Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sensorimotor processing in the rodent barrel cortex

Abstract

Tactile sensory information from facial whiskers provides nocturnal tunnel-dwelling rodents, including mice and rats, with important spatial and textural information about their immediate surroundings. Whiskers are moved back and forth to scan the environment (whisking), and touch signals from each whisker evoke sparse patterns of neuronal activity in whisker-related primary somatosensory cortex (wS1; barrel cortex). Whisking is accompanied by desynchronized brain states and cell-type-specific changes in spontaneous and evoked neuronal activity. Tactile information, including object texture and location, appears to be computed in wS1 through integration of motor and sensory signals. wS1 also directly controls whisker movements and contributes to learned, whisker-dependent, goal-directed behaviours. The cell-type-specific neuronal circuitry in wS1 that contributes to whisker sensory perception is beginning to be defined.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Organization and connectivity of the whisker-related primary somatosensory cortex.
Fig. 2: Neural circuits for sparse reliable coding of touch in the whisker-related primary somatosensory cortex.
Fig. 3: Cell-type-specific modulation in the whisker-related primary somatosensory cortex during active whisking.
Fig. 4: Sensorimotor computations in the whisker-related primary somatosensory cortex.
Fig. 5: Neural circuits involved in goal-directed sensorimotor transformation.

Similar content being viewed by others

References

  1. Woolsey, T. A. & Van der Loos, H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 17, 205–242 (1970).

    CAS  PubMed  Google Scholar 

  2. Van der Loos, H. & Woolsey, T. A. Somatosensory cortex: structural alterations following early injury to sense organs. Science 179, 395–398 (1973).

    PubMed  Google Scholar 

  3. Welker, E. & Van der Loos, H. Quantitative correlation between barrel-field size and the sensory innervation of the whiskerpad: a comparative study in six strains of mice bred for different patterns of mystacial vibrissae. J. Neurosci. 6, 3355–3373 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Welker, E. et al. Altered sensory processing in the somatosensory cortex of the mouse mutant barrelless. Science 271, 1864–1867 (1996).

    CAS  PubMed  Google Scholar 

  5. Hannan, A. J. et al. PLC-β1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex. Nat. Neurosci. 4, 282–288 (2001).

    CAS  PubMed  Google Scholar 

  6. Iwasato, T. et al. Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature 406, 726–731 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Fukuchi-Shimogori, T. & Grove, E. A. Neocortex patterning by the secreted signaling molecule FGF8. Science 294, 1071–1074 (2001).

    CAS  PubMed  Google Scholar 

  8. Deschênes, M., Timofeeva, E. & Lavallée, P. The relay of high-frequency sensory signals in the whisker-to-barreloid pathway. J. Neurosci. 23, 6778–6787 (2003).

    PubMed  PubMed Central  Google Scholar 

  9. Arsenault, D. & Zhang, Z. Developmental remodelling of the lemniscal synapse in the ventral basal thalamus of the mouse. J. Physiol. 573, 121–132 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Arnold, P. B., Li, C. X. & Waters, R. S. Thalamocortical arbors extend beyond single cortical barrels: an in vivo intracellular tracing study in rat. Exp. Brain Res. 136, 152–168 (2001).

    CAS  PubMed  Google Scholar 

  11. Furuta, T., Deschênes, M. & Kaneko, T. Anisotropic distribution of thalamocortical boutons in barrels. J. Neurosci. 31, 6432–6439 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Crochet, S. & Petersen, C. C. H. Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nat. Neurosci. 9, 608–610 (2006). This study revealed whisking-related changes in cortical state and sensory processing through whole-cell recordings in wS1.

    CAS  PubMed  Google Scholar 

  13. Zhu, J. J. & Connors, B. W. Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. J. Neurophysiol. 81, 1171–1183 (1999).

    CAS  PubMed  Google Scholar 

  14. Moore, C. I. & Nelson, S. B. Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. J. Neurophysiol. 80, 2882–2892 (1998).

    CAS  PubMed  Google Scholar 

  15. Ferezou, I. et al. Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron 56, 907–923 (2007). Through voltage-sensitive dye imaging, this study revealed behavioural modulation of whisker-related sensorimotor processing across the dorsal cortex.

    CAS  PubMed  Google Scholar 

  16. Aronoff, R. et al. Long-range connectivity of mouse primary somatosensory barrel cortex. Eur. J. Neurosci. 31, 2221–2233 (2010).

    PubMed  Google Scholar 

  17. Welker, E., Hoogland, P. V. & Van der Loos, H. Organization of feedback and feedforward projections of the barrel cortex: a PHA-L study in the mouse. Exp. Brain Res. 73, 411–435 (1988).

    CAS  PubMed  Google Scholar 

  18. White, E. L. & DeAmicis, R. A. Afferent and efferent projections of the region in mouse SmL cortex which contains the posteromedial barrel subfield. J. Comp. Neurol. 175, 455–482 (1977).

    CAS  PubMed  Google Scholar 

  19. Yamashita, T. et al. Diverse long-range axonal projections of excitatory layer 2/3 neurons in mouse barrel cortex. Front. Neuroanat. 12, 33 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Lefort, S., Tomm, C., Floyd Sarria, J.-C. & Petersen, C. C. H. The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61, 301–316 (2009). This study mapped layer-specific excitatory synaptic connectivity through whole-cell recordings in wS1.

    CAS  PubMed  Google Scholar 

  21. Jensen, K. F. & Killackey, H. P. Terminal arbors of axons projecting to the somatosensory cortex of the adult rat. I. The normal morphology of specific thalamocortical afferents. J. Neurosci. 7, 3529–3543 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wimmer, V. C., Bruno, R. M., de Kock, C. P. J., Kuner, T. & Sakmann, B. Dimensions of a projection column and architecture of VPM and POm axons in rat vibrissal cortex. Cereb. Cortex 20, 2265–2276 (2010).

    PubMed  PubMed Central  Google Scholar 

  23. Feldmeyer, D., Lübke, J., Silver, R. A. & Sakmann, B. Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. J. Physiol. 538, 803–822 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Harris, J. A., Petersen, R. S. & Diamond, M. E. Distribution of tactile learning and its neural basis. Proc. Natl Acad. Sci. USA 96, 7587–7591 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ferezou, I., Bolea, S. & Petersen, C. C. H. Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice. Neuron 50, 617–629 (2006).

    CAS  PubMed  Google Scholar 

  26. Peron, S. P., Freeman, J., Iyer, V., Guo, C. & Svoboda, K. A cellular resolution map of barrel cortex activity during tactile behavior. Neuron 86, 783–799 (2015). This study characterized neuronal processing in wS1 during an object localization task through comprehensive imaging across wS1.

    CAS  PubMed  Google Scholar 

  27. Estebanez, L., El Boustani, S., Destexhe, A. & Shulz, D. E. Correlated input reveals coexisting coding schemes in a sensory cortex. Nat. Neurosci. 15, 1691–1699 (2012).

    CAS  PubMed  Google Scholar 

  28. Brecht, M., Roth, A. & Sakmann, B. Dynamic receptive fields of reconstructed pyramidal cells in layers 3 and 2 of rat somatosensory barrel cortex. J. Physiol. 553, 243–265 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gibson, J. R., Beierlein, M. & Connors, B. W. Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75–79 (1999).

    CAS  PubMed  Google Scholar 

  30. Avermann, M., Tomm, C., Mateo, C., Gerstner, W. & Petersen, C. C. H. Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel cortex. J. Neurophysiol. 107, 3116–3134 (2012).

    CAS  PubMed  Google Scholar 

  31. Holmgren, C., Harkany, T., Svennenfors, B. & Zilberter, Y. Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. J. Physiol. 551, 139–153 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Helmstaedter, M., Staiger, J. F., Sakmann, B. & Feldmeyer, D. Efficient recruitment of layer 2/3 interneurons by layer 4 input in single columns of rat somatosensory cortex. J. Neurosci. 28, 8273–8284 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Urban-Ciecko, J., Jouhanneau, J.-S., Myal, S. E., Poulet, J. F. A. & Barth, A. L. Precisely timed nicotinic activation drives SST inhibition in neocortical circuits. Neuron 97, 611–625 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Harris, K. D. & Shepherd, G. M. G. The neocortical circuit: themes and variations. Nat. Neurosci. 18, 170–181 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Feldmeyer, D., Qi, G., Emmenegger, V. & Staiger, J. F. Inhibitory interneurons and their circuit motifs in the many layers of the barrel cortex. Neuroscience 368, 132–151 (2018).

    CAS  PubMed  Google Scholar 

  36. Tremblay, R., Lee, S. & Rudy, B. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron 91, 260–292 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Luo, L., Callaway, E. M. & Svoboda, K. Genetic dissection of neural circuits: a decade of progress. Neuron 98, 256–281 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Adesnik, H. & Naka, A. Cracking the function of layers in the sensory cortex. Neuron 100, 1028–1043 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Feldmeyer, D. Excitatory neuronal connectivity in the barrel cortex. Front. Neuroanat. 6, 24 (2012).

    PubMed  PubMed Central  Google Scholar 

  40. Petersen, C. C. H., Grinvald, A. & Sakmann, B. Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell voltage recordings and neuron reconstructions. J. Neurosci. 23, 1298–1309 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Narayanan, R. T. et al. Beyond columnar organization: cell type- and target layer-specific principles of horizontal axon projection patterns in rat vibrissal cortex. Cereb. Cortex 25, 4450–4468 (2015).

    PubMed  PubMed Central  Google Scholar 

  42. Constantinople, C. M. & Bruno, R. M. Deep cortical layers are activated directly by thalamus. Science 340, 1591–1594 (2013). This study highlighted the importance of thalamic input onto L5 pyramidal neurons in wS1.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Oberlaender, M. et al. Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch. Proc. Natl Acad. Sci. USA 108, 4188–4193 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kiritani, T., Wickersham, I. R., Seung, H. S. & Shepherd, G. M. G. Hierarchical connectivity and connection-specific dynamics in the corticospinal-corticostriatal microcircuit in mouse motor cortex. J. Neurosci. 32, 4992–5001 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Guo, C. et al. Single-axon level morphological analysis of corticofugal projection neurons in mouse barrel field. Sci. Rep. 7, 2846 (2017).

    PubMed  PubMed Central  Google Scholar 

  46. Rojas-Piloni, G. et al. Relationships between structure, in vivo function and long-range axonal target of cortical pyramidal tract neurons. Nat. Commun. 8, 870 (2017).

    PubMed  PubMed Central  Google Scholar 

  47. Audette, N. J., Urban-Ciecko, J., Matsushita, M. & Barth, A. L. POm thalamocortical input drives layer-specific microcircuits in somatosensory cortex. Cereb. Cortex 28, 1312–1328 (2018).

    PubMed  Google Scholar 

  48. Bureau, I., von Saint Paul, F. & Svoboda, K. Interdigitated paralemniscal and lemniscal pathways in the mouse barrel cortex. PLOS Biol. 4, e382 (2006).

    PubMed  PubMed Central  Google Scholar 

  49. Schubert, D., Kötter, R. & Staiger, J. F. Mapping functional connectivity in barrel-related columns reveals layer- and cell type-specific microcircuits. Brain Struct. Funct. 212, 107–119 (2007).

    PubMed  Google Scholar 

  50. Kim, J., Matney, C. J., Blankenship, A., Hestrin, S. & Brown, S. P. Layer 6 corticothalamic neurons activate a cortical output layer, layer 5a. J. Neurosci. 34, 9656–9664 (2014).

    PubMed  PubMed Central  Google Scholar 

  51. Pichon, F., Nikonenko, I., Kraftsik, R. & Welker, E. Intracortical connectivity of layer VI pyramidal neurons in the somatosensory cortex of normal and barrelless mice. Eur. J. Neurosci. 35, 855–869 (2012).

    PubMed  Google Scholar 

  52. Crochet, S., Poulet, J. F. A., Kremer, Y. & Petersen, C. C. H. Synaptic mechanisms underlying sparse coding of active touch. Neuron 69, 1160–1175 (2011).

    CAS  PubMed  Google Scholar 

  53. Gabernet, L., Jadhav, S. P., Feldman, D. E., Carandini, M. & Scanziani, M. Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition. Neuron 48, 315–327 (2005).

    CAS  PubMed  Google Scholar 

  54. Cruikshank, S. J., Lewis, T. J. & Connors, B. W. Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex. Nat. Neurosci. 10, 462–468 (2007).

    CAS  PubMed  Google Scholar 

  55. Sachidhanandam, S., Sreenivasan, V., Kyriakatos, A., Kremer, Y. & Petersen, C. C. H. Membrane potential correlates of sensory perception in mouse barrel cortex. Nat. Neurosci. 16, 1671–1677 (2013). This study revealed subthreshold sensorimotor processing in wS1 during a whisker-detection task through whole-cell recordings.

    CAS  PubMed  Google Scholar 

  56. O’Connor, D. H., Peron, S. P., Huber, D. & Svoboda, K. Neural activity in barrel cortex underlying vibrissa-based object localization in mice. Neuron 67, 1048–1061 (2010).

    PubMed  Google Scholar 

  57. Yang, H., Kwon, S. E., Severson, K. S. & O’Connor, D. H. Origins of choice-related activity in mouse somatosensory cortex. Nat. Neurosci. 19, 127–134 (2016). This study demonstrated decision-related activity in wS1 during a whisker-detection task.

    CAS  PubMed  Google Scholar 

  58. Cheetham, C. E. J., Barnes, S. J., Albieri, G., Knott, G. W. & Finnerty, G. T. Pansynaptic enlargement at adult cortical connections strengthened by experience. Cereb.  Cortex 24, 521–531 (2014).

    PubMed  Google Scholar 

  59. Barth, A. L. & Poulet, J. F. A. Experimental evidence for sparse firing in the neocortex. Trends Neurosci. 35, 345–355 (2012).

    CAS  PubMed  Google Scholar 

  60. Gentet, L. J. et al. Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex. Nat. Neurosci. 15, 607–612 (2012). This study revealed profound differences in membrane potential dynamics of genetically defined classes of inhibitory neurons in wS1.

    CAS  PubMed  Google Scholar 

  61. Gentet, L. J., Avermann, M., Matyas, F., Staiger, J. F. & Petersen, C. C. H. Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron 65, 422–435 (2010).

    CAS  PubMed  Google Scholar 

  62. Poulet, J. F. A. & Petersen, C. C. H. Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454, 881–885 (2008).

    CAS  PubMed  Google Scholar 

  63. Pala, A. & Petersen, C. C. H. State-dependent cell-type-specific membrane potential dynamics and unitary synaptic inputs in awake mice. eLife 7, e35869 (2018).

    PubMed  PubMed Central  Google Scholar 

  64. Lee, S., Kruglikov, I., Huang, Z. J., Fishell, G. & Rudy, B. A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nat. Neurosci. 16, 1662–1670 (2013). This study demonstrated the role of VIP + neurons in inhibiting SST + neurons, thus giving rise to disinhibition of excitatory neurons in wS1.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Pfeffer, C. K., Xue, M., He, M., Huang, Z. J. & Scanziani, M. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat. Neurosci. 16, 1068–1076 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Pi, H.-J. et al. Cortical interneurons that specialize in disinhibitory control. Nature 503, 521–524 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cruikshank, S. J., Urabe, H., Nurmikko, A. V. & Connors, B. W. Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons. Neuron 65, 230–245 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Reyes, A. et al. Target-cell-specific facilitation and depression in neocortical circuits. Nat. Neurosci. 1, 279–285 (1998).

    CAS  PubMed  Google Scholar 

  69. Kapfer, C., Glickfeld, L. L., Atallah, B. V. & Scanziani, M. Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex. Nat. Neurosci. 10, 743–753 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Silberberg, G. & Markram, H. Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells. Neuron 53, 735–746 (2007).

    CAS  PubMed  Google Scholar 

  71. Pala, A. & Petersen, C. C. H. In vivo measurement of cell-type-specific synaptic connectivity and synaptic transmission in layer 2/3 mouse barrel cortex. Neuron 85, 68–75 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Steriade, M., Timofeev, I. & Grenier, F. Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol. 85, 1969–1985 (2001).

    CAS  PubMed  Google Scholar 

  73. Bennett, C., Arroyo, S. & Hestrin, S. Subthreshold mechanisms underlying state-dependent modulation of visual responses. Neuron 80, 350–357 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Polack, P.-O., Friedman, J. & Golshani, P. Cellular mechanisms of brain state-dependent gain modulation in visual cortex. Nat. Neurosci. 16, 1331–1339 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Schneider, D. M., Nelson, A. & Mooney, R. A synaptic and circuit basis for corollary discharge in the auditory cortex. Nature 513, 189–194 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Reimer, J. et al. Pupil fluctuations track fast switching of cortical states during quiet wakefulness. Neuron 84, 355–362 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhao, W.-J., Kremkow, J. & Poulet, J. F. A. Translaminar cortical membrane potential synchrony in behaving mice. Cell Rep. 15, 2387–2399 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Buzsáki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).

    PubMed  Google Scholar 

  79. Berger, H. Electroencephalogram in humans. Arch. Psychiatr. Nervenkr. 87, 527–570 (1929).

    Google Scholar 

  80. McGinley, M. J. et al. Waking state: rapid variations modulate neural and behavioral responses. Neuron 87, 1143–1161 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Vinck, M., Batista-Brito, R., Knoblich, U. & Cardin, J. A. Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding. Neuron 86, 740–754 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Eggermann, E., Kremer, Y., Crochet, S. & Petersen, C. C. H. Cholinergic signals in mouse barrel cortex during active whisker sensing. Cell Rep. 9, 1654–1660 (2014).

    CAS  PubMed  Google Scholar 

  83. Fu, Y. et al. A cortical circuit for gain control by behavioral state. Cell 156, 1139–1152 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Packer, A. M. & Yuste, R. Dense, unspecific connectivity of neocortical parvalbumin-positive interneurons: a canonical microcircuit for inhibition? J. Neurosci. 31, 13260–13271 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Fino, E. & Yuste, R. Dense inhibitory connectivity in neocortex. Neuron 69, 1188–1203 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Yu, J., Gutnisky, D. A., Hires, S. A. & Svoboda, K. Layer 4 fast-spiking interneurons filter thalamocortical signals during active somatosensation. Nat. Neurosci. 19, 1647–1657 (2016).

    CAS  PubMed  Google Scholar 

  87. Muñoz, W., Tremblay, R., Levenstein, D. & Rudy, B. Layer-specific modulation of neocortical dendritic inhibition during active wakefulness. Science 355, 954–959 (2017).

    PubMed  Google Scholar 

  88. de Kock, C. P. J. & Sakmann, B. Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific. Proc. Natl Acad. Sci. USA 106, 16446–16450 (2009).

    PubMed  PubMed Central  Google Scholar 

  89. Urbain, N. et al. Whisking-related changes in neuronal firing and membrane potential dynamics in the somatosensory thalamus of awake mice. Cell Rep. 13, 647–656 (2015).

    CAS  PubMed  Google Scholar 

  90. Poulet, J. F. A., Fernandez, L. M. J., Crochet, S. & Petersen, C. C. H. Thalamic control of cortical states. Nat. Neurosci. 15, 370–372 (2012).

    CAS  PubMed  Google Scholar 

  91. Moore, J. D., Mercer Lindsay, N., Deschênes, M. & Kleinfeld, D. Vibrissa self-motion and touch are reliably encoded along the same somatosensory pathway from brainstem through thalamus. PLOS Biol. 13, e1002253 (2015).

    PubMed  PubMed Central  Google Scholar 

  92. Constantinople, C. M. & Bruno, R. M. Effects and mechanisms of wakefulness on local cortical networks. Neuron 69, 1061–1068 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Yamashita, T. et al. Membrane potential dynamics of neocortical projection neurons driving target-specific signals. Neuron 80, 1477–1490 (2013).

    CAS  PubMed  Google Scholar 

  94. Hentschke, H., Haiss, F. & Schwarz, C. Central signals rapidly switch tactile processing in rat barrel cortex during whisker movements. Cereb. Cortex 16, 1142–1156 (2006).

    PubMed  Google Scholar 

  95. Kyriakatos, A. et al. Voltage-sensitive dye imaging of mouse neocortex during a whisker detection task. Neurophotonics 4, 031204 (2017).

    PubMed  Google Scholar 

  96. Gil, Z., Connors, B. W. & Amitai, Y. Differential regulation of neocortical synapses by neuromodulators and activity. Neuron 19, 679–686 (1997).

    CAS  PubMed  Google Scholar 

  97. Castro-Alamancos, M. A. & Oldford, E. Cortical sensory suppression during arousal is due to the activity-dependent depression of thalamocortical synapses. J. Physiol. 541, 319–331 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Bellavance, M.-A. et al. Parallel inhibitory and excitatory trigemino-facial feedback circuitry for reflexive vibrissa movement. Neuron 95, 673–682 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Mehta, S. B., Whitmer, D., Figueroa, R., Williams, B. A. & Kleinfeld, D. Active spatial perception in the vibrissa scanning sensorimotor system. PLOS Biol. 5, e15 (2007).

    PubMed  PubMed Central  Google Scholar 

  100. Knutsen, P. M., Pietr, M. & Ahissar, E. Haptic object localization in the vibrissal system: behavior and performance. J. Neurosci. 26, 8451–8464 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kleinfeld, D. & Deschênes, M. Neuronal basis for object location in the vibrissa scanning sensorimotor system. Neuron 72, 455–468 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Fee, M. S., Mitra, P. P. & Kleinfeld, D. Central versus peripheral determinants of patterned spike activity in rat vibrissa cortex during whisking. J. Neurophysiol. 78, 1144–1149 (1997).

    CAS  PubMed  Google Scholar 

  103. Curtis, J. C. & Kleinfeld, D. Phase-to-rate transformations encode touch in cortical neurons of a scanning sensorimotor system. Nat. Neurosci. 12, 492–501 (2009). This study revealed object location coding in wS1 neurons through sensorimotor integration.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Severson, K. S. et al. Active touch and self-motion encoding by Merkel cell-associated afferents. Neuron 94, 666–676 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Campagner, D., Evans, M. H., Bale, M. R., Erskine, A. & Petersen, R. S. Prediction of primary somatosensory neuron activity during active tactile exploration. eLife 5, e10696 (2016).

    PubMed  PubMed Central  Google Scholar 

  106. Wallach, A., Bagdasarian, K. & Ahissar, E. On-going computation of whisking phase by mechanoreceptors. Nat. Neurosci. 19, 487–493 (2016).

    CAS  PubMed  Google Scholar 

  107. Sreenivasan, V. et al. Movement initiation signals in mouse whisker motor cortex. Neuron 92, 1368–1382 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Hill, D. N., Curtis, J. C., Moore, J. D. & Kleinfeld, D. Primary motor cortex reports efferent control of vibrissa motion on multiple timescales. Neuron 72, 344–356 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Matyas, F. et al. Motor control by sensory cortex. Science 330, 1240–1243 (2010). This study demonstrated a direct role for wS1 neurons in the control of whisker movement.

    CAS  PubMed  Google Scholar 

  110. Xu, N. et al. Nonlinear dendritic integration of sensory and motor input during an active sensing task. Nature 492, 247–251 (2012).

    CAS  PubMed  Google Scholar 

  111. Ranganathan, G. N. et al. Active dendritic integration and mixed neocortical network representations during an adaptive sensing behavior. Nat. Neurosci. 21, 1583–1590 (2018). This study reveals that dendritic computations contribute to object localization in wS1.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Major, G., Larkum, M. E. & Schiller, J. Active properties of neocortical pyramidal neuron dendrites. Annu. Rev. Neurosci. 36, 1–24 (2013).

    CAS  PubMed  Google Scholar 

  113. Carvell, G. E. & Simons, D. J. Biometric analyses of vibrissal tactile discrimination in the rat. J. Neurosci. 10, 2638–2648 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Isett, B. R., Feasel, S. H., Lane, M. A. & Feldman, D. E. Slip-based coding of local shape and texture in mouse S1. Neuron 97, 418–433 (2018). This study revealed an important role for fast brief whisker slips in texture coding in wS1.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Jadhav, S. P., Wolfe, J. & Feldman, D. E. Sparse temporal coding of elementary tactile features during active whisker sensation. Nat. Neurosci. 12, 792–800 (2009).

    CAS  PubMed  Google Scholar 

  116. Ritt, J. T., Andermann, M. L. & Moore, C. I. Embodied information processing: vibrissa mechanics and texture features shape micromotions in actively sensing rats. Neuron 57, 599–613 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Wolfe, J. et al. Texture coding in the rat whisker system: slip–stick versus differential resonance. PLOS Biol. 6, e215 (2008).

    PubMed  PubMed Central  Google Scholar 

  118. Chen, J. L., Carta, S., Soldado-Magraner, J., Schneider, B. L. & Helmchen, F. Behaviour-dependent recruitment of long-range projection neurons in somatosensory cortex. Nature 499, 336–340 (2013). This study demonstrated projection-specific activity of neurons in wS1 during the performance of whisker-dependent tasks.

    CAS  PubMed  Google Scholar 

  119. Chen, J. L. et al. Pathway-specific reorganization of projection neurons in somatosensory cortex during learning. Nat. Neurosci. 18, 1101–1108 (2015).

    PubMed  Google Scholar 

  120. Safaai, H., von Heimendahl, M., Sorando, J. M., Diamond, M. E. & Maravall, M. Coordinated population activity underlying texture discrimination in rat barrel cortex. J. Neurosci. 33, 5843–5855 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Zuo, Y. et al. Complementary contributions of spike timing and spike rate to perceptual decisions in rat S1 and S2 cortex. Curr. Biol. 25, 357–363 (2015).

    CAS  PubMed  Google Scholar 

  122. O’Connor, D. H. et al. Vibrissa-based object localization in head-fixed mice. J. Neurosci. 30, 1947–1967 (2010).

    PubMed  PubMed Central  Google Scholar 

  123. Musall, S. et al. Tactile frequency discrimination is enhanced by circumventing neocortical adaptation. Nat. Neurosci. 17, 1567–1573 (2014).

    CAS  PubMed  Google Scholar 

  124. Stüttgen, M. C. & Schwarz, C. Psychophysical and neurometric detection performance under stimulus uncertainty. Nat. Neurosci. 11, 1091–1099 (2008).

    PubMed  Google Scholar 

  125. Guo, Z. V. et al. Flow of cortical activity underlying a tactile decision in mice. Neuron 81, 179–194 (2014). Through optogenetic inactivation mapping, this study demonstrated that distinct regions of the dorsal cortex contributed to different aspects of a whisker-dependent task.

    CAS  PubMed  Google Scholar 

  126. Le Merre, P. et al. Reward-based learning drives rapid sensory signals in medial prefrontal cortex and dorsal hippocampus necessary for goal-directed behavior. Neuron 97, 83–91 (2018).

    PubMed  PubMed Central  Google Scholar 

  127. Sofroniew, N. J., Vlasov, Y. A., Hires, S. A., Freeman, J. & Svoboda, K. Neural coding in barrel cortex during whisker-guided locomotion. eLife 4, e12559 (2015).

    PubMed  PubMed Central  Google Scholar 

  128. O’Connor, D. H. et al. Neural coding during active somatosensation revealed using illusory touch. Nat. Neurosci. 16, 958–965 (2013).

    PubMed  PubMed Central  Google Scholar 

  129. Houweling, A. R. & Brecht, M. Behavioural report of single neuron stimulation in somatosensory cortex. Nature 451, 65–68 (2008).

    CAS  PubMed  Google Scholar 

  130. Tanke, N., Borst, J. G. G. & Houweling, A. R. Single-cell stimulation in barrel cortex influences psychophysical detection performance. J. Neurosci. 38, 2057–2068 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Sachidhanandam, S., Sermet, B. S. & Petersen, C. C. H. Parvalbumin-expressing GABAergic neurons in mouse barrel cortex contribute to gating a goal-directed sensorimotor transformation. Cell Rep. 15, 700–706 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kim, T. et al. Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proc. Natl Acad. Sci. USA 112, 3535–3540 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Freund, T. F. & Meskenaite, V. γ-Aminobutyric acid-containing basal forebrain neurons innervate inhibitory interneurons in the neocortex. Proc. Natl Acad. Sci. USA 89, 738–742 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Letzkus, J. J. et al. A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480, 331–335 (2011).

    CAS  PubMed  Google Scholar 

  135. Hangya, B., Ranade, S. P., Lorenc, M. & Kepecs, A. Central cholinergic neurons are rapidly recruited by reinforcement feedback. Cell 162, 1155–1168 (2015). This study demonstrated that cholinergic neurons in the basal forebrain signal reward and punishment.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Takahashi, N., Oertner, T. G., Hegemann, P. & Larkum, M. E. Active cortical dendrites modulate perception. Science 354, 1587–1590 (2016). This study revealed a role for active dendritic processing in wS1 during execution of a whisker-detection task.

    CAS  PubMed  Google Scholar 

  137. Yamashita, T. & Petersen, C. C. H. Target-specific membrane potential dynamics of neocortical projection neurons during goal-directed behavior. eLife 5, e15798 (2016). This study revealed that learning of a whisker-detection task was accompanied by enhanced sensorimotor processing in wS1 neurons that project to wS2, but not in wS1 neurons that project to wM1.

    PubMed  PubMed Central  Google Scholar 

  138. Kwon, S. E., Yang, H., Minamisawa, G. & O’Connor, D. H. Sensory and decision-related activity propagate in a cortical feedback loop during touch perception. Nat. Neurosci. 19, 1243–1249 (2016). This study demonstrated an important role for reciprocal interactions between wS1 and wS2 in a whisker-detection task.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Sorensen, S. A. et al. Correlated gene expression and target specificity demonstrate excitatory projection neuron diversity. Cereb. Cortex 25, 433–449 (2015).

    PubMed  Google Scholar 

  140. Minamisawa, G., Kwon, S. E., Chevée, M., Brown, S. P. & O’Connor, D. H. A non-canonical feedback circuit for rapid interactions between somatosensory cortices. Cell Rep. 23, 2718–2731 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Chen, J. L., Voigt, F. F., Javadzadeh, M., Krueppel, R. & Helmchen, F. Long-range population dynamics of anatomically defined neocortical networks. eLife 5, e14679 (2016).

    PubMed  PubMed Central  Google Scholar 

  142. Guo, Z. V. et al. Maintenance of persistent activity in a frontal thalamocortical loop. Nature 545, 181–186 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Petreanu, L. et al. Activity in motor-sensory projections reveals distributed coding in somatosensation. Nature 489, 299–303 (2012). Through calcium imaging of axons projecting from wM1 to wS1, this study identified diverse signals.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Sippy, T., Lapray, D., Crochet, S. & Petersen, C. C. H. Cell-type-specific sensorimotor processing in striatal projection neurons during goal-directed behavior. Neuron 88, 298–305 (2015). This study revealed that excitation of D1R-expressing MSNs might contribute to a reward-motivated whisker-detection task.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Hutson, K. A. & Masterton, R. B. The sensory contribution of a single vibrissa’s cortical barrel. J. Neurophysiol. 56, 1196–1223 (1986).

    CAS  PubMed  Google Scholar 

  146. Hong, Y. K., Lacefield, C. O., Rodgers, C. C. & Bruno, R. M. Sensation, movement and learning in the absence of barrel cortex. Nature 561, 542–546 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Gerstner, W., Lehmann, M., Liakoni, V., Corneil, D. & Brea, J. Eligibility traces and plasticity on behavioral time scales: experimental support of neoHebbian three-factor learning rules. Front. Neural Circuits 12, 53 (2018).

    PubMed  PubMed Central  Google Scholar 

  148. Crow, T. J. Cortical synapses and reinforcement: a hypothesis. Nature 219, 736–737 (1968).

    CAS  PubMed  Google Scholar 

  149. Frey, U. & Morris, R. G. Synaptic tagging and long-term potentiation. Nature 385, 533–536 (1997).

    CAS  PubMed  Google Scholar 

  150. Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).

    CAS  PubMed  Google Scholar 

  151. Silver, D. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016).

    CAS  PubMed  Google Scholar 

  152. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    CAS  PubMed  Google Scholar 

  153. Rumelhart, D., Hinton, G. & Williams, R. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).

    Google Scholar 

  154. Hasselmo, M. E. The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 16, 710–715 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    CAS  PubMed  Google Scholar 

  156. Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B. & Uchida, N. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482, 85–88 (2012). This study revealed reward signals in genetically defined midbrain dopamine neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Férézou, I. et al. 5-HT3 receptors mediate serotonergic fast synaptic excitation of neocortical vasoactive intestinal peptide/cholecystokinin interneurons. J. Neurosci. 22, 7389–7397 (2002).

    PubMed  PubMed Central  Google Scholar 

  158. Larkum, M. E., Zhu, J. J. & Sakmann, B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338–341 (1999).

    CAS  PubMed  Google Scholar 

  159. Kampa, B. M., Clements, J., Jonas, P. & Stuart, G. J. Kinetics of Mg2+ unblock of NMDA receptors: implications for spike-timing dependent synaptic plasticity. J. Physiol. 556, 337–345 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Palmer, L. M. et al. NMDA spikes enhance action potential generation during sensory input. Nat. Neurosci. 17, 383–390 (2014).

    CAS  PubMed  Google Scholar 

  161. Smith, S. L., Smith, I. T., Branco, T. & Häusser, M. Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo. Nature 503, 115–120 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Williams, L. E. & Holtmaat, A. Higher-order thalamocortical inputs gate synaptic long-term potentiation via disinhibition. Neuron 101, 91–102 (2019). This study revealed a disinhibitory role of higher-order thalamic input to wS1.

    CAS  PubMed  Google Scholar 

  163. Gambino, F. et al. Sensory-evoked LTP driven by dendritic plateau potentials in vivo. Nature 515, 116–119 (2014).

    CAS  PubMed  Google Scholar 

  164. Matsuda, W. et al. Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J. Neurosci. 29, 444–453 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Björklund, A. & Dunnett, S. B. Dopamine neuron systems in the brain: an update. Trends Neurosci. 30, 194–202 (2007).

    PubMed  Google Scholar 

  166. Yagishita, S. et al. A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science 345, 1616–1620 (2014). This study demonstrated mechanisms by which a delayed dopamine signal can enhance the synaptic potentiation of glutamatergic input onto dopamine D1 receptor-expressing medium spiny neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Brzosko, Z., Schultz, W. & Paulsen, O. Retroactive modulation of spike timing-dependent plasticity by dopamine. eLife 4, e09685 (2015).

    PubMed  PubMed Central  Google Scholar 

  168. Znamenskiy, P. & Zador, A. M. Corticostriatal neurons in auditory cortex drive decisions during auditory discrimination. Nature 497, 482–485 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Xiong, Q., Znamenskiy, P. & Zador, A. M. Selective corticostriatal plasticity during acquisition of an auditory discrimination task. Nature 521, 348–351 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Kawai, R. et al. Motor cortex is required for learning but not for executing a motor skill. Neuron 86, 800–812 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Grillner, S. Action: the role of motor cortex challenged. Curr. Biol. 25, R508–R511 (2015).

    CAS  PubMed  Google Scholar 

  172. Krupa, D. J., Wiest, M. C., Shuler, M. G., Laubach, M. & Nicolelis, M. A. L. Layer-specific somatosensory cortical activation during active tactile discrimination. Science 304, 1989–1992 (2004).

    CAS  PubMed  Google Scholar 

  173. Krupa, D. J., Matell, M. S., Brisben, A. J., Oliveira, L. M. & Nicolelis, M. A. Behavioral properties of the trigeminal somatosensory system in rats performing whisker-dependent tactile discriminations. J. Neurosci. 21, 5752–5763 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Shuler, M. G., Krupa, D. J. & Nicolelis, M. A. L. Integration of bilateral whisker stimuli in rats: role of the whisker barrel cortices. Cereb. Cortex 12, 86–97 (2002).

    PubMed  Google Scholar 

  175. Brecht, M., Preilowski, B. & Merzenich, M. M. Functional architecture of the mystacial vibrissae. Behav. Brain Res. 84, 81–97 (1997).

    CAS  PubMed  Google Scholar 

  176. Nikbakht, N., Tafreshiha, A., Zoccolan, D. & Diamond, M. E. Supralinear and supramodal integration of visual and tactile signals in rats: psychophysics and neuronal mechanisms. Neuron 97, 626–639 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Sofroniew, N. J., Cohen, J. D., Lee, A. K. & Svoboda, K. Natural whisker-guided behavior by head-fixed mice in tactile virtual reality. J. Neurosci. 34, 9537–9550 (2014).

    PubMed  PubMed Central  Google Scholar 

  178. Bobrov, E., Wolfe, J., Rao, R. P. & Brecht, M. The representation of social facial touch in rat barrel cortex. Curr. Biol. 24, 109–115 (2014).

    CAS  PubMed  Google Scholar 

  179. Lenschow, C. & Brecht, M. Barrel cortex membrane potential dynamics in social touch. Neuron 85, 718–725 (2015).

    CAS  PubMed  Google Scholar 

  180. Sreenivasan, V., Karmakar, K., Rijli, F. M. & Petersen, C. C. H. Parallel pathways from motor and somatosensory cortex for controlling whisker movements in mice. Eur. J. Neurosci. 41, 354–367 (2015).

    PubMed  Google Scholar 

  181. Auffret, M. et al. Optogenetic stimulation of cortex to map evoked whisker movements in awake head-restrained mice. Neuroscience 368, 199–213 (2018).

    CAS  PubMed  Google Scholar 

  182. Grant, R. A., Mitchinson, B., Fox, C. W. & Prescott, T. J. Active touch sensing in the rat: anticipatory and regulatory control of whisker movements during surface exploration. J. Neurophysiol. 101, 862–874 (2009).

    PubMed  Google Scholar 

  183. Moore, J. D. et al. Hierarchy of orofacial rhythms revealed through whisking and breathing. Nature 497, 205–210 (2013). This study revealed evidence for a whisker central pattern generator in the ventral intermediate reticular formation of the brainstem.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Deschênes, M. et al. Inhibition, not excitation, drives rhythmic whisking. Neuron 90, 374–387 (2016).

    PubMed  PubMed Central  Google Scholar 

  185. Grinevich, V., Brecht, M. & Osten, P. Monosynaptic pathway from rat vibrissa motor cortex to facial motor neurons revealed by lentivirus-based axonal tracing. J. Neurosci. 25, 8250–8258 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Chen, S., Augustine, G. J. & Chadderton, P. The cerebellum linearly encodes whisker position during voluntary movement. eLife 5, e10509 (2016).

    PubMed  PubMed Central  Google Scholar 

  187. Takatoh, J. et al. New modules are added to vibrissal premotor circuitry with the emergence of exploratory whisking. Neuron 77, 346–360 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Hattox, A. M., Priest, C. A. & Keller, A. Functional circuitry involved in the regulation of whisker movements. J. Comp. Neurol. 442, 266–276 (2002).

    PubMed  PubMed Central  Google Scholar 

  189. Hattox, A., Li, Y. & Keller, A. Serotonin regulates rhythmic whisking. Neuron 39, 343–352 (2003).

    CAS  PubMed  Google Scholar 

  190. Rathelot, J.-A., Dum, R. P. & Strick, P. L. Posterior parietal cortex contains a command apparatus for hand movements. Proc. Natl Acad. Sci. USA 114, 4255–4260 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author’s research work is supported by grants 31003A_182010 and CRSII5_177237 from the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl C. H. Petersen.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks D. Kleinfeld and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Somatotopic map

The exact correspondence of neighbouring body areas mapped to neighbouring locations in the brain.

Mystacial

Resembling a moustache; in rodents, the long whiskers on the snout (macrovibrissae).

Trigeminal ganglion

Sensory ganglion of the trigeminal nerve.

Sparse coding

Coding that involves a small fraction of available neurons.

Membrane time constant

The time needed to discharge neuronal membrane capacitance.

Reafference signals

Sensory signals generated by self-driven motion.

Efference copies

Internal motor-related signals used for sensory processing.

Plateau potentials

Persistent inward currents giving long-lasting depolarization.

Associative learning

Learning of the relationship between sensorimotor events.

Hit rates

The fraction of stimulus trials in which the desired response is evoked.

Credit-assignment problem

Many circuits are typically active during trial-and-error-based learning and it is difficult to determine which synapses should change.

Eligibility traces

Short-term memory of a recently active circuit that is eligible for changes associated with learning.

Three-factor plasticity rules

Synaptic plasticity rules that depend on presynaptic activity, postsynaptic activity and an additional factor (typically a neuromodulator).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petersen, C.C.H. Sensorimotor processing in the rodent barrel cortex. Nat Rev Neurosci 20, 533–546 (2019). https://doi.org/10.1038/s41583-019-0200-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-019-0200-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing