liu, X. et al. Unusual temperature dependence of water sorption in semicrystalline hydrogels. Adv. Mater. 35, 2211763 (2023).

    Article  CAS  Google Scholar 

  19. Poredoš, P. & Wang, R. Sustainable cooling with water generation. Science 380, 458–460 (2023).

    Article  PubMed  Google Scholar 

  20. Poredoš, P., Shan, H. & Wang, R. Dehumidification with solid hygroscopic sorbents for low-carbon air conditioning. Joule 6, 1390–1393 (2022).

    Article  Google Scholar 

  21. Hanikel, N., Prévot, M. S. & Yaghi, O. M. MOF water harvesters. Nat. Nanotechnol. 15, 348–355 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Xu, W. & Yaghi, O. M. Metal-organic frameworks for water harvesting from air, anywhere, anytime. ACS Cent. Sci. 6, 1348–1354 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. LaPotin, A. et al. Dual-stage atmospheric water harvesting device for scalable solar-driven water production. Joule 5, 166–182 (2021).

    Article  CAS  Google Scholar 

  24. Lord, J. et al. Global potential for harvesting drinking water from air using solar energy. Nature 598, 611–617 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xu, J. et al. Ultrahigh solar-driven atmospheric water production enabled by scalable rapid-cycling water harvester with vertically aligned nanocomposite sorbent. Energy Environ. Sci. 14, 5979–5994 (2021).

    Article  CAS  Google Scholar 

  26. Li, R. et al. Hybrid hydrogel with high water vapor harvesting capacity for deployable solar-driven atmospheric water generator. Environ. Sci. Technol. 52, 11367–11377 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Shan, H. et al. Exceptional water production yield enabled by batch-processed portable water harvester in semi-arid climate. Nat. Commun. 13, 5406 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hanikel, N. et al. Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting. Science 374, 454–459 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Burtch, N. C. et al. In situ visualization of loading-dependent water effects in a stable metal–organic framework. Nat. Chem. 12, 186–192 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Yang, K. et al. A roadmap to sorption-based atmospheric water harvesting: from molecular sorption mechanism to sorbent design and system optimization. Environ. Sci. Technol. 55, 6542–6560 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Kalmutzki, M. J., Diercks, C. S. & Yaghi, O. M. Metal–organic frameworks for water harvesting from air. Adv. Mater. 30, 1704304 (2018).

    Article  Google Scholar 

  32. Ball, P. C. & Evans, R. Temperature dependence of gas adsorption on a mesoporous solid: capillary criticality and hysteresis. Langmuir 5, 714–723 (1989).

    Article  CAS  Google Scholar 

  33. Morishige, K., Fujii, H., Uga, M. & Kinukawa, D. Capillary critical point of argon, nitrogen, oxygen, ethylene, and carbon dioxide in MCM-41. Langmuir 13, 3494–3498 (1997).

    Article  CAS  Google Scholar 

  34. Coasne, B., Gubbins, K. E. & Pellenq, R. J.-M. Temperature effect on adsorption/desorption isotherms for a simple fluid confined within various nanopores. Adsorption 11, 289–294 (2005).

    Article  Google Scholar 

  35. Furukawa, H. et al. Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 136, 4369–4381 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Lu, H. et al. Materials engineering for atmospheric water harvesting: progress and perspectives. Adv. Mater. 34, 2110079 (2022).

    Article  CAS  Google Scholar 

  37. LaPotin, A., Kim, H., Rao, S. R. & Wang, E. N. Adsorption-based atmospheric water harvesting: impact of material and component properties on system-level performance. Acc. Chem. Res. 52, 1588–1597 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Graeber, G. et al. Extreme water uptake of hygroscopic hydrogels through maximized swelling‐induced salt loading. Adv. Mater. 36, 2211783 (2023).

    Article  Google Scholar 

  39. Díaz-Marín, C. D. et al. Kinetics of sorption in hygroscopic hydrogels. Nano Lett. 22, 1100–1107 (2022).

    Article  PubMed  Google Scholar 

  40. Zhao, F. et al. Super moisture-absorbent gels for all-weather atmospheric water harvesting. Adv. Mater. 31, 1806446 (2019).

    Article  Google Scholar 

  41. Chen, G. Thermodynamics of hydrogels for applications in atmospheric water harvesting, evaporation, and desalination. Phys. Chem. Chem. Phys. 24, 12329–12345 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Lu, H. et al. Tailoring the desorption behavior of hygroscopic gels for atmospheric water harvesting in arid climates. Adv. Mater. 34, 2205344 (2022).

    Article  CAS  Google Scholar 

  43. Aleid, S. et al. Salting-in effect of zwitterionic polymer hydrogel facilitates atmospheric water harvesting. ACS Mater. Lett. 4, 511–520 (2022).

    Article  CAS  Google Scholar 

  44. Bouklas, N. & Huang, R. Swelling kinetics of polymer gels: comparison of linear and nonlinear theories. Soft Matter 8, 8194–8203 (2012).

    Article  CAS  Google Scholar 

  45. Guo, Y. et al. Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments. Nat. Commun. 13, 2761 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guan, W., Lei, C., Guo, Y., Shi, W. & Yu, G. Hygroscopic‐microgels‐enabled rapid water extraction from arid air. Adv. Mater. 36, 2207786 (2022).

    Article  Google Scholar 

  47. Xu, J. et al. Efficient solar‐driven water harvesting from arid air with metal–organic frameworks modified by hygroscopic salt. Angew. Chem. Int. Ed. 132, 5240–5248 (2020).

    Article  Google Scholar 

  48. Shan, H. et al. High-yield solar-driven atmospheric water harvesting with ultra-high salt content composites encapsulated in porous membrane. Cell Rep. Phys. Sci. 2, 100664 (2021).

    Article  CAS  Google Scholar 

  49. Zhao, X. et al. Soft materials by design: unconventional polymer networks give extreme properties. Chem. Rev. 121, 4309–4372 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Matsumoto, K., Sakikawa, N. & Miyata, T. Thermo-responsive gels that absorb moisture and ooze water. Nat. Commun. 9, 2315 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kim, H., Rao, S. R., LaPotin, A., Lee, S. & Wang, E. N. Thermodynamic analysis and optimization of adsorption-based atmospheric water harvesting. Int. J. Heat Mass Transf. 161, 120253 (2020).

    Article  CAS  Google Scholar 

  52. Thommes, M. et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015).

    Article  CAS  Google Scholar 

  53. Liu, X., Wang, X. & Kapteijn, F. Water and metal-organic frameworks: from interaction toward utilization. Chem. Rev. 120, 8303–8377 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, R., Shi, Y., Wu, M., Hong, S. & Wang, P. Photovoltaic panel cooling by atmospheric water sorption–evaporation cycle. Nat. Sustain. 3, 636–643 (2020).

    Article  Google Scholar 

  55. Burtch, N. C., Jasuja, H. & Walton, K. S. Water stability and adsorption in metal-organic frameworks. Chem. Rev. 114, 10575–10612 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Glueckauf, E. Theory of chromatography. Part 10. Formula for diffusion into spheres and their application to chromatography. Trans. Faraday Soc. 51, 1540–1551 (1955).

    Article  CAS  Google Scholar 

  57. Crank, J. The Mathematics of Diffusion (Clarendon Press, 2001).

  58. Davis, M. E. & Davis, R. J. Fundamentals of Chemical Reaction Engineering (McGraw-Hill, 2003).

  59. Sapre, A. V. & Katzer, J. R. Core of chemical reaction engineering: one industrial view. Ind. Eng. Chem. Res. 34, 2202–2225 (1995).

    Article  CAS  Google Scholar 

  60. Li, R., Shi, Y., Shi, L., Alsaedi, M. & Wang, P. Harvesting water from air: using anhydrous salt with sunlight. Environ. Sci. Technol. 52, 5398–5406 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Li, R. & Wang, P. Sorbents, processes and applications beyond water production in sorption-based atmospheric water harvesting. Nat. Water 1, 573–586 (2023).

    Article  Google Scholar 

  62. Kim, H. et al. Characterization of adsorption enthalpy of novel water-stable zeolites and metal-organic frameworks. Sci. Rep. 6, 19097 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rieth, A. J., Yang, S., Wang, E. N. & Dincǎ, M. Record atmospheric fresh water capture and heat transfer with a material operating at the water uptake reversibility limit. ACS Cent. Sci. 3, 668–672 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Simon, C. M. et al. Statistical mechanical model of gas adsorption in porous crystals with dynamic moieties. Proc. Natl Acad. Sci. USA 114, E287–E296 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Coudert, F. X., Boutin, A., Jeffroy, M., Mellot-Draznieks, C. & Fuchs, A. H. Thermodynamic methods and models to study flexible metal-organic frameworks. ChemPhysChem 12, 247–258 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Doan, Q. T., Lefèvre, G., Hurisse, O. & Coudert, F. X. Adsorption in complex porous networks with geometrical and chemical heterogeneity. Mol. Simul. 40, 16–24 (2014).

    Article  CAS  Google Scholar 

  67. Ng, K. C., Burhan, M., Shahzad, M. W. & Ismail, A. B. A universal isotherm model to capture adsorption uptake and energy distribution of porous heterogeneous surface. Sci. Rep. 7, 10634 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Grenier, J. et al. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying. Acta Biomater. 94, 195–203 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Singh, M. P., Dhumal, N. R., Kim, H. J., Kiefer, J. & Anderson, J. A. Influence of water on the chemistry and structure of the metal-organic framework Cu3(btc)2. J. Phys. Chem. C 120, 17323–17333 (2016).

    Article  CAS  Google Scholar 

  70. DeCoste, J. B. et al. The effect of water adsorption on the structure of the carboxylate containing metal–organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66. J. Mater. Chem. A 1, 11922 (2013).

    Article  CAS  Google Scholar 

  71. Ichii, T. et al. Observation of an exotic state of water in the hydrophilic nanospace of porous coordination polymers. Commun. Chem. 3, 16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bae, J., Park, S. H., Moon, D. & Jeong, N. C. Crystalline hydrogen bonding of water molecules confined in a metal-organic framework. Commun. Chem. 5, 51 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gul-E-Noor, F. et al. Effects of varying water adsorption on a Cu3(BTC)2 metal-organic framework (MOF) as studied by 1H and 13C solid-state NMR spectroscopy. Phys. Chem. Chem. Phys. 13, 7783–7788 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Shapiro, Y. E. Structure and dynamics of hydrogels and organogels: an NMR spectroscopy approach. Prog. Polym. Sci. 36, 1184–1253 (2011).

    Article  CAS  Google Scholar 

  75. Kärger, J. et al. Pulsed field gradient NMR diffusion measurement in nanoporous materials. Adsorption 27, 453–484 (2021).

    Article  Google Scholar 

  76. Salazar, J. M., Weber, G., Simon, J. M., Bezverkhyy, I. & Bellat, J. P. Characterization of adsorbed water in MIL-53(Al) by FTIR spectroscopy and ab-initio calculations. J. Chem. Phys. 142, 124702 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Rieth, A. J. et al. Record-setting sorbents for reversible water uptake by systematic anion exchanges in metal-organic frameworks. J. Am. Chem. Soc. 141, 13858–13866 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fuchs, A. et al. Water harvesting at the single-crystal level. J. Am. Chem. Soc. 145, 14324–14334 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hadjiivanov, K. I. et al. Power of infrared and Raman spectroscopies to characterize metal-organic frameworks and investigate their interaction with guest molecules. Chem. Rev. 121, 1286–1424 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Fuchs, A. et al. Single crystals heterogeneity impacts the intrinsic and extrinsic properties of metal–organic frameworks. Adv. Mater. 34, 2104530 (2022).

    Article  CAS  Google Scholar 

  81. Cho, H. S. et al. Isotherms of individual pores by gas adsorption crystallography. Nat. Chem. 11, 562–570 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Gong, X. et al. Insights into the structure and dynamics of metal-organic frameworks via transmission electron microscopy. J. Am. Chem. Soc. 142, 17224–17235 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Li, X. et al. Direct imaging of tunable crystal surface structures of MOF MIL-101 using high-resolution electron microscopy. J. Am. Chem. Soc. 141, 12021–12028 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Kiyama, R. et al. Nanoscale TEM imaging of hydrogel network architecture. Adv. Mater. 35, 2208902 (2023).

    Article  CAS  Google Scholar 

  85. Shen, B. et al. Atomic imaging of zeolite-confined single molecules by electron microscopy. Nature 607, 703–707 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Shen, B. et al. A single-molecule van der Waals compass. Nature 592, 541–544 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Xiong, H. et al. In situ imaging of the sorption-induced subcell topological flexibility of a rigid zeolite framework. Science 376, 491–496 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Cadiau, A. et al. Design of hydrophilic metal organic framework water adsorbents for heat reallocation. Adv. Mater. 27, 4775–4780 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Wang, S. et al. A robust large-pore zirconium carboxylate metal–organic framework for energy-efficient water-sorption-driven refrigeration. Nat. Energy 3, 985–993 (2018).

    Article  CAS  Google Scholar 

  90. Wallace, M., Adams, D. J. & Iggo, J. A. Analysis of the mesh size in a supramolecular hydrogel by PFG-NMR spectroscopy. Soft Matter 9, 5483–5491 (2013).

    Article  CAS  Google Scholar 

  91. Tan, K. et al. Water reaction mechanism in metal organic frameworks with coordinatively unsaturated metal ions: MOF-74. Chem. Mater. 26, 6886–6895 (2014).

    Article  CAS  Google Scholar 

  92. Rieth, A. J., Hunter, K. M., Dincă, M. & Paesani, F. Hydrogen bonding structure of confined water templated by a metal-organic framework with open metal sites. Nat. Commun. 10, 4771 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Shi, Y., Ilic, O., Atwater, H. A. & Greer, J. R. All-day fresh water harvesting by microstructured hydrogel membranes. Nat. Commun. 12, 2797 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kärger, J. et al. Microimaging of transient guest profiles to monitor mass transfer in nanoporous materials. Nat. Mater. 13, 333–343 (2014).

    Article  PubMed  Google Scholar 

  95. Valiullin, R., Kärger, J., Cho, K., Choi, M. & Ryoo, R. Dynamics of water diffusion in mesoporous zeolites. Microporous Mesoporous Mater. 142, 236–244 (2011).

    Article  CAS  Google Scholar 

  96. Zhang, K. et al. Diffusion of water and ethanol in silicalite crystals synthesized in fluoride media. Microporous Mesoporous Mater. 170, 259–265 (2013).

    Article  CAS  Google Scholar 

  97. Watanabe, T. & Sholl, D. S. Accelerating applications of metal-organic frameworks for gas adsorption and separation by computational screening of materials. Langmuir 28, 14114–14128 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Odoh, S. O., Cramer, C. J., Truhlar, D. G. & Gagliardi, L. Quantum-chemical characterization of the properties and reactivities of metal-organic frameworks. Chem. Rev. 115, 6051–6111 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Peng, X., Lin, L. C., Sun, W. & Smit, B. Water adsorption in metal-organic frameworks with open-metal sites. AIChE J. 61, 677–687 (2015).

    Article  CAS  Google Scholar 

  100. Fischer, M. Water adsorption in SAPO-34: elucidating the role of local heterogeneities and defects using dispersion-corrected DFT calculations. Phys. Chem. Chem. Phys. 17, 25260–25271 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Skarmoutsos, I., Eddaoudi, M. & Maurin, G. Highly efficient rare-earth-based metal-organic frameworks for water adsorption: a molecular modeling approach. J. Phys. Chem. C 123, 26989–26999 (2019).

    Article  CAS  Google Scholar 

  102. Vanduyfhuys, L. et al. QuickFF: a program for a quick and easy derivation of force fields for metal-organic frameworks from ab initio input. J. Comput. Chem. 36, 1015–1027 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Dürholt, J. P., Fraux, G., Coudert, F. X. & Schmid, R. Ab initio derived force fields for zeolitic imidazolate frameworks: MOF-FF for ZIFs. J. Chem. Theory Comput. 15, 2420–2432 (2019).

    Article  PubMed  Google Scholar 

  104. Fasano, M. et al. Interplay between hydrophilicity and surface barriers on water transport in zeolite membranes. Nat. Commun. 7, 12762 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fei, S., Alizadeh, A., Hsu, W. L., Delaunay, J. J. & Daiguji, H. Analysis of the water adsorption mechanism in metal-organic framework MIL-101(Cr) by molecular simulations. J. Phys. Chem. C 125, 26755–26769 (2021).

    Article  CAS  Google Scholar 

  106. Li, Y. et al. H2O adsorption/desorption in MOF-74: ab initio molecular dynamics and experiments. J. Phys. Chem. C 119, 13021–13031 (2015).

    Article  CAS  Google Scholar 

  107. Fei, S., Hsu, W.-L., Delaunay, J.-J. & Daiguji, H. Molecular dynamics study of water confined in MIL-101 metal–organic frameworks. J. Chem. Phys. 154, 144503 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Datar, A., Witman, M. & Lin, L. C. Improving computational assessment of porous materials for water adsorption applications via flat histogram methods. J. Phys. Chem. C 125, 4253–4266 (2021).

    Article  CAS  Google Scholar 

  109. Datar, A., Witman, M. & Lin, L. C. Monte Carlo simulations for water adsorption in porous materials: best practices and new insights. AIChE J. 67, e17447 (2021).

    Article  CAS  Google Scholar 

  110. Cho, K. H. et al. Rational design of a robust aluminum metal-organic framework for multi-purpose water-sorption-driven heat allocations. Nat. Commun. 11, 5112 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Choi, J., Lin, L. C. & Grossman, J. C. Role of structural defects in the water adsorption properties of MOF-801. J. Phys. Chem. C 122, 5545–5552 (2018).

    Article  CAS  Google Scholar 

  112. Hanikel, N. et al. Rapid cycling and exceptional yield in a metal-organic framework water harvester. ACS Cent. Sci. 5, 1699–1706 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nguyen, H. L. et al. Hydrazine-hydrazide-linked covalent organic frameworks for water harvesting. ACS Cent. Sci. 8, 926–932 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Krajnc, A. et al. Superior performance of microporous aluminophosphate with LTA topology in solar-energy storage and heat reallocation. Adv. Energy Mater. 7, 1601815 (2017).

    Article  Google Scholar 

  115. Mittal, H., Al Alili, A. & Alhassan, S. M. Capturing water vapors from atmospheric air using superporous gels. Sci. Rep. 12, 5626 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Garzón-Tovar, L., Pérez-Carvajal, J., Imaz, I. & Maspoch, D. Composite salt in porous metal-organic frameworks for adsorption heat transformation. Adv. Funct. Mater. 27, 1606424 (2017).

    Article  Google Scholar 

  117. Entezari, A., Ejeian, M. & Wang, R. Super atmospheric water harvesting hydrogel with alginate chains modified with binary salts. ACS Mater. Lett. 2, 471–477 (2020).

    Article  CAS  Google Scholar 

  118. Chen, Z. et al. Study of the scale-up effect on the water sorption performance of MOF materials. ACS Mater. Au 3, 43–54 (2023).

    Article  CAS  Google Scholar 

  119. Ejeian, M. & Wang, R. Z. Adsorption-based atmospheric water harvesting. Joule 5, 1678–1703 (2021).

    Article  Google Scholar 

  120. Bagi, S., Wright, A. M., Oppenheim, J., Dincǎ, M. & Román-Leshkov, Y. Accelerated synthesis of a Ni2Cl2(BTDD) metal-organic framework in a continuous flow reactor for atmospheric water capture. ACS Sustain. Chem. Eng. 9, 3996–4003 (2021).

    Article  CAS  Google Scholar 

  121. Zheng, Z. et al. High-yield, green and scalable methods for producing MOF-303 for water harvesting from desert air. Nat. Protoc. 18, 136–156 (2023).

    Article  CAS  PubMed  Google Scholar 

  122. Yaghi, O. M., Kalmutzki, M. J. & Diercks, C. S. Introduction to Reticular Chemistry (Wiley, 2019).

  123. Zheng, Z., Hanikel, N., Lyu, H. & Yaghi, O. M. Broadly tunable atmospheric water harvesting in multivariate metal-organic frameworks. J. Am. Chem. Soc. 144, 22669–22675 (2022).

    Article  CAS  PubMed  Google Scholar 

  124. Ji, Z., Wang, H., Canossa, S., Wuttke, S. & Yaghi, O. M. Pore chemistry of metal–organic frameworks. Adv. Funct. Mater. 30, 2000238 (2020).

    Article  CAS  Google Scholar 

  125. Sun, Y. et al. Tunable LiCl@UiO-66 composites for water sorption-based heat transformation applications. J. Mater. Chem. A 8, 13364–13375 (2020).

    Article  CAS  Google Scholar 

  126. Zhou, X., Lu, H., Zhao, F. & Yu, G. Atmospheric water harvesting: a review of material and structural designs. ACS Mater. Lett. 2, 671–684 (2020).

    Article  CAS  Google Scholar 

  127. Fatouh, M., Metwally, M. N., Helali, A. B. & Shedid, M. H. Herbs drying using a heat pump dryer. Energy Convers. Manag. 47, 2629–2643 (2006).

    Article  Google Scholar 

  128. Chua, K. J., Chou, S. K. & Yang, W. M. Advances in heat pump systems: a review. Appl. Energy 87, 3611–3624 (2010).

    Article  CAS  Google Scholar 

  129. Kim, J., Park, K., Yang, D. R. & Hong, S. A comprehensive review of energy consumption of seawater reverse osmosis desalination plants. Appl. Energy 254, 113652 (2019).

    Article  CAS  Google Scholar 

  130. Legrand, U., Girard-Lauriault, P. L., Meunier, J. L., Boudreault, R. & Tavares, J. R. Experimental and theoretical assessment of water sorbent kinetics. Langmuir 38, 2651–2659 (2022).

    Article  CAS  PubMed  Google Scholar 

  131. Díaz-Marín, C. D. et al. Heat and mass transfer in hygroscopic hydrogels. Int. J. Heat Mass Transf. 195, 123103 (2022).

    Article  Google Scholar 

  132. Feng, Y., Ge, T., Chen, B., Zhan, G. & Wang, R. A regulation strategy of sorbent stepwise position for boosting atmospheric water harvesting in arid area. Cell Rep. Phys. Sci. 2, 100561 (2021).

    Article  CAS  Google Scholar 

  133. El Fil, B., Li, X., Díaz-Marín, C. D., Zhang, L. & Jacobucci, C. L. Significant enhancement of sorption kinetics via boiling-assisted channel templating. Cell Rep. Phys. Sci. 4, 101549 (2023).

    Article  CAS  Google Scholar 

  134. Wilson, C. T. et al. Design considerations for next-generation sorbent-based atmospheric water-harvesting devices. Device 1, 100052 (2023).

    Article  Google Scholar 

  135. Zhao, L. et al. Harnessing heat beyond 200 °C from unconcentrated sunlight with nonevacuated transparent aerogels. ACS Nano 13, 7508–7516 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Li, A. C. et al. Thermodynamic limits of atmospheric water harvesting with temperature-dependent adsorption. Appl. Phys. Lett. 121, 164102 (2022).

    Article  CAS  Google Scholar 

  137. Wang, J. Y., Wang, R. Z., Tu, Y. D. & Wang, L. W. Universal scalable sorption-based atmosphere water harvesting. Energy 165, 387–395 (2018).

    Article  Google Scholar 

  138. Feng, Y., Wang, R. & Ge, T. Pathways to energy-efficient water production from the atmosphere. Adv. Sci. 9, 2204508 (2022).

    Article  CAS  Google Scholar 

  139. US Annual Solar GHI. The National Renewable Energy Laboratory https://www.nrel.gov/gis/solar.html (2018).

  140. Haechler, I. et al. Exploiting radiative cooling for uninterrupted 24-hour water harvesting from the atmosphere. Sci. Adv. 7, eabf3978 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bai, S. et al. Adsorption-based atmospheric water harvesting by passive radiative condensers for continuous decentralized water production. Appl. Therm. Eng. 225, 120163 (2023).

    Article  Google Scholar 

  142. Xu, Z. et al. Ultrahigh-efficiency desalination via a thermally-localized multistage solar still. Energy Environ. Sci. 13, 830–839 (2020).

    Article  CAS  Google Scholar 

  143. Zhang, L. et al. Modeling and performance analysis of high-efficiency thermally-localized multistage solar stills. Appl. Energy 266, 114864 (2020).

    Article  Google Scholar 

  144. Thomas, T. M., Sinha Mahapatra, P., Ganguly, R. & Tiwari, M. K. Preferred mode of atmospheric water vapor condensation on nanoengineered surfaces: dropwise or filmwise? Langmuir 39, 5396–5407 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wang, J., Hua, L., Li, C. & Wang, R. Atmospheric water harvesting: critical metrics and challenges. Energy Environ. Sci. 15, 4867–4871 (2022).

    Article  Google Scholar 

  146. Zhang, Y. & Tan, S. C. Best practices for solar water production technologies. Nat. Sustain. 5, 554–556 (2022).

    Article  Google Scholar 

  147. DeSantis, D. et al. Techno-economic analysis of metal–organic frameworks for hydrogen and natural gas storage. Energy Fuels 31, 2024–2032 (2017).

    Article  CAS  Google Scholar 

  148. Zechman Berglund, E. et al. Water and wastewater systems and utilities: challenges and opportunities during the COVID-19 pandemic. J. Water Resour. Plan. Manag. 147, 02521001 (2021).

    Article  Google Scholar 

  149. Sapkota, M. et al. An overview of hybrid water supply systems in the context of urban water management: challenges and opportunities. Water 7, 153–174 (2015).

    Article  CAS  Google Scholar 

  150. Xu, J. et al. Near-zero-energy smart battery thermal management enabled by sorption energy harvesting from air. ACS Cent. Sci. 6, 1542–1554 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhao, F., Guo, Y., Zhou, X., Shi, W. & Yu, G. Materials for solar-powered water evaporation. Nat. Rev. Mater. 5, 388–401 (2020).

    Article  Google Scholar 

  152. Aeschlimann, M., Li, G., Kanji, Z. A. & Mitrano, D. M. Potential impacts of atmospheric microplastics and nanoplastics on cloud formation processes. Nat. Geosci. 15, 967–975 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Trenberth, K. E. Atmospheric moisture recycling: role of advection and local evaporation. J. Clim. 12, 1368–1381 (1999).

    Article  Google Scholar 

  154. Konapala, G., Mishra, A. K., Wada, Y. & Mann, M. E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 11, 3044 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Fanning, A. F. & Weaver, A. J. An atmospheric energy-moisture balance model: climatology, interpentadal climate change, and coupling to an ocean general circulation model. J. Geophys. Res. Atmos. 101, 15111–15128 (1996).

    Article  Google Scholar 

  156. March, C. & Page, S. E. E. L. Atmospheric CO2: principal control knob governing Earth’s temperature. Science 330, 356–359 (2010).

    Article  Google Scholar 

  157. NASA Science Editorial Team. Steamy relationships: how atmospheric water vapor amplifies Earth’s greenhouse effect. NASA https://science.nasa.gov/earth/climate-change/steamy-relationships-how-atmospheric-water-vapor-amplifies-earths-greenhouse-effect/ (2022).

  158. Manabe, S. & Stouffer, R. J. Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J. Geophys. Res. Ocean. 85, 5529–5554 (1980).

    Article  Google Scholar 

  159. Manabe, S. & Wetherald, R. T. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci. 24, 241–259 (1967).

    Article  CAS  Google Scholar 

  160. Held, I. M. & Soden, B. J. Water vapor feedback and global warming. Annu. Rev. Energy Environ. 25, 441–475 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support received from the Defense Advanced Research Projects Agency (DARPA) Atmospheric Water Extraction (AWE) programme under contract HR001120S0014 with S. Cohen as programme manager. Y.Z. acknowledges funding support from MIT MathWorks Engineering fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and L.Z. contributed equally to this work. Y.Z., L.Z. and E.N.W. conceptualized the manuscript. Y.Z., L.Z., X.L., B.E.F. and C.D.D.-M. researched data and performed analysis for the article. L.Z. and Y.Z. conceived and illustrated the figures and tables. All authors contributed to the discussion of content, writing, and editing of the manuscript before submission.

Corresponding authors

Correspondence to Lenan Zhang or Evelyn N. Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Zhang, L., Li, X. et al. Bridging materials innovations to sorption-based atmospheric water harvesting devices. Nat Rev Mater (2024). https://doi.org/10.1038/s41578-024-00665-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41578-024-00665-2

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene