Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of substrate processing during ER-associated protein degradation

Abstract

Maintaining proteome integrity is essential for long-term viability of all organisms and is overseen by intrinsic quality control mechanisms. The secretory pathway of eukaryotes poses a challenge for such quality assurance as proteins destined for secretion enter the endoplasmic reticulum (ER) and become spatially segregated from the cytosolic machinery responsible for disposal of aberrant (misfolded or otherwise damaged) or superfluous polypeptides. The elegant solution provided by evolution is ER-membrane-bound ubiquitylation machinery that recognizes misfolded or surplus proteins or by-products of protein biosynthesis in the ER and delivers them to 26S proteasomes for degradation. ER-associated protein degradation (ERAD) collectively describes this specialized arm of protein quality control via the ubiquitin–proteasome system. But, instead of providing a single strategy to remove defective or unwanted proteins, ERAD represents a collection of independent processes that exhibit distinct yet overlapping selectivity for a wide range of substrates. Not surprisingly, ER-membrane-embedded ubiquitin ligases (ER-E3s) act as central hubs for each of these separate ERAD disposal routes. In these processes, ER-E3s cooperate with a plethora of specialized factors, coordinating recognition, transport and ubiquitylation of undesirable secretory, membrane and cytoplasmic proteins. In this Review, we focus on substrate processing during ERAD, highlighting common threads as well as differences between the many routes via ERAD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the principal steps in ERAD.
Fig. 2: ER-E3 complexes follow different strategies for substrate recruitment.
Fig. 3: Topological organization of the Hrd1 ER-E3 complex.
Fig. 4: Polyubiquitylation drives substrate extraction from the ER through the Cdc48/VCP AAA-ATPase complex.

References

  1. Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  Google Scholar 

  2. Braakman, I. & Bulleid, N. J. Protein folding and modification in the mammalian endoplasmic reticulum. Annu. Rev. Biochem. 80, 71–99 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Braakman, I. & Hebert, D. N. Protein folding in the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 5, a013201 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bonifacino, J. S., Suzuki, C. K., Lippincott-Schwartz, J., Weissman, A. M. & Klausner, R. D. Pre-Golgi degradation of newly synthesized T-cell antigen receptor chains: intrinsic sensitivity and the role of subunit assembly. J. Cell Biol. 109, 73–83 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Chen, C., Bonifacino, J. S., Yuan, L. C. & Klausner, R. D. Selective degradation of T cell antigen receptor chains retained in a pre-Golgi compartment. J. Cell Biol. 107, 2149–2161 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Wiertz, E. J. et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384, 432–438 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Hiller, M. M., Finger, A., Schweiger, M. & Wolf, D. H. ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science 273, 1725–1728 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Hampton, R. Y., Gardner, R. G. & Rine, J. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol. Biol. Cell 7, 2029–2044 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ward, C. L., Omura, S. & Kopito, R. R. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83, 121–127 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Werner, E. D., Brodsky, J. L. & McCracken, A. A. Proteasome-dependent endoplasmic reticulum-associated protein degradation: an unconventional route to a familiar fate. Proc. Natl Acad. Sci. USA 93, 13797–13801 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kumari, D. & Brodsky, J. L. The targeting of native proteins to the endoplasmic reticulum-associated degradation (ERAD) pathway: an expanding repertoire of regulated substrates. Biomolecules 11, 1185 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stevenson, J., Huang, E. Y. & Olzmann, J. A. Endoplasmic reticulum-associated degradation and lipid homeostasis. Annu. Rev. Nutr. 36, 511–542 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bhattacharya, A. & Qi, L. ER-associated degradation in health and disease – from substrate to organism. J. Cell Sci. 132, jcs232850 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qi, L., Tsai, B. & Arvan, P. New insights into the physiological role of endoplasmic reticulum-associated degradation. Trends Cell Biol. 27, 430–440 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, R., Xia, R., Xie, Q. & Wu, Y. Endoplasmic reticulum-related E3 ubiquitin ligases: key regulators of plant growth and stress responses. Plant Commun. 2, 100186 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Volkmar, N. et al. Regulation of membrane fluidity by RNF145‐triggered degradation of the lipid hydrolase ADIPOR2. EMBO J. 41, e110777 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nguyen, K. T. et al. The MARCHF6 E3 ubiquitin ligase acts as an NADPH sensor for the regulation of ferroptosis. Nat. Cell Biol. 24, 1239–1251 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Thepsuwan, P. et al. Hepatic SEL1L-HRD1 ER-associated degradation regulates systemic iron homeostasis via ceruloplasmin. Proc. Natl Acad. Sci. USA 120, e2212644120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ji, Y. et al. SEL1L–HRD1 endoplasmic reticulum-associated degradation controls STING-mediated innate immunity by limiting the size of the activable STING pool. Nat. Cell Biol. 25, 726–739 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu, Y. et al. ER-localized Hrd1 ubiquitinates and inactivates Usp15 to promote TLR4-induced inflammation during bacterial infection. Nat. Microbiol. 4, 2331–2346 (2019).

    Article  PubMed  Google Scholar 

  21. Kawano, T. et al. ER proteostasis regulators cell-non-autonomously control sleep. Cell Rep. 42, 112267 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Vitale, M. et al. Inadequate BiP availability defines endoplasmic reticulum stress. eLife 8, e41168 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Welsh, M. J. & Smith, A. E. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73, 1251–1254 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Deshaies, R. J. & Joazeiro, C. A. P. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399–434 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Berndsen, C. E. & Wolberger, C. New insights into ubiquitin E3 ligase mechanism. Nat. Struct. Mol. Biol. 21, 301–307 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Fenech, E. J. et al. Interaction mapping of endoplasmic reticulum ubiquitin ligases identifies modulators of innate immune signalling. eLife 9, e57306 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Saarikangas, J. et al. Compartmentalization of ER-bound chaperone confines protein deposit formation to the aging yeast cell. Curr. Biol. 27, 773–783 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Balchin, D., Hayer-Hartl, M. & Hartl, F. U. In vivo aspects of protein folding and quality control. Science 353, aac4354 (2016).

    Article  PubMed  Google Scholar 

  29. Wangeline, M. A. & Hampton, R. Y. “Mallostery”—ligand-dependent protein misfolding enables physiological regulation by ERAD. J. Biol. Chem. 293, 14937–14950 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Christianson, J. C. et al. Defining human ERAD networks through an integrative mapping strategy. Nat. Cell Biol. 14, 93–105 (2012).

    Article  CAS  Google Scholar 

  31. Carvalho, P., Goder, V. & Rapoport, T. A. Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126, 361–373 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Menzies, S. A. et al. The sterol-responsive RNF145 E3 ubiquitin ligase mediates the degradation of HMG-CoA reductase together with gp78 and Hrd1. eLife 7, e40009 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tsai, P.-L. et al. Dynamic quality control machinery that operates across compartmental borders mediates the degradation of mammalian nuclear membrane proteins. Cell Rep. 41, 111675 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chino, H. & Mizushima, N. ER-phagy: quality and quantity control of the endoplasmic reticulum by autophagy. Cold Spring Harb. Perspect. Biol. 15, a041256 (2022).

    Article  Google Scholar 

  35. Fregno, I. et al. ER‐to‐lysosome‐associated degradation of proteasome‐resistant ATZ polymers occurs via receptor‐mediated vesicular transport. EMBO J. 37, e99259 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sikorska, N. et al. Limited ER quality control for GPI-anchored proteins. J. Cell Biol. 213, 693–704 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lemus, L. & Goder, V. Pep4-dependent microautophagy is required for post-ER degradation of GPI-anchored proteins. Autophagy 18, 223–225 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Ninagawa, S. et al. EDEM2 initiates mammalian glycoprotein ERAD by catalyzing the first mannose trimming step. J. Cell Biol. 206, 347–356 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Clerc, S. et al. Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum. J. Cell Biol. 184, 159–172 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, Y.-C., Fujimori, D. G. & Weissman, J. S. Htm1p–Pdi1p is a folding-sensitive mannosidase that marks N-glycoproteins for ER-associated protein degradation. Proc. Natl Acad. Sci. USA 113, E4015–E4024 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. George, G. et al. EDEM2 stably disulfide-bonded to TXNDC11 catalyzes the first mannose trimming step in mammalian glycoprotein ERAD. eLife 9, e53455 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hagiwara, M. et al. Structural basis of an ERAD pathway mediated by the ER-resident protein disulfide reductase ERdj5. Mol. Cell 41, 432–444 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Shenkman, M. et al. Mannosidase activity of EDEM1 and EDEM2 depends on an unfolded state of their glycoprotein substrates. Commun. Biol. 1, 172 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shenkman, M. & Lederkremer, G. Z. compartmentalization and selective tagging for disposal of misfolded glycoproteins. Trends Biochem. Sci. 44, 827–836 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Yu, S., Ito, S., Wada, I. & Hosokawa, N. ER-resident protein 46 (ERp46) triggers the mannose-trimming activity of ER degradation-enhancing α-mannosidase-like protein 3 (EDEM3). J. Biol. Chem. 293, 10663–10674 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Timms, R. T. et al. Genetic dissection of mammalian ERAD through comparative haploid and CRISPR forward genetic screens. Nat. Commun. 7, 11786 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ushioda, R. et al. ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER. Science 321, 569–572 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Hebert, D. N. & Molinari, M. Flagging and docking: dual roles for N-glycans in protein quality control and cellular proteostasis. Trends Biochem. Sci. 37, 404–410 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Patel, C., Saad, H., Shenkman, M. & Lederkremer, G. Z. Oxidoreductases in glycoprotein glycosylation, folding, and ERAD. Cells 9, 2138 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bhamidipati, A., Denic, V., Quan, E. M. & Weissman, J. S. Exploration of the topological requirements of ERAD identifies Yos9p as a lectin sensor of misfolded glycoproteins in the ER lumen. Mol. Cell 19, 741–751 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Christianson, J. C., Shaler, T. A., Tyler, R. E. & Kopito, R. R. OS-9 and GRP94 deliver mutant alpha1-antitrypsin to the Hrd1–SEL1L ubiquitin ligase complex for ERAD. Nat. Cell Biol. 10, 272–282 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hosokawa, N., Kamiya, Y., Kamiya, D., Kato, K. & Nagata, K. Human OS-9, a lectin required for glycoprotein endoplasmic reticulum-associated degradation, recognizes mannose-trimmed N-glycans. J. Biol. Chem. 284, 17061–17068 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hosokawa, N., Wada, I., Okawa, K. & Nagata, K. Human XTP3-B forms an endoplasmic reticulum quality control scaffold with the HRD1-SEL1L ubiquitin ligase complex and BiP. J. Biol. Chem. 283, 20914–20924 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Satoh, T. et al. Structural basis for oligosaccharide recognition of misfolded glycoproteins by OS-9 in ER-associated degradation. Mol. Cell 40, 905–9016 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Goot, A. T. van der, Pearce, M. M. P., Leto, D. E., Shaler, T. A. & Kopito, R. R. Redundant and antagonistic roles of XTP3B and OS9 in decoding glycan and non-glycan degrons in ER-associated degradation. Mol. Cell 70, 516–530.e6 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Quan, E. M. et al. Defining the glycan destruction signal for endoplasmic reticulum-associated degradation. Mol. Cell 32, 870–877 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim, W., Spear, E. D. & Ng, D. T. W. Yos9p detects and targets misfolded glycoproteins for ER-associated degradation. Mol. Cell 19, 753–764 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Szathmary, R., Bielmann, R., Nita-Lazar, M., Burda, P. & Jakob, C. A. Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD. Mol. Cell 19, 765–775 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Lilley, B. N. & Ploegh, H. L. Multiprotein complexes that link dislocation, ubiquitination, and extraction of misfolded proteins from the endoplasmic reticulum membrane. Proc. Natl Acad. Sci. USA 102, 14296–14301 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mueller, B., Lilley, B. N. & Ploegh, H. L. SEL1L, the homologue of yeast Hrd3p, is involved in protein dislocation from the mammalian ER. J. Cell Biol. 175, 261–270 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gauss, R., Jarosch, E., Sommer, T. & Hirsch, C. A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery. Nat. Cell Biol. 8, 849–854 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Denic, V., Quan, E. M. & Weissman, J. S. A luminal surveillance complex that selects misfolded glycoproteins for ER-associated degradation. Cell 126, 349–359 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Ushioda, R., Hoseki, J. & Nagata, K. Glycosylation-independent ERAD pathway serves as a backup system under ER stress. Mol. Biol. Cell 24, 3155–3163 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Iida, Y. et al. SEL1L protein critically determines the stability of the HRD1-SEL1L endoplasmic reticulum-associated degradation (ERAD) complex to optimize the degradation kinetics of ERAD substrates. J. Biol. Chem. 286, 16929–16939 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Leto, D. E. et al. Genome-wide crispr analysis identifies substrate-specific conjugation modules in ER-associated degradation. Mol. Cell 73, 377–389.e11 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Shimizu, Y., Okuda-Shimizu, Y. & Hendershot, L. M. Ubiquitylation of an ERAD substrate occurs on multiple types of amino acids. Mol. Cell 40, 917–926 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Williams, J. M., Inoue, T., Banks, L. & Tsai, B. The ERdj5-Sel1L complex facilitates cholera toxin retrotranslocation. Mol. Biol. Cell 24, 785–795 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bock, J. et al. Rhomboid protease RHBDL4 promotes retrotranslocation of aggregation-prone proteins for degradation. Cell Rep. 40, 111175 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bergmann, T. J. et al. Chemical stresses fail to mimic the unfolded protein response resulting from luminal load with unfolded polypeptides. J. Biol. Chem. 293, 5600–5612 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Travers, K. J. et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Shoulders, M. D. et al. Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments. Cell Rep. 3, 1279–1292 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882.e21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Burr, M. L. et al. HRD1 and UBE2J1 target misfolded MHC class I heavy chains for endoplasmic reticulum-associated degradation. Proc. Natl Acad. Sci. USA 108, 2034–2039 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Meusser, B. & Sommer, T. Vpu-mediated degradation of CD4 reconstituted in yeast reveals mechanistic differences to cellular ER-associated protein degradation. Mol. Cell 14, 247–258 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Tyler, R. E. et al. Unassembled CD147 is an endogenous endoplasmic reticulum-associated degradation substrate. Mol. Biol. Cell 23, 4668–4678 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jiang, L.-Y. et al. Ring finger protein 145 (RNF145) is a ubiquitin ligase for sterol-induced degradation of HMG-CoA reductase. J. Biol. Chem. 293, 4047–4055 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jo, Y., Sguigna, P. V. & DeBose-Boyd, R. A. Membrane-associated ubiquitin ligase complex containing gp78 mediates sterol-accelerated degradation of 3-hydroxy-3-methylglutaryl-coenzyme a reductase. J. Biol. Chem. 286, 15022–15031 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Habeck, G., Ebner, F. A., Shimada-Kreft, H. & Kreft, S. G. The yeast ERAD-C ubiquitin ligase Doa10 recognizes an intramembrane degron. J. Cell Biol. 209, 261–273 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Barrett, S. S. et al. MARCH6 and TRC8 facilitate the quality control of cytosolic and tail‐anchored proteins. EMBO Rep. 19, e45603 (2018).

    Article  Google Scholar 

  80. Shiber, A., Breuer, W., Brandeis, M. & Ravid, T. Ubiquitin conjugation triggers misfolded protein sequestration into quality control foci when Hsp70 chaperone levels are limiting. Mol. Biol. Cell 24, 2076–2087 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Metzger, M. B., Maurer, M. J., Dancy, B. M. & Michaelis, S. Degradation of a cytosolic protein requires endoplasmic reticulum-associated degradation machinery. J. Biol. Chem. 283, 32302–32316 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zattas, D., Berk, J. M., Kreft, S. G. & Hochstrasser, M. A conserved C-terminal element in the yeast Doa10 and human MARCH6 ubiquitin ligases required for selective substrate degradation. J. Biol. Chem. 291, 12105–12118 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kreft, S. G. & Hochstrasser, M. An unusual transmembrane helix in the endoplasmic reticulum ubiquitin ligase Doa10 modulates degradation of its cognate E2 enzyme. J. Biol. Chem. 286, 20163–20174 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chua, N. K., Howe, V., Jatana, N., Thukral, L. & Brown, A. J. A conserved degron containing an amphipathic helix regulates the cholesterol-mediated turnover of human squalene monooxygenase, a rate-limiting enzyme in cholesterol synthesis. J. Biol. Chem. 292, 19959–19973 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Foresti, O., Ruggiano, A., Hannibal-Bach, H. K., Ejsing, C. S. & Carvalho, P. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4. eLife 2, e00953 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Weijer, M. Lvande. et al. Quality control of ER membrane proteins by the RNF185/Membralin ubiquitin ligase complex. Mol. Cell 79, 768–781.e7 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Pearce, M. M. P., Wang, Y., Kelley, G. G. & Wojcikiewicz, R. J. H. SPFH2 mediates the endoplasmic reticulum-associated degradation of inositol 1,4,5-trisphosphate receptors and other substrates in mammalian cells. J. Biol. Chem. 282, 20104–20115 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Pearce, M. M. P., Wormer, D. B., Wilkens, S. & Wojcikiewicz, R. J. H. An endoplasmic reticulum (ER) membrane complex composed of SPFH1 and SPFH2 mediates the ER-associated degradation of inositol 1,4,5-trisphosphate receptors. J. Biol. Chem. 284, 10433–10445 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wolf, L. M., Lambert, A. M., Haenlin, J. & Boutros, M. EVI/WLS function is regulated by ubiquitination and linked to ER-associated degradation by ERLIN2. J. Cell Sci. 134, jcs257790 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Glaeser, K. et al. ERAD‐dependent control of the Wnt secretory factor Evi. EMBO J. 37, e97311 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Gao, X., Bonzerato, C. G. & Wojcikiewicz, R. J. H. Binding of the erlin1/2 complex to the third intralumenal loop of IP3R1 triggers its ubiquitin-proteasomal degradation. J. Biol. Chem. 298, 102026 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Choi, J. H. et al. LMBR1L regulates lymphopoiesis through Wnt/β-catenin signaling. Science 364, eaau0812 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wu, X. et al. Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex. Science 368, eaaz2449 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pisa, R. & Rapoport, T. A. Disulfide-crosslink analysis of the ubiquitin ligase Hrd1 complex during endoplasmic reticulum-associated protein degradation. J. Biol. Chem. 298, 102373 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Greenblatt, E. J., Olzmann, J. A. & Kopito, R. R. Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum. Nat. Struct. Mol. Biol. 18, 1147–1152 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kühnle, N., Dederer, V. & Lemberg, M. K. Intramembrane proteolysis at a glance: from signalling to protein degradation. J. Cell Sci. 132, jcs217745 (2019).

    Article  PubMed  Google Scholar 

  97. Kreutzberger, A. J. B., Ji, M., Aaron, J., Mihaljević, L. & Urban, S. Rhomboid distorts lipids to break the viscosity-imposed speed limit of membrane diffusion. Science 363, eaao0076 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Engberg, O. et al. Rhomboid-catalyzed intramembrane proteolysis requires hydrophobic matching with the surrounding lipid bilayer. Sci. Adv. 8, eabq8303 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hwang, J., Peterson, B. G., Knupp, J. & Baldridge, R. D. The ERAD system is restricted by elevated ceramides. Sci. Adv. 9, eadd8579 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Schoebel, S. et al. Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3. Nature 548, 352–355 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Carvalho, P., Stanley, A. M. & Rapoport, T. A. Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. Cell 143, 579–591 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mehnert, M., Sommer, T. & Jarosch, E. Der1 promotes movement of misfolded proteins through the endoplasmic reticulum membrane. Nat. Cell Biol. 16, 77–86 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Eura, Y., Miyata, T. & Kokame, K. Derlin-3 is required for changes in ERAD complex formation under ER stress. Int. J. Mol. Sci. 21, 6146 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sato, B. K., Schulz, D., Do, P. H. & Hampton, R. Y. Misfolded membrane proteins are specifically recognized by the transmembrane domain of the Hrd1p ubiquitin ligase. Mol. Cell 34, 212–222 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Neal, S. et al. The dfm1 derlin is required for ERAD retrotranslocation of integral membrane proteins. Mol. Cell 69, 306–320.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nejatfard, A. et al. Derlin rhomboid pseudoproteases employ substrate engagement and lipid distortion to enable the retrotranslocation of ERAD membrane substrates. Cell Rep. 37, 109840 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rao, B. et al. The cryo-EM structure of an ERAD protein channel formed by tetrameric human Derlin-1. Sci. Adv. 7, eabe8591 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Younger, J. M. et al. Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell 126, 571–582 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Ballar, P. et al. Identification of SVIP as an endogenous inhibitor of endoplasmic reticulum-associated degradation. J. Biol. Chem. 282, 33908–33914 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Boomen, D. J. Hvanden et al. TMEM129 is a Derlin-1 associated ERAD E3 ligase essential for virus-induced degradation of MHC-I. Proc. Natl Acad. Sci. USA 111, 11425–11430 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Zhang, T., Xu, Y., Liu, Y. & Ye, Y. gp78 functions downstream of Hrd1 to promote degradation of misfolded proteins of the endoplasmic reticulum. Mol. Biol. Cell 26, 4438–4450 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hirsch, C., Gauss, R., Horn, S. C., Neuber, O. & Sommer, T. The ubiquitylation machinery of the endoplasmic reticulum. Nature 458, 453–460 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Mehrtash, A. B. & Hochstrasser, M. Elements of the ERAD ubiquitin ligase Doa10 regulating sequential poly-ubiquitylation of its targets. iScience 25, 105351 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kreft, S. G., Wang, L. & Hochstrasser, M. Membrane topology of the yeast endoplasmic reticulum-localized ubiquitin ligase Doa10 and comparison with its human ortholog TEB4 (MARCH-VI). J. Biol. Chem. 281, 4646–4653 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Schmidt, C. C., Vasic, V. & Stein, A. Doa10 is a membrane protein retrotranslocase in ER-associated protein degradation. eLife 9, 394 (2020).

    Article  Google Scholar 

  116. Wang, L. et al. TMUB1 is an endoplasmic reticulum-resident escortase that promotes the p97-mediated extraction of membrane proteins for degradation. Mol. Cell 82, 3453–3467 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Zanotti, A. et al. The human signal peptidase complex acts as a quality control enzyme for membrane proteins. Science 378, 996–1000 (2022).

    Article  CAS  PubMed  Google Scholar 

  118. Fleig, L. et al. Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins. Mol. Cell 47, 558–569 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Chen, C.-Y. et al. Signal peptide peptidase functions in ERAD to cleave the unfolded protein response regulator XBP1u. EMBO J. 33, 2492–2506 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yücel, S. S. et al. The metastable XBP1u transmembrane domain defines determinants for intramembrane proteolysis by signal peptide peptidase. Cell Rep. 26, 3087–3099.e11 (2019).

    Article  PubMed  Google Scholar 

  121. Lilley, B. N., Spooner, E., Tortorella, D. & Ploegh, H. L. Signal peptide peptidase is required for dislocation from the endoplasmic reticulum. Nature 441, 894–897 (2006).

    Article  PubMed  Google Scholar 

  122. Avci, D. & Lemberg, M. K. Clipping or extracting: two ways to membrane protein degradation. Trends Cell Biol. 25, 611–622 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Peterson, B. G. et al. Deep mutational scanning highlights a new role for cytosolic regions in Hrd1 function. bioRxiv Preprint at https://www.biorxiv.org/content/10.1101/2023.04.03.535444v1 (2023).

  124. Schulz, J. et al. Conserved cytoplasmic domains promote Hrd1 ubiquitin ligase complex formation for ER-associated degradation (ERAD). J. Cell Sci. 130, 3322–3335 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Lu, J. P., Wang, Y., Sliter, D. A., Pearce, M. M. P. & Wojcikiewicz, R. J. H. RNF170 protein, an endoplasmic reticulum membrane ubiquitin ligase, mediates inositol 1,4,5-trisphosphate receptor ubiquitination and degradation. J. Biol. Chem. 286, 24426–24433 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Claessen, J. H. L., Sanyal, S. & Ploegh, H. L. The chaperone BAG6 captures dislocated glycoproteins in the cytosol. PLoS ONE 9, e90204 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Xu, Y., Cai, M., Yang, Y., Huang, L. & Ye, Y. SGTA recognizes a noncanonical ubiquitin-like domain in the Bag6-Ubl4A-Trc35 complex to promote endoplasmic reticulum-associated degradation. Cell Rep. 2, 1633–1644 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Payapilly, A. & High, S. BAG6 regulates the quality control of a polytopic ERAD substrate. J. Cell Sci. 127, 2898–2909 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang, Q. et al. A ubiquitin ligase-associated chaperone holdase maintains polypeptides in soluble states for proteasome degradation. Mol. Cell 42, 758–770 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yamasaki, S. et al. Cytoplasmic destruction of p53 by the endoplasmic reticulum-resident ubiquitin ligase ‘Synoviolin. EMBO J. 26, 113–122 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Fujita, H. et al. The E3 ligase synoviolin controls body weight and mitochondrial biogenesis through negative regulation of PGC-1β. EMBO J. 34, 1042–1055 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wei, J. et al. HRD1-mediated METTL14 degradation regulates m6A mRNA modification to suppress ER proteotoxic liver disease. Mol. Cell 81, 5052–5065.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Swanson, R., Locher, M. & Hochstrasser, M. A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matalpha2 repressor degradation. Genes Dev. 15, 2660–2674 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ravid, T., Kreft, S. G. & Hochstrasser, M. Membrane and soluble substrates of the Doa10 ubiquitin ligase are degraded by distinct pathways. EMBO J. 25, 533–543 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Jongsma, M. L. M. et al. An ER-associated pathway defines endosomal architecture for controlled cargo transport. Cell 166, 152–166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Cremer, T. et al. The ER-embedded UBE2J1/RNF26 ubiquitylation complex exerts spatiotemporal control over the endolysosomal pathway. Cell Rep. 34, 108659 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Khmelinskii, A. et al. Protein quality control at the inner nuclear membrane. Nature 516, 410–413 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Foresti, O., Rodriguez-Vaello, V., Funaya, C. & Carvalho, P. Quality control of inner nuclear membrane proteins by the Asi complex. Science 346, 751–755 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Neutzner, A. et al. A systematic search for endoplasmic reticulum (ER) membrane-associated RING finger proteins identifies Nixin/ZNRF4 as a regulator of calnexin stability and ER homeostasis. J. Biol. Chem. 286, 8633–8643 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Claessen, J. H. L., Kundrat, L. & Ploegh, H. L. Protein quality control in the ER: balancing the ubiquitin checkbook. Trends Cell Biol. 22, 22–32 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Krshnan, L., van de Weijer, M. L. & Carvalho, P. Endoplasmic reticulum–associated protein degradation. Cold Spring Harb. Perspect. Biol. 14, a041247 (2022).

    Article  CAS  PubMed  Google Scholar 

  143. Pruneda, J. N. et al. Structure of an E3:E2~Ub complex reveals an allosteric mechanism shared among RING/U-box ligases. Mol. Cell 47, 933–942 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lips, C. et al. Who with whom: functional coordination of E2 enzymes by RING E3 ligases during poly‐ubiquitylation. EMBO J. 39, e104863 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Das, R. et al. Allosteric regulation of E2:E3 interactions promote a processive ubiquitination machine. EMBO J. 32, 2504–2516 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Klemm, E. J., Spooner, E. & Ploegh, H. L. Dual role of ancient ubiquitous protein 1 (AUP1) in lipid droplet accumulation and endoplasmic reticulum (ER) protein quality control. J. Biol. Chem. 286, 37602–37614 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Spandl, J., Lohmann, D., Kuerschner, L., Moessinger, C. & Thiele, C. Ancient ubiquitous protein 1 (AUP1) localizes to lipid droplets and binds the E2 ubiquitin conjugase G2 (Ube2g2) via its G2 binding region. J. Biol. Chem. 286, 5599–5606 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Smith, C. E. et al. A structurally conserved site in AUP1 binds the E2 enzyme UBE2G2 and is essential for ER-associated degradation. PLoS Biol. 19, e3001474 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Metzger, M. B. et al. A structurally unique E2-binding domain activates ubiquitination by the ERAD E2, Ubc7p, through multiple mechanisms. Mol. Cell 50, 516–527 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kostova, Z., Mariano, J., Scholz, S., Koenig, C. & Weissman, A. M. A Ubc7p-binding domain in Cue1p activates ER-associated protein degradation. J. Cell Sci. 122, 1374–1381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Weber, A. et al. Sequential poly-ubiquitylation by specialized conjugating enzymes expands the versatility of a quality control ubiquitin ligase. Mol. Cell 63, 827–839 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Mueller, B., Klemm, E. J., Spooner, E., Claessen, J. H. & Ploegh, H. L. SEL1L nucleates a protein complex required for dislocation of misfolded glycoproteins. Proc. Natl Acad. Sci. USA 105, 12325–12330 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Stewart, M. D., Ritterhoff, T., Klevit, R. E. & Brzovic, P. S. E2 enzymes: more than just middle men. Cell Res. 26, 423–440 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Deol, K. K., Lorenz, S. & Strieter, E. R. Enzymatic logic of ubiquitin chain assembly. Front. Physiol. 10, 835 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Wang, X. et al. Ube2j2 ubiquitinates hydroxylated amino acids on ER-associated degradation substrates. J. Cell Biol. 187, 655–668 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Burr, M. L. et al. MHC class I molecules are preferentially ubiquitinated on endoplasmic reticulum luminal residues during HRD1 ubiquitin E3 ligase-mediated dislocation. Proc. Natl Acad. Sci. USA 110, 14290–14295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. van de Weijer, M. L. et al. A high-coverage shRNA screen identifies TMEM129 as an E3 ligase involved in ER-associated protein degradation. Nat. Commun. 5, 3832 (2014).

    Article  PubMed  Google Scholar 

  158. Liu, X. et al. Human cytomegalovirus evades antibody-mediated immunity through endoplasmic reticulum-associated degradation of the FcRn receptor. Nat. Commun. 10, 3020 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Friedlander, R., Jarosch, E., Urban, J., Volkwein, C. & Sommer, T. A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat. Cell Biol. 2, 379–384 (2000).

    Article  CAS  PubMed  Google Scholar 

  160. Bodnar, N. O. et al. Structure of the Cdc48 ATPase with its ubiquitin-binding cofactor Ufd1–Npl4. Nat. Struct. Mol. Biol. 25, 616–622 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ohtake, F., Tsuchiya, H., Saeki, Y. & Tanaka, K. K63 ubiquitylation triggers proteasomal degradation by seeding branched ubiquitin chains. Proc. Natl Acad. Sci. USA 115, E1401–E1408 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Erzberger, J. P. & Berger, J. M. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu. Rev. Biophys. Biomol. Struct. 35, 93–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  163. Puchades, C., Sandate, C. R. & Lander, G. C. The molecular principles governing the activity and functional diversity of AAA+ proteins. Nat. Rev. Mol. Cell Biol. 21, 43–58 (2020).

    Article  CAS  PubMed  Google Scholar 

  164. Jessop, M., Felix, J. & Gutsche, I. AAA+ ATPases: structural insertions under the magnifying glass. Curr. Opin. Struct. Biol. 66, 119–128 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. van den Boom, J. & Meyer, H. VCP/p97-mediated unfolding as a principle in protein homeostasis and signaling. Mol. Cell 69, 182–194 (2018).

    Article  PubMed  Google Scholar 

  166. Cooney, I. et al. Structure of the Cdc48 segregase in the act of unfolding an authentic substrate. Science 365, 502–505 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. DeLaBarre, B. & Brunger, A. T. Complete structure of p97/valosin-containing protein reveals communication between nucleotide domains. Nat. Struct. Biol. 10, 856–863 (2003).

    Article  CAS  PubMed  Google Scholar 

  168. Davies, J. M., Brunger, A. T. & Weis, W. I. Improved structures of full-length p97, an AAA ATPase: implications for mechanisms of nucleotide-dependent conformational change. Structure 16, 715–726 (2008).

    Article  CAS  PubMed  Google Scholar 

  169. Twomey, E. C. et al. Substrate processing by the Cdc48 ATPase complex is initiated by ubiquitin unfolding. Science 365, eaax1033 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ji, Z. et al. Translocation of polyubiquitinated protein substrates by the hexameric Cdc48 ATPase. Mol. Cell 82, 1–15 (2021).

    Google Scholar 

  171. Schuberth, C. & Buchberger, A. Membrane-bound Ubx2 recruits Cdc48 to ubiquitin ligases and their substrates to ensure efficient ER-associated protein degradation. Nat. Cell Biol. 7, 999–1006 (2005).

    Article  CAS  PubMed  Google Scholar 

  172. Neuber, O., Jarosch, E., Volkwein, C., Walter, J. & Sommer, T. Ubx2 links the Cdc48 complex to ER-associated protein degradation. Nat. Cell Biol. 7, 993–998 (2005).

    Article  CAS  PubMed  Google Scholar 

  173. Meyer, H., Bug, M. & Bremer, S. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat. Cell Biol. 14, 117–123 (2012).

    Article  CAS  PubMed  Google Scholar 

  174. Bodnar, N. O. & Rapoport, T. A. Molecular mechanism of substrate processing by the Cdc48 ATPase complex. Cell 169, 722–735.e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sato, Y. et al. Structural insights into ubiquitin recognition and Ufd1 interaction of Npl4. Nat. Commun. 10, 5708 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Williams, C., Dong, K. C., Arkinson, C. & Martin, A. The Ufd1 cofactor determines the linkage specificity of polyubiquitin chain engagement by the AAA+ ATPase Cdc48. Mol. Cell 83, 759–769 (2023).

    Article  CAS  PubMed  Google Scholar 

  177. Lee, J.-G. & Ye, Y. Bag6/Bat3/Scythe: a novel chaperone activity with diverse regulatory functions in protein biogenesis and degradation. BioEssays 35, 377–385 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Tsuchiya, H. et al. In vivo ubiquitin linkage-type analysis reveals that the Cdc48-Rad23/Dsk2 axis contributes to K48-linked chain specificity of the proteasome. Mol. Cell 66, 488–502.e7 (2017).

    Article  CAS  PubMed  Google Scholar 

  179. Medicherla, B., Kostova, Z., Schaefer, A. & Wolf, D. H. A genomic screen identifies Dsk2p and Rad23p as essential components of ER-associated degradation. EMBO Rep. 5, 692–697 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Ernst, R., Mueller, B., Ploegh, H. L. & Schlieker, C. The otubain YOD1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the ER. Mol. Cell 36, 28–38 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Rumpf, S. & Jentsch, S. Functional division of substrate processing cofactors of the ubiquitin-selective Cdc48 chaperone. Mol. Cell 21, 261–269 (2006).

    Article  CAS  PubMed  Google Scholar 

  182. Liu, C., Liu, W., Ye, Y. & Li, W. Ufd2p synthesizes branched ubiquitin chains to promote the degradation of substrates modified with atypical chains. Nat. Commun. 8, 14274 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Böhm, S., Lamberti, G., Fernández-Sáiz, V., Stapf, C. & Buchberger, A. Cellular functions of ufd2 and ufd3 in proteasomal protein degradation depend on cdc48 binding. Mol. Cell Biol. 31, 1528–1539 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Morreale, G., Conforti, L., Coadwell, J., Wilbrey, A. L. & Coleman, M. P. Evolutionary divergence of valosin-containing protein/cell division cycle protein 48 binding interactions among endoplasmic reticulum-associated degradation proteins. FEBS J. 276, 1208–1220 (2009).

    Article  CAS  PubMed  Google Scholar 

  185. Hu, X. et al. RNF126-mediated reubiquitination is required for proteasomal degradation of p97-extracted membrane proteins. Mol. Cell 79, 320–331.e9 (2020).

    Article  CAS  PubMed  Google Scholar 

  186. Bard, J. A. M. et al. Structure and function of the 26S proteasome. Annu. Rev. Biochem. 87, 1–28 (2018).

    Article  Google Scholar 

  187. Albert, S. et al. Direct visualization of degradation microcompartments at the ER membrane. Proc. Natl Acad. Sci. USA 117, 1069–1080 (2020).

    Article  CAS  PubMed  Google Scholar 

  188. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).

    Article  CAS  PubMed  Google Scholar 

  189. Hetz, C., Zhang, K. & Kaufman, R. J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol. 21, 421–438 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Cox, J. S., Shamu, C. E. & Walter, P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73, 1197–1206 (1993).

    Article  CAS  PubMed  Google Scholar 

  191. Kokame, K., Kato, H. & Miyata, T. Identification of ERSE-II, a new cis-acting element responsible for the ATF6-dependent mammalian unfolded protein response. J. Biol. Chem. 276, 9199–9205 (2001).

    Article  CAS  PubMed  Google Scholar 

  192. Yoshida, H., Haze, K., Yanagi, H., Yura, T. & Mori, K. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins involvement of basic leucine zipper transcription factors. J. Biol. Chem. 273, 33741–33749 (1998).

    Article  CAS  PubMed  Google Scholar 

  193. Sun, S. et al. Sel1L is indispensable for mammalian endoplasmic reticulum-associated degradation, endoplasmic reticulum homeostasis, and survival. Proc. Natl Acad. Sci. USA 111, E582–E591 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Kny, M., Standera, S., Hartmann-Petersen, R., Kloetzel, P. M. & Seeger, M. Herp regulates Hrd1-mediated ubiquitylation in a ubiquitin-like domain-dependent manner. J. Biol. Chem. 286, 5151–5156 (2011).

    Article  CAS  PubMed  Google Scholar 

  195. Leitman, J. et al. Herp coordinates compartmentalization and recruitment of HRD1 and misfolded proteins for ERAD. Mol. Biol. Cell 25, 1050–1060 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Huang, C.-H., Chu, Y.-R., Ye, Y. & Chen, X. Role of HERP and a HERP-related protein in HRD1-dependent protein degradation at the endoplasmic reticulum. J. Biol. Chem. 289, 4444–4454 (2014).

    Article  CAS  PubMed  Google Scholar 

  197. Sun, S. et al. IRE1α is an endogenous substrate of endoplasmic-reticulum-associated degradation. Nat. Cell Biol. 17, 1546–1555 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Horimoto, S. et al. The unfolded protein response transducer ATF6 represents a novel transmembrane-type endoplasmic reticulum-associated degradation substrate requiring both mannose trimming and SEL1L. J. Biol. Chem. 288, 31517–31527 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Kaneko, M. et al. Genome-wide identification and gene expression profiling of ubiquitin ligases for endoplasmic reticulum protein degradation. Sci. Rep. 6, 30955 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Wu, Y. et al. Transmembrane E3 ligase RNF183 mediates ER stress-induced apoptosis by degrading Bcl-xL. Proc. Natl Acad. Sci. USA 115, E2762–E2771 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Rong, J. et al. Bifunctional apoptosis regulator (BAR), an endoplasmic reticulum (ER)-associated E3 ubiquitin ligase, modulates BI-1 protein stability and function in ER Stress. J. Biol. Chem. 286, 1453–1463 (2011).

    Article  CAS  PubMed  Google Scholar 

  202. Arshad, M. et al. RNF13, a RING finger protein, mediates endoplasmic reticulum stress-induced apoptosis through the inositol-requiring enzyme (IRE1α)/c-Jun NH2-terminal kinase pathway. J. Biol. Chem. 288, 8726–8736 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Baldridge, R. D. & Rapoport, T. A. Autoubiquitination of the Hrd1 ligase triggers protein retrotranslocation in ERAD. Cell 166, 394–407 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Peterson, B. G., Glaser, M. L., Rapoport, T. A. & Baldridge, R. D. Cycles of autoubiquitination and deubiquitination regulate the ERAD ubiquitin ligase Hrd1. eLife 8, e50903 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Vasic, V. et al. Hrd1 forms the retrotranslocation pore regulated by auto-ubiquitination and binding of misfolded proteins. Nat. Cell Biol. 21, 274–281 (2020).

    Article  Google Scholar 

  206. van de Weijer, M. L. et al. Multiple E2 ubiquitin-conjugating enzymes regulate human cytomegalovirus US2-mediated immunoreceptor downregulation. J. Cell Sci. 130, 2883–2892 (2017).

    PubMed  PubMed Central  Google Scholar 

  207. Menon, M. B. et al. Endoplasmic reticulum-associated ubiquitin-conjugating enzyme Ube2j1 is a novel substrate of MK2 (MAPKAP kinase-2) involved in MK2-mediated TNFα production. Biochem. J. 456, 163–172 (2013).

    Article  CAS  PubMed  Google Scholar 

  208. Elangovan, M., Chong, H. K., Park, J. H., Yeo, E. J. & Yoo, Y. J. The role of ubiquitin-conjugating enzyme Ube2j1 phosphorylation and its degradation by proteasome during endoplasmic stress recovery. J. Cell Commun. Signal. 11, 265–273 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Oh, R. S., Bai, X. & Rommens, J. M. Human homologs of Ubc6p ubiquitin-conjugating enzyme and phosphorylation of HsUbc6e in response to endoplasmic reticulum stress. J. Biol. Chem. 281, 21480–21490 (2006).

    Article  CAS  PubMed  Google Scholar 

  210. Hagiwara, M., Ling, J., Koenig, P.-A. & Ploegh, H. L. Posttranscriptional regulation of glycoprotein quality control in the endoplasmic reticulum is controlled by the E2 Ub-conjugating enzyme UBC6e. Mol. Cell 63, 753–767 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Goldstein, J. L., DeBose-Boyd, R. A. & Brown, M. S. Protein sensors for membrane sterols. Cell 124, 35–46 (2006).

    Article  CAS  PubMed  Google Scholar 

  212. Espenshade, P. J. & Hughes, A. L. Regulation of sterol synthesis in eukaryotes. Annu. Rev. Genet. 41, 401–427 (2007).

    Article  CAS  PubMed  Google Scholar 

  213. Lee, J. N., Song, B., DeBose-Boyd, R. A. & Ye, J. Sterol-regulated degradation of Insig-1 mediated by the membrane-bound ubiquitin ligase gp78. J. Biol. Chem. 281, 39308–39315 (2006).

    Article  CAS  PubMed  Google Scholar 

  214. Zelcer, N. et al. The E3 ubiquitin ligase MARCH6 degrades squalene monooxygenase and affects 3-hydroxy-3-methyl-glutaryl coenzyme A reductase and the cholesterol synthesis pathway. Mol. Cell. Biol. 34, 1262–1270 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Sharpe, L. J. et al. Cholesterol increases protein levels of the E3 ligase MARCH6, and thereby stimulates protein degradation. J. Biol. Chem. 294, 2436–2448 (2019).

    Article  CAS  PubMed  Google Scholar 

  216. Cook, E. C. L. et al. Identification of the ER-resident E3 ubiquitin ligase RNF145 as a novel LXR-regulated gene. PLoS ONE 12, e0172721 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Avci, D. et al. The yeast ER-intramembrane protease Ypf1 refines nutrient sensing by regulating transporter abundance. Mol. Cell 56, 630–640 (2014).

    Article  CAS  PubMed  Google Scholar 

  218. Ruan, J. et al. A small-molecule inhibitor and degrader of the RNF5 ubiquitin ligase. Mol. Biol. Cell 33, ar120 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Ruan, J. et al. A small molecule inhibitor of ER-to-cytosol protein dislocation exhibits anti-dengue and anti-Zika virus activity. Sci. Rep. 9, 10901 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Kikkert, M. et al. Human HRD1 is an E3 ubiquitin ligase involved in degradation of proteins from the endoplasmic reticulum. J. Biol. Chem. 279, 3525–3534 (2004).

    Article  CAS  PubMed  Google Scholar 

  221. Schulze, A. et al. The ubiquitin-domain protein HERP forms a complex with components of the endoplasmic reticulum associated degradation pathway. J. Mol. Biol. 354, 1021–1027 (2005).

    Article  CAS  PubMed  Google Scholar 

  222. Fang, S. et al. The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 98, 14422–14427 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Song, B.-L., Sever, N. & DeBose-Boyd, R. A. Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. Mol. Cell 19, 829–840 (2005).

    Article  CAS  PubMed  Google Scholar 

  224. Xu, Y., Liu, Y., Lee, J.-G. & Ye, Y. A ubiquitin-like domain recruits an oligomeric chaperone to a retrotranslocation complex in endoplasmic reticulum-associated degradation. J. Biol. Chem. 288, 18068–18076 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Li, X. et al. The transmembrane endoplasmic reticulum–associated E3 ubiquitin ligase TRIM13 restrains the pathogenic-DNA–triggered inflammatory response. Sci. Adv. 8, eabh0496 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Fortier, J. M. & Kornbluth, J. NK lytic-associated molecule, involved in NK cytotoxic function, is an E3 ligase. J. Immunol. 176, 6454–6463 (2006).

    Article  CAS  PubMed  Google Scholar 

  227. Nozawa, K. et al. The testis-specific E3 ubiquitin ligase RNF133 is required for fecundity in mice. BMC Biol. 20, 161 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Bays, N. W., Gardner, R. G., Seelig, L. P., Joazeiro, C. A. & Hampton, R. Y. Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nat. Cell Biol. 3, 24–29 (2001).

    Article  CAS  PubMed  Google Scholar 

  229. Bordallo, J., Plemper, R. K., Finger, A. & Wolf, D. H. Der3p/Hrd1p is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins. Mol. Biol. Cell 9, 209–222 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Gauss, R., Sommer, T. & Jarosch, E. The Hrd1p ligase complex forms a linchpin between ER-lumenal substrate selection and Cdc48p recruitment. EMBO J. 25, 1827–1835 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Horn, S. C. et al. Usa1 functions as a scaffold of the HRD-ubiquitin ligase. Mol. Cell 36, 782–793 (2009).

    Article  CAS  PubMed  Google Scholar 

  232. Stolz, A., Schweizer, R. S., Schäfer, A. & Wolf, D. H. Dfm1 forms distinct complexes with Cdc48 and the ER ubiquitin ligases and is required for ERAD. Traffic 11, 1363–1369 (2010).

    Article  CAS  PubMed  Google Scholar 

  233. Pfeiffer, A. et al. A complex of Htm1 and the oxidoreductase pdi1 accelerates degradation of misfolded glycoproteins*. J. Biol. Chem. 291, 12195–12207 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Natarajan, N., Foresti, O., Wendrich, K., Stein, A. & Carvalho, P. quality control of protein complex assembly by a transmembrane recognition factor. Mol. Cell 77, 108–119.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Goder, V., Carvalho, P. & Rapoport, T. A. The ER-associated degradation component Der1p and its homolog Dfm1p are contained in complexes with distinct cofactors of the ATPase Cdc48p. FEBS Lett. 582, 1575–1580 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Neal, S., Syau, D., Nejatfard, A., Nadeau, S. & Hampton, R. Y. HRD complex self-remodeling enables a novel route of membrane protein retrotranslocation. iScience 23, 101493 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. von Delbrück, M. et al. The CUE domain of Cue1 aligns growing ubiquitin chains with Ubc7 for rapid elongation. Mol. Cell 62, 918–928 (2016).

    Article  Google Scholar 

  238. Morito, D. & Nagata, K. Pathogenic hijacking of ER-associated degradation: is ERAD flexible? Mol. Cell 59, 335–344 (2015).

    Article  CAS  PubMed  Google Scholar 

  239. Ploegh, H. L. Viral strategies of immune evasion. Science 280, 248–253 (1998).

    Article  CAS  PubMed  Google Scholar 

  240. Stagg, H. R. et al. The TRC8 E3 ligase ubiquitinates MHC class I molecules before dislocation from the ER. J. Cell Biol. 186, 685–692 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Boname, J. M. et al. Cleavage by signal peptide peptidase is required for the degradation of selected tail-anchored proteins. J. Cell Biol. 205, 847–862 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Soetandyo, N. & Ye, Y. The p97 ATPase dislocates MHC class i heavy chain in US2-expressing cells via a Ufd1-Npl4-independent mechanism*. J. Biol. Chem. 285, 32352–32359 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Lybarger, L., Wang, X., Harris, M. R., Virgin, H. W. & Hansen, T. H. Virus subversion of the MHC class I peptide-loading complex. Immunity 18, 121–130 (2003).

    Article  CAS  PubMed  Google Scholar 

  244. Wang, X., Ye, Y., Lencer, W. & Hansen, T. H. The viral E3 ubiquitin ligase mK3 uses the Derlin/p97 endoplasmic reticulum-associated degradation pathway to mediate down-regulation of major histocompatibility complex class I proteins. J. Biol. Chem. 281, 8636–8644 (2006).

    Article  CAS  PubMed  Google Scholar 

  245. Bour, S. & Strebel, K. The HIV-1 Vpu protein: a multifunctional enhancer of viral particle release. Microbes Infect. 5, 1029–1039 (2003).

    Article  CAS  PubMed  Google Scholar 

  246. Magadán, J. G. et al. Multilayered mechanism of CD4 downregulation by HIV-1 Vpu involving distinct ER retention and ERAD targeting steps. PLoS Pathog. 6, e1000869 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Dupzyk, A. & Tsai, B. How polyomaviruses exploit the erad machinery to cause infection. Viruses 8, 242 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Schelhaas, M. et al. Simian Virus 40 depends on ER protein folding and quality control factors for entry into host cells. Cell 131, 516–529 (2007).

    Article  CAS  PubMed  Google Scholar 

  249. Inoue, T. et al. ERdj5 reductase cooperates with protein disulfide isomerase to promote simian virus 40 endoplasmic reticulum membrane translocation. J. Virol. 89, 8897–8908 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Chen, Y.-J., Liu, X. & Tsai, B. SV40 hijacks cellular transport, membrane penetration, and disassembly machineries to promote infection. Viruses 11, 917 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Inoue, T., Moore, P. & Tsai, B. How viruses and toxins disassemble to enter host Cells. Annu. Rev. Microbiol. 65, 287–305 (2011).

    Article  CAS  PubMed  Google Scholar 

  252. Moore, P., He, K. & Tsai, B. Establishment of an in vitro transport assay that reveals mechanistic differences in cytosolic events controlling cholera toxin and t-cell receptor α retro-translocation. PLoS ONE 8, e75801 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Rodighiero, C., Tsai, B., Rapoport, T. A. & Lencer, W. I. Role of ubiquitination in retro‐translocation of cholera toxin and escape of cytosolic degradation. EMBO Rep. 3, 1222–1227 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Bernardi, K. M., Forster, M. L., Lencer, W. I. & Tsai, B. Derlin-1 facilitates the retro-translocation of cholera toxin. Mol. Biol. Cell 19, 877–884 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Ma, H. et al. A CRISPR-based screen identifies genes essential for West-Nile-virus-induced cell death. Cell Rep. 12, 673–683 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Tabata, K. et al. Endoplasmic reticulum-associated degradation controls virus protein homeostasis, which is required for flavivirus propagation. J. Virol. 95, e02234-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Li, Z. et al. The E3 ligase RNF5 restricts SARS-CoV-2 replication by targeting its envelope protein for degradation. Signal. Transduct. Target. Ther. 8, 53 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Zou, C. et al. The human E3 ligase RNF185 is a regulator of the SARS-CoV-2 envelope protein. iScience 26, 106601 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all members of the Christianson and Sommer labs, as well as P. Carvalho for helpful discussions and input to this manuscript. J.C.C. is supported by a Senior Cancer Research Fellowship from Cancer Research UK (C68569/A29217). E.J. and T.S. are supported by the German Research Foundation DFG (SPP 1365 and SFB 740/TP B05). The authors apologize to all authors whose work they were unable to directly cite or discuss in detail owing to space constraints.

Author information

Authors and Affiliations

Authors

Contributions

J.C.C. and E.J. researched data for the article. All authors contributed substantially to discussion of the content. J.C.C. and E.J. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to John C. Christianson or Thomas Sommer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Gerardo Lederkremer, Ling Qi and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

26S proteasomes

Ubiquitin-specific protease complexes that specifically recognize ubiquitylated proteins and cleave them into peptide fragments.

AAA-ATPases

Protein that contains a conserved motif and that is organized in multimeric (typically homo-hexameric) assemblies with a central pore; structural rearrangements within these complexes upon coordinated ATP hydrolysis thread protein substrates through the pore and unfold them, thereby extracting them from cellular structures such as protein complexes, DNA or membranes.

Ceramide

Lipid molecule built up from a N-acetylsphingosine and a fatty acid that serves as a second messenger and plays a part in the structural organization of cellular membranes.

Degron

Amino acid sequence or structural motif within a protein that targets it to an E3 enzyme for ubiquitylation and degradation; degrons are inherent elements that, when fused to a non-related protein in the same cellular compartment, confer ubiquitin–proteasome system-mediated degradation.

De-ubiquitylating enzymes (DUBs)

Ubiquitin-specific proteases that cleave ubiquitin from ubiquitylated proteins.

Dislocation

Eviction of transmembrane domain or domains from lipid bilayer during endoplasmic reticulum-associated protein degradation.

E1 enzyme

Activates ubiquitin for the transfer onto substrates by forming a thioester linkage with the C-terminal glycine residue in ubiquitin and a cysteine residue in its active site centre upon hydrolysis of ATP.

E2 enzyme

Also termed ubiquitin-conjugating enzyme; conserved group of enzymes that are charged with a ubiquitin thioester on their active site cysteine residues by E1 enzymes and either directly conjugate ubiquitin onto substrates or transfer the ubiquitin thioester onto a dedicated E3 enzyme.

E3 enzyme

Also termed ubiquitin ligase; single proteins or protein complexes that recognize substrates and either activate E2 enzymes for attaching ubiquitin onto a substrate (RING-type E3) or themselves form a thioester with ubiquitin and then transfer ubiquitin (HECT- and RBR-type E3s).

ER–lysosomal degradation (ERLAD) pathway

Collection of mechanistically diverse endoplasmic reticulum autophagy (ER-phagy) pathways that captured misfolded ER proteins in double membrane autophagosomes and deliver them to degradative organelles for proteolysis.

Lectin

Glycan-binding protein that recognizes specific carbohydrate molecule but does not harbour enzymatic activity.

Linchpin residues

Particular amino acid positions adjacent to the ultimate cysteine residue in most RING finger domains that interact with both the E2 enzyme and the ubiquitin thioester, thereby delimitating the space available for the ubiquitin thioester, and that coordinate facilitation of its conjugation to a substrate.

Mannose 6-phosphate receptor homology (MRH) domains

Regions in a protein that bind a specific structure within a high-mannose N-glycan.

Microautophagy

Highly conserved cellular process that causes the engulfment of cytoplasmic material with lysosomal or vacuolar membranes and its degradation.

Molecular glues

Typically small molecules that assist in establishing a physical association of two proteins that do not normally interact.

Really interesting new gene (RING) finger domain

A structural protein motif of about 30–60 amino acids typically containing seven cysteine and one histidine residues for complexing two zinc cations that is characteristically found in a class of E3 ubiquitylating enzymes.

Retrotranslocation

Transport of entire lumenal proteins or domains of misfolded proteins across the endoplasmic reticulum membrane into the cytoplasm during endoplasmic reticulum-associated protein degradation.

Rhomboid intramembrane proteases

Structurally conserved family of integral membrane serine proteases that mostly target membrane proteins and cleave them at sites within or close to the lipid bilayer.

Sec61 translocon complex

An endoplasmic reticulum (ER)-resident protein complex composed of Sec61α, Sec61β and Sec61γ subunits that forms a polypeptide-conducting channel through the ER membrane for the import of secretory proteins from the cytoplasm into the ER.

Ubiquitin–proteasome system

(UPS). Sum of all proteins involved in the generation, decoding and processing of ubiquitin and ubiquitylated proteins.

Unfolded protein response (UPR)

A set of intracellular signal transduction pathways elicited in order to alleviate proteotoxic stress in the ER and restore organelle homeostasis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christianson, J.C., Jarosch, E. & Sommer, T. Mechanisms of substrate processing during ER-associated protein degradation. Nat Rev Mol Cell Biol 24, 777–796 (2023). https://doi.org/10.1038/s41580-023-00633-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-023-00633-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing