Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cortical mechanisms of spatial hearing

Abstract

Humans and other animals use spatial hearing to rapidly localize events in the environment. However, neural encoding of sound location is a complex process involving the computation and integration of multiple spatial cues that are not represented directly in the sensory organ (the cochlea). Our understanding of these mechanisms has increased enormously in the past few years. Current research is focused on the contribution of animal models for understanding human spatial audition, the effects of behavioural demands on neural sound location encoding, the emergence of a cue-independent location representation in the auditory cortex, and the relationship between single-source and concurrent location encoding in complex auditory scenes. Furthermore, computational modelling seeks to unravel how neural representations of sound source locations are derived from the complex binaural waveforms of real-life sounds. In this article, we review and integrate the latest insights from neurophysiological, neuroimaging and computational modelling studies of mammalian spatial hearing. We propose that the cortical representation of sound location emerges from recurrent processing taking place in a dynamic, adaptive network of early (primary) and higher-order (posterior–dorsal and dorsolateral prefrontal) auditory regions. This cortical network accommodates changing behavioural requirements and is especially relevant for processing the location of real-life, complex sounds and complex auditory scenes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sound localization in humans.
Fig. 2: From binaural real-life sound to location perception: encoding and decoding.
Fig. 3: Cortical network of sound location processing.
Fig. 4: Sound localization in complex auditory scenes.

Similar content being viewed by others

References

  1. Heffner, H. & Masterton, B. Contribution of auditory cortex to sound localization in the monkey (Macaca mulatta). J. Neurophysiol. 38, 1340–1358 (1975).

    CAS  PubMed  Google Scholar 

  2. Heffner, H. E. & Heffner, R. S. Effect of bilateral auditory cortex lesions on sound localization in Japanese macaques. J. Neurophysiol. 64, 915–931 (1990).

    CAS  PubMed  Google Scholar 

  3. Malhotra, S., Hall, A. J. & Lomber, S. G. Cortical control of sound localization in the cat: unilateral cooling deactivation of 19 cerebral areas. J. Neurophysiol. 92, 1625–1643 (2004).

    PubMed  Google Scholar 

  4. Malhotra, S., Stecker, G. C., Middlebrooks, J. C. & Lomber, S. G. Sound localization deficits during reversible deactivation of primary auditory cortex and/or the dorsal zone. J. Neurophysiol. 99, 1628–1642 (2008).

    PubMed  Google Scholar 

  5. Spierer, L., Bellmann-Thiran, A., Maeder, P., Murray, M. M. & Clarke, S. Hemispheric competence for auditory spatial representation. Brain 132, 1953–1966 (2009).

    PubMed  Google Scholar 

  6. Zatorre, R. J. & Penhune, V. B. Spatial localization after excision of human auditory cortex. J. Neurosci. 21, 6321–6328 (2001).

    CAS  PubMed  Google Scholar 

  7. Zündorf, I. C., Karnath, H.-O. & Lewald, J. The effect of brain lesions on sound localization in complex acoustic environments. Brain 137, 1410–1418 (2014).

    PubMed  Google Scholar 

  8. Hofman, P. M., Van Riswick, J. G. & Van Opstal, A. J. Relearning sound localization with new ears. Nat. Neurosci. 1, 417–421 (1998).

    CAS  PubMed  Google Scholar 

  9. Oldfield, S. R. & Parker, S. P. Acuity of sound localisation: a topography of auditory space. I. Normal hearing conditions. Perception 13, 581–600 (1984).

    CAS  PubMed  Google Scholar 

  10. Lord Rayleigh. On our perception of sound direction. Lond. Edinb. Dubl. Philos. Mag. J. Sci. 13, 214–232 (1907).

    Google Scholar 

  11. Blauert, J. Sound localization in the median plane. Acta Acust. U. Acust. 22, 205–213 (1969).

    Google Scholar 

  12. Mills, A. W. Lateralization of high-frequency tones. J. Acoust. Soc. Am. 32, 132–134 (1960).

    Google Scholar 

  13. Sandel, T., Teas, D., Feddersen, W. & Jeffress, L. Localization of sound from single and paired sources. J. Acoust. Soc. Am. 27, 842–852 (1955).

    Google Scholar 

  14. Stevens, S. S. & Newman, E. B. The localization of actual sources of sound. Am. J. Psychol. 48, 297–306 (1936).

    Google Scholar 

  15. Wightman, F. L. & Kistler, D. J. The dominant role of low-frequency interaural time differences in sound localization. J. Acoust. Soc. Am. 91, 1648–1661 (1992).

    CAS  PubMed  Google Scholar 

  16. Bernstein, L. R. & Trahiotis, C. Lateralization of sinusoidally amplitude-modulated tones: effects of spectral locus and temporal variation. J. Acoust. Soc. Am. 78, 514–523 (1985).

    CAS  PubMed  Google Scholar 

  17. Hartmann, W. M., Rakerd, B., Crawford, Z. D. & Zhang, P. X. Transaural experiments and a revised duplex theory for the localization of low-frequency tones. J. Acoust. Soc. Am. 139, 968–985 (2016).

    PubMed  PubMed Central  Google Scholar 

  18. Henning, G. B. Detectability of interaural delay in high-frequency complex waveforms. J. Acoust. Soc. Am. 55, 84–90 (1974).

    CAS  PubMed  Google Scholar 

  19. Rakerd, B. & Hartmann, W. Localization of sound in rooms, II: the effects of a single reflecting surface. J. Acoust. Soc. Am. 78, 524–533 (1985).

    CAS  PubMed  Google Scholar 

  20. Day, M. L., Koka, K. & Delgutte, B. Neural encoding of sound source location in the presence of a concurrent, spatially separated source. J. Neurophysiol. 108, 2612–2628 (2012).

    PubMed  PubMed Central  Google Scholar 

  21. McAlpine, D., Jiang, D. & Palmer, A. R. A neural code for low-frequency sound localization in mammals. Nat. Neurosci. 4, 396–401 (2001).

    CAS  PubMed  Google Scholar 

  22. Jones, H. G., Brown, A. D., Koka, K., Thornton, J. L. & Tollin, D. J. Sound frequency-invariant neural coding of a frequency-dependent cue to sound source location. J. Neurophysiol. 114, 531–539 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Makous, J. C. & Middlebrooks, J. C. Two-dimensional sound localization by human listeners. J. Acoust. Soc. Am. 87, 2188–2200 (1990).

    CAS  PubMed  Google Scholar 

  24. Heffner, R. S. & Heffner, H. E. Sound localization acuity in the cat: effect of azimuth, signal duration, and test procedure. Hear. Res. 36, 221–232 (1988).

    CAS  PubMed  Google Scholar 

  25. Butler, R. A. The bandwidth effect on monaural and binaural localization. Hear. Res. 21, 67–73 (1986).

    CAS  PubMed  Google Scholar 

  26. Carlile, S., Delaney, S. & Corderoy, A. The localisation of spectrally restricted sounds by human listeners. Hear. Res. 128, 175–189 (1999).

    CAS  PubMed  Google Scholar 

  27. Tollin, D. J., Ruhland, J. L. & Yin, T. C. The role of spectral composition of sounds on the localization of sound sources by cats. J. Neurophysiol. 109, 1658–1668 (2013).

    PubMed  Google Scholar 

  28. Musicant, A. D. & Butler, R. A. Influence of monaural spectral cues on binaural localization. J. Acoust. Soc. Am. 77, 202–208 (1985).

    CAS  PubMed  Google Scholar 

  29. Van Wanrooij, M. M. & Van Opstal, A. J. Sound localization under perturbed binaural hearing. J. Neurophysiol. 97, 715–726 (2007).

    PubMed  Google Scholar 

  30. Voss, P., Tabry, V. & Zatorre, R. J. Trade-off in the sound localization abilities of early blind individuals between the horizontal and vertical planes. J. Neurosci. 35, 6051–6056 (2015).

    PubMed  PubMed Central  Google Scholar 

  31. Derey, K., Rauschecker, J. P., Formisano, E., Valente, G. & de Gelder, B. Localization of complex sounds is modulated by behavioral relevance and sound category. J. Acoust. Soc. Am. 142, 1757–1773 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. Hackett, T. A. et al. Feedforward and feedback projections of caudal belt and parabelt areas of auditory cortex: refining the hierarchical model. Front. Neurosci. 8, 72 (2014).

    PubMed  PubMed Central  Google Scholar 

  33. Kaas, J. H. & Hackett, T. A. Subdivisions of auditory cortex and processing streams in primates. Proc. Natl Acad. Sci. USA 97, 11793–11799 (2000).

    CAS  PubMed  Google Scholar 

  34. Moerel, M., De Martino, F. & Formisano, E. An anatomical and functional topography of human auditory cortical areas. Front. Neurosci. 8, 225 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. Rauschecker, J. P., Tian, B. & Hauser, M. Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268, 111–114 (1995).

    CAS  PubMed  Google Scholar 

  36. Benson, D., Hienz, R. & Goldstein, M. Jr. Single-unit activity in the auditory cortex of monkeys actively localizing sound sources: spatial tuning and behavioral dependency. Brain Res. 219, 249–267 (1981).

    CAS  PubMed  Google Scholar 

  37. Ortiz-Rios, M. et al. Widespread and opponent fMRI signals represent sound location in macaque auditory cortex. Neuron 93, 971–983.e4 (2017). A macaque neuroimaging study providing evidence for an opponent coding mechanism for the neural representation of sound location.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Recanzone, G. H., Guard, D. C., Phan, M. L. & Su, T.-I. K. Correlation between the activity of single auditory cortical neurons and sound-localization behavior in the macaque monkey. J. Neurophysiol. 83, 2723–2739 (2000).

    CAS  PubMed  Google Scholar 

  39. Tian, B., Reser, D., Durham, A., Kustov, A. & Rauschecker, J. P. Functional specialization in rhesus monkey auditory cortex. Science 292, 290–293 (2001).

    CAS  PubMed  Google Scholar 

  40. Woods, T. M., Lopez, S. E., Long, J. H., Rahman, J. E. & Recanzone, G. H. Effects of stimulus azimuth and intensity on the single-neuron activity in the auditory cortex of the alert macaque monkey. J. Neurophysiol. 96, 3323–3337 (2006).

    PubMed  Google Scholar 

  41. Kuśmierek, P. & Rauschecker, J. P. Selectivity for space and time in early areas of the auditory dorsal stream in the rhesus monkey. J. Neurophysiol. 111, 1671–1685 (2014).

    PubMed  PubMed Central  Google Scholar 

  42. Brugge, J. F., Reale, R. A. & Hind, J. E. The structure of spatial receptive fields of neurons in primary auditory cortex of the cat. J. Neurosci. 16, 4420–4437 (1996).

    CAS  PubMed  Google Scholar 

  43. Harrington, I. A., Stecker, G. C., Macpherson, E. A. & Middlebrooks, J. C. Spatial sensitivity of neurons in the anterior, posterior, and primary fields of cat auditory cortex. Hear. Res. 240, 22–41 (2008).

    PubMed  PubMed Central  Google Scholar 

  44. Mrsic-Flogel, T. D., King, A. J. & Schnupp, J. W. Encoding of virtual acoustic space stimuli by neurons in ferret primary auditory cortex. J. Neurophysiol. 93, 3489–3503 (2005).

    PubMed  Google Scholar 

  45. Rajan, R., Aitkin, L., Irvine, D. & McKay, J. Azimuthal sensitivity of neurons in primary auditory cortex of cats. I. Types of sensitivity and the effects of variations in stimulus parameters. J. Neurophysiol. 64, 872–887 (1990).

    CAS  PubMed  Google Scholar 

  46. Stecker, G. C., Harrington, I. A. & Middlebrooks, J. C. Location coding by opponent neural populations in the auditory cortex. PLOS Biol. 3, e78 (2005). Extracellular recordings in cat auditory cortical regions demonstrating the validity of opponent population coding for the neural representation of sound location.

    PubMed  PubMed Central  Google Scholar 

  47. Stecker, G. C. & Middlebrooks, J. C. Distributed coding of sound locations in the auditory cortex. Biol. Cybern. 89, 341–349 (2003).

    PubMed  Google Scholar 

  48. Mickey, B. J. & Middlebrooks, J. C. Representation of auditory space by cortical neurons in awake cats. J. Neurosci. 23, 8649–8663 (2003).

    CAS  PubMed  Google Scholar 

  49. Brunetti, M. et al. Human brain activation during passive listening to sounds from different locations: an fMRI and MEG study. Hum. Brain Mapp. 26, 251–261 (2005).

    CAS  PubMed  Google Scholar 

  50. Deouell, L. Y., Heller, A. S., Malach, R., D'Esposito, M. & Knight, R. T. Cerebral responses to change in spatial location of unattended sounds. Neuron 55, 985–996 (2007).

    CAS  PubMed  Google Scholar 

  51. Van der Zwaag, W., Gentile, G., Gruetter, R., Spierer, L. & Clarke, S. Where sound position influences sound object representations: a 7-T fMRI study. Neuroimage 54, 1803–1811 (2011).

    PubMed  Google Scholar 

  52. Warren, J. D. & Griffiths, T. D. Distinct mechanisms for processing spatial sequences and pitch sequences in the human auditory brain. J. Neurosci. 23, 5799–5804 (2003).

    CAS  PubMed  Google Scholar 

  53. Krumbholz, K. et al. Representation of interaural temporal information from left and right auditory space in the human planum temporale and inferior parietal lobe. Cereb. Cortex 15, 317–324 (2004).

    PubMed  Google Scholar 

  54. Derey, K., Valente, G., de Gelder, B. & Formisano, E. Opponent coding of sound location (azimuth) in planum temporale is robust to sound-level variations. Cereb. Cortex 26, 450–464 (2015). A neuroimaging study in humans demonstrating the validity of an opponent coding mechanism for sound location encoding in the planum temporale.

    PubMed  PubMed Central  Google Scholar 

  55. Higgins, N. C., McLaughlin, S. A., Rinne, T. & Stecker, G. C. Evidence for cue-independent spatial representation in the human auditory cortex during active listening. Proc. Natl Acad. Sci. USA 114, E7602–E7611 (2017). An fMRI study with an active task paradigm and a multivariate pattern analysis approach, showing that the human auditory cortex represents sound location independent of the type of binaural cue (that is, ILD or ITD).

    CAS  PubMed  Google Scholar 

  56. McLaughlin, S. A., Higgins, N. C. & Stecker, G. C. Tuning to binaural cues in human auditory cortex. J. Assoc. Res. Otolaryngol. 17, 37–53 (2016).

    PubMed  Google Scholar 

  57. van der Heijden, K., Rauschecker, J. P., Formisano, E., Valente, G. & de Gelder, B. Active sound localization sharpens spatial tuning in human primary auditory cortex. J. Neurosci. 38, 8574–8587 (2018). An fMRI study measuring spatial selectivity in the human auditory cortex in varying behavioural conditions, demonstrating sharpening of spatial tuning during active sound localization and accurate decoding of sound location using a maximum likelihood approach.

    PubMed  PubMed Central  Google Scholar 

  58. Lee, C.-C. & Middlebrooks, J. C. Auditory cortex spatial sensitivity sharpens during task performance. Nat. Neurosci. 14, 108–114 (2011). Single-unit and multi-unit recordings in the primary auditory cortex of awake and behaving cats show that neural spatial sensitivity sharpens during task performance.

    CAS  PubMed  Google Scholar 

  59. Harper, N. S., Scott, B. H., Semple, M. N. & McAlpine, D. The neural code for auditory space depends on sound frequency and head size in an optimal manner. PLOS ONE 9, e108154 (2014). Empirical evidence from neurophysiological data in various species supporting the optimal coding model for sound location based on head size and sound frequency.

    PubMed  PubMed Central  Google Scholar 

  60. Chi, T., Ru, P. & Shamma, S. A. Multiresolution spectrotemporal analysis of complex sounds. J. Acoust. Soc. Am. 118, 887–906 (2005).

    PubMed  Google Scholar 

  61. Santoro, R. et al. Encoding of natural sounds at multiple spectral and temporal resolutions in the human auditory cortex. PLOS Comput. Biol. 10, e1003412 (2014).

    PubMed  PubMed Central  Google Scholar 

  62. Santoro, R. et al. Reconstructing the spectrotemporal modulations of real-life sounds from fMRI response patterns. Proc. Natl Acad. Sci. USA 114, 4799–4804 (2017).

    CAS  PubMed  Google Scholar 

  63. Erb, J. et al. Homology and specificity of natural sound-encoding in human and monkey auditory cortex. Cereb. Cortex https://doi.org/10.1093/cercor/bhy243 (2018).

    Article  PubMed  Google Scholar 

  64. Jeffress, L. A. A place theory of sound localization. J. Comp. Physiol. Psychol. 41, 35–39 (1948).

    CAS  PubMed  Google Scholar 

  65. Grothe, B., Pecka, M. & McAlpine, D. Mechanisms of sound localization in mammals. Physiol. Rev. 90, 983–1012 (2010).

    CAS  PubMed  Google Scholar 

  66. Carr, C. & Konishi, M. A circuit for detection of interaural time differences in the brain stem of the barn owl. J. Neurosci. 10, 3227–3246 (1990).

    CAS  PubMed  Google Scholar 

  67. Knudsen, E. I. & Konishi, M. A neural map of auditory space in the owl. Science 200, 795–797 (1978).

    CAS  PubMed  Google Scholar 

  68. Knudsen, E. I., Konishi, M. & Pettigrew, J. D. Receptive fields of auditory neurons in the owl. Science 198, 1278–1280 (1977).

    CAS  PubMed  Google Scholar 

  69. Palmer, A. & King, A. The representation of auditory space in the mammalian superior colliculus. Nature 299, 248–249 (1982).

    CAS  PubMed  Google Scholar 

  70. Młynarski, W. The opponent channel population code of sound location is an efficient representation of natural binaural sounds. PLOS Comput. Biol. 11, e1004294 (2015). A computational model describing the transformation of binaural sound into a neural representation of spectrotemporal and interaural features based on sparse coding of statistical regularities in the environment.

    PubMed  PubMed Central  Google Scholar 

  71. Barlow, H. B. Possible principles underlying the transformations of sensory messages. Sens. Commun. 1, 217–234 (1961).

    Google Scholar 

  72. Simoncelli, E. P. & Olshausen, B. A. Natural image statistics and neural representation. Annu. Rev. Neurosci. 24, 1193–1216 (2001).

    CAS  PubMed  Google Scholar 

  73. Olshausen, B. A. & Field, D. J. Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 14, 481–487 (2004).

    CAS  PubMed  Google Scholar 

  74. Singh, N. C. & Theunissen, F. E. Modulation spectra of natural sounds and ethological theories of auditory processing. J. Acoust. Soc. Am. 114, 3394–3411 (2003).

    PubMed  Google Scholar 

  75. Harper, N. S. & McAlpine, D. Optimal neural population coding of an auditory spatial cue. Nature 430, 682–686 (2004). A neural modelling study of sound location encoding in species with different head sizes, showing that the optimal coding strategy for IPD depends on head size and sound frequency.

    CAS  PubMed  Google Scholar 

  76. Köppl, C. Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. J. Neurosci. 17, 3312–3321 (1997).

    PubMed  Google Scholar 

  77. Sullivan, W. & Konishi, M. Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl. J. Neurosci. 4, 1787–1799 (1984).

    CAS  PubMed  Google Scholar 

  78. Verschooten, E., Desloovere, C. & Joris, P. X. High-resolution frequency tuning but not temporal coding in the human cochlea. PLOS Biol. 16, e2005164 (2018).

    PubMed  PubMed Central  Google Scholar 

  79. Kay, K. N., Naselaris, T., Prenger, R. J. & Gallant, J. L. Identifying natural images from human brain activity. Nature 452, 352–355 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Miyawaki, Y. et al. Visual image reconstruction from human brain activity using a combination of multiscale local image decoders. Neuron 60, 915–929 (2008).

    CAS  PubMed  Google Scholar 

  81. Kriegeskorte, N. et al. Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60, 1126–1141 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Moerel, M., De Martino, F. & Formisano, E. Processing of natural sounds in human auditory cortex: tonotopy, spectral tuning, and relation to voice sensitivity. J. Neurosci. 32, 14205–14216 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. De Martino, F. et al. The impact of ultra-high field MRI on cognitive and computational neuroimaging. Neuroimage 168, 366–382 (2018).

    PubMed  Google Scholar 

  84. Bizley, J. K. & Cohen, Y. E. The what, where and how of auditory-object perception. Nat. Rev. Neurosci. 14, 693–707 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bizley, J. K., Walker, K. M., Silverman, B. W., King, A. J. & Schnupp, J. W. Interdependent encoding of pitch, timbre, and spatial location in auditory cortex. J. Neurosci. 29, 2064–2075 (2009). Neurophysiological recordings in the ferret auditory cortex show that most units are sensitive to multiple perceptual attributes, indicating that interdependent encoding may be an underlying mechanism for the unified representation of acoustic and location features.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hancock, K. E. & Delgutte, B. A physiologically based model of interaural time difference discrimination. J. Neurosci. 24, 7110–7117 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Day, M. L. & Delgutte, B. Decoding sound source location and separation using neural population activity patterns. J. Neurosci. 33, 15837–15847 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Dingle, R. N., Hall, S. E. & Phillips, D. P. The three-channel model of sound localization mechanisms: interaural level differences. J. Acoust. Soc. Am. 131, 4023–4029 (2012).

    PubMed  Google Scholar 

  89. Dingle, R. N., Hall, S. E. & Phillips, D. P. The three-channel model of sound localization mechanisms: interaural time differences. J. Acoust. Soc. Am. 133, 417–424 (2013).

    PubMed  Google Scholar 

  90. Magezi, D. A. & Krumbholz, K. Evidence for opponent-channel coding of interaural time differences in human auditory cortex. J. Neurophysiol. 104, 1997–2007 (2010).

    PubMed  PubMed Central  Google Scholar 

  91. Salminen, N. H., May, P. J., Alku, P. & Tiitinen, H. A population rate code of auditory space in the human cortex. PLOS ONE 4, e7600 (2009).

    PubMed  PubMed Central  Google Scholar 

  92. Phillips, D. P. A perceptual architecture for sound lateralization in man. Hear. Res. 238, 124–132 (2008).

    PubMed  Google Scholar 

  93. Phillips, D. P., Carmichael, M. E. & Hall, S. E. Interaction in the perceptual processing of interaural time and level differences. Hear. Res. 211, 96–102 (2006).

    PubMed  Google Scholar 

  94. Georgopoulos, A. P., Schwartz, A. B. & Kettner, R. E. Neuronal population coding of movement direction. Science 233, 1416–1419 (1986).

    CAS  PubMed  Google Scholar 

  95. Georgopoulos, A. P., Kettner, R. E. & Schwartz, A. B. Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population. J. Neurosci. 8, 2928–2937 (1988).

    CAS  PubMed  Google Scholar 

  96. Jazayeri, M. & Movshon, J. A. Optimal representation of sensory information by neural populations. Nat. Neurosci. 9, 690–696 (2006).

    CAS  PubMed  Google Scholar 

  97. Miller, L. M. & Recanzone, G. H. Populations of auditory cortical neurons can accurately encode acoustic space across stimulus intensity. Proc. Natl Acad. Sci. USA 106, 5931–5935 (2009). Electrophysiological recordings in macaque auditory cortical areas show that a population code based on MLE can encode sound location from neural firing rate patterns in the caudolateral region, but not in other auditory cortical regions.

    CAS  PubMed  Google Scholar 

  98. Pouget, A., Dayan, P. & Zemel, R. Information processing with population codes. Nat. Rev. Neurosci. 1, 125–132 (2000).

    CAS  PubMed  Google Scholar 

  99. Rauschecker, J. P. Parallel processing in the auditory cortex of primates. Audiol. Neurootol. 3, 86–103 (1998).

    CAS  PubMed  Google Scholar 

  100. Rauschecker, J. P. & Tian, B. Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc. Natl Acad. Sci. USA 97, 11800–11806 (2000).

    CAS  PubMed  Google Scholar 

  101. Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992).

    CAS  PubMed  Google Scholar 

  102. Mishkin, M., Ungerleider, L. G. & Macko, K. A. Object vision and spatial vision: two cortical pathways. Trends Neurosci. 6, 414–417 (1983).

    Google Scholar 

  103. Romanski, L. M. et al. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat. Neurosci. 2, 1131–1136 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Alain, C., Arnott, S. R., Hevenor, S., Graham, S. & Grady, C. L. “What” and “where” in the human auditory system. Proc. Natl Acad. Sci. USA 98, 12301–12306 (2001).

    CAS  PubMed  Google Scholar 

  105. Arnott, S. R., Binns, M. A., Grady, C. L. & Alain, C. Assessing the auditory dual-pathway model in humans. Neuroimage 22, 401–408 (2004).

    PubMed  Google Scholar 

  106. Maeder, P. P. et al. Distinct pathways involved in sound recognition and localization: a human fMRI study. Neuroimage 14, 802–816 (2001).

    CAS  PubMed  Google Scholar 

  107. Lewald, J., Riederer, K. A., Lentz, T. & Meister, I. G. Processing of sound location in human cortex. Eur. J. Neurosci. 27, 1261–1270 (2008).

    PubMed  Google Scholar 

  108. Weeks, R. et al. A positron emission tomographic study of auditory localization in the congenitally blind. J. Neurosci. 20, 2664–2672 (2000).

    CAS  PubMed  Google Scholar 

  109. Zatorre, R. J., Bouffard, M., Ahad, P. & Belin, P. Where is 'where' in the human auditory cortex? Nat. Neurosci. 5, 905–909 (2002).

    CAS  PubMed  Google Scholar 

  110. Rauschecker, J. P. Where, when, and how: are they all sensorimotor? Towards a unified view of the dorsal pathway in vision and audition. Cortex 98, 262–268 (2018).

    PubMed  Google Scholar 

  111. Rauschecker, J. P. & Scott, S. K. Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat. Neurosci. 12, 718–724 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Bushara, K. O. et al. Modality-specific frontal and parietal areas for auditory and visual spatial localization in humans. Nat. Neurosci. 2, 759–766 (1999). A human neuroimaging approach revealing the functional specialization of the lateral PFC for spatial auditory processing.

    CAS  PubMed  Google Scholar 

  113. Ahveninen, J. et al. Evidence for distinct human auditory cortex regions for sound location versus identity processing. Nat. Commun. 4, 2585 (2013).

    PubMed  PubMed Central  Google Scholar 

  114. Clarke, S., Bellmann, A., Meuli, R. A., Assal, G. & Steck, A. J. Auditory agnosia and auditory spatial deficits following left hemispheric lesions: evidence for distinct processing pathways. Neuropsychologia 38, 797–807 (2000).

    CAS  PubMed  Google Scholar 

  115. Lomber, S. G. & Malhotra, S. Double dissociation of 'what' and 'where' processing in auditory cortex. Nat. Neurosci. 11, 609–616 (2008). A lesion study using reversible cooling in cats, providing evidence for the existence of a specialized posterior–dorsal processing stream for spatial auditory processing, as well as a ventral stream for object identity processing.

    CAS  PubMed  Google Scholar 

  116. Poirier, C. et al. Auditory motion-specific mechanisms in the primate brain. PLOS Biol. 15, e2001379 (2017).

    PubMed  PubMed Central  Google Scholar 

  117. Krumbholz, K. et al. Hierarchical processing of sound location and motion in the human brainstem and planum temporale. Eur. J. Neurosci. 21, 230–238 (2005).

    PubMed  Google Scholar 

  118. Griffiths, T. D. et al. Right parietal cortex is involved in the perception of sound movement in humans. Nat. Neurosci. 1, 74–79 (1998).

    CAS  PubMed  Google Scholar 

  119. Jasmin, K., Lima, C. F. & Scott, S. K. Understanding rostral–caudal auditory cortex contributions to auditory perception. Nat. Rev. Neurosci. 20, 425–434 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Mondor, T. A. & Zatorre, R. J. Shifting and focusing auditory spatial attention. J. Exp. Psychol. Hum. Percept. Perform. 21, 387–409 (1995).

    CAS  PubMed  Google Scholar 

  121. Rorden, C. & Driver, J. Spatial deployment of attention within and across hemifields in an auditory task. Exp. Brain Res. 137, 487–496 (2001).

    CAS  PubMed  Google Scholar 

  122. Spence, C. J. & Driver, J. Covert spatial orienting in audition: exogenous and endogenous mechanisms. J. Exp. Psychol. Hum. Percept. Perform. 20, 555–574 (1994).

    Google Scholar 

  123. Ruggles, D., Bharadwaj, H. & Shinn-Cunningham, B. G. Normal hearing is not enough to guarantee robust encoding of suprathreshold features important in everyday communication. Proc. Natl Acad. Sci. USA 108, 15516–15521 (2011).

    CAS  PubMed  Google Scholar 

  124. Lee, C.-C. & Middlebrooks, J. C. Specialization for sound localization in fields A1, DZ, and PAF of cat auditory cortex. J. Assoc. Res. Otolaryngol. 14, 61–82 (2013).

    PubMed  Google Scholar 

  125. Fritz, J., Shamma, S., Elhilali, M. & Klein, D. Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nat. Neurosci. 6, 1216–1223 (2003).

    CAS  PubMed  Google Scholar 

  126. Fritz, J. B., Elhilali, M., David, S. V. & Shamma, S. A. Auditory attention—focusing the searchlight on sound. Curr. Opin. Neurobiol. 17, 437–455 (2007).

    CAS  PubMed  Google Scholar 

  127. Atiani, S., Elhilali, M., David, S. V., Fritz, J. B. & Shamma, S. A. Task difficulty and performance induce diverse adaptive patterns in gain and shape of primary auditory cortical receptive fields. Neuron 61, 467–480 (2009).

    CAS  PubMed  Google Scholar 

  128. King, A. J., Teki, S. & Willmore, B. D. Recent advances in understanding the auditory cortex. F1000Res. 7, 1555 (2018).

    Google Scholar 

  129. Schroger, E. Interaural time and level differences: integrated or separated processing? Hear. Res. 96, 191–198 (1996).

    CAS  PubMed  Google Scholar 

  130. Tardif, E., Murray, M. M., Meylan, R., Spierer, L. & Clarke, S. The spatio-temporal brain dynamics of processing and integrating sound localization cues in humans. Brain Res. 1092, 161–176 (2006).

    CAS  PubMed  Google Scholar 

  131. Ungan, P., Yagcioglu, S. & Goksoy, C. Differences between the N1 waves of the responses to interaural time and intensity disparities: scalp topography and dipole sources. Clin. Neurophysiol. 112, 485–498 (2001).

    CAS  PubMed  Google Scholar 

  132. Lamme, V. A. & Roelfsema, P. R. The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci. 23, 571–579 (2000).

    CAS  PubMed  Google Scholar 

  133. Bullier, J. Integrated model of visual processing. Brain Res. Rev. 36, 96–107 (2001).

    CAS  PubMed  Google Scholar 

  134. Ahissar, M., Nahum, M., Nelken, I. & Hochstein, S. Reverse hierarchies and sensory learning. Phil. Trans. R. Soc. B 364, 285–299 (2009).

    PubMed  Google Scholar 

  135. Fritz, J. B., David, S. V., Radtke-Schuller, S., Yin, P. & Shamma, S. A. Adaptive, behaviorally gated, persistent encoding of task-relevant auditory information in ferret frontal cortex. Nat. Neurosci. 13, 1011–1019 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Jiang, X., Chevillet, M. A., Rauschecker, J. P. & Riesenhuber, M. Training humans to categorize monkey calls: auditory feature- and category-selective neural tuning changes. Neuron 98, 405.e4–416.e4 (2018).

    CAS  PubMed  Google Scholar 

  137. Goldman-Rakic, P. S., Cools, A. & Srivastava, K. The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Phil. Trans. R. Soc. Biol. B 351, 1445–1453 (1996).

    CAS  Google Scholar 

  138. McAlonan, K., Cavanaugh, J. & Wurtz, R. H. Attentional modulation of thalamic reticular neurons. J. Neurosci. 26, 4444–4450 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Cotillon-Williams, N., Huetz, C., Hennevin, E. & Edeline, J.-M. Tonotopic control of auditory thalamus frequency tuning by reticular thalamic neurons. J. Neurophysiol. 99, 1137–1151 (2008).

    CAS  PubMed  Google Scholar 

  140. Ma, X. & Suga, N. Specific and nonspecific plasticity of the primary auditory cortex elicited by thalamic auditory neurons. J. Neurosci. 29, 4888–4896 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Atencio, C. A. & Schreiner, C. E. Laminar diversity of dynamic sound processing in cat primary auditory cortex. J. Neurophysiol. 103, 192–205 (2010).

    PubMed  Google Scholar 

  142. Sakata, S. & Harris, K. D. Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron 64, 404–418 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Winkowski, D. E. & Kanold, P. O. Laminar transformation of frequency organization in auditory cortex. J. Neurosci. 33, 1498–1508 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. De Martino, F. et al. Frequency preference and attention effects across cortical depths in the human primary auditory cortex. Proc. Natl Acad. Sci. USA 112, 16036–16041 (2015).

    PubMed  Google Scholar 

  145. Kok, P., Bains, L. J., van Mourik, T., Norris, D. G. & de Lange, F. P. Selective activation of the deep layers of the human primary visual cortex by top-down feedback. Curr. Biol. 26, 371–376 (2016).

    CAS  PubMed  Google Scholar 

  146. Lawrence, S. J., Formisano, E., Muckli, L. & de Lange, F. P. Laminar fMRI: applications for cognitive neuroscience. Neuroimage 197, 785–791 (2019).

    PubMed  Google Scholar 

  147. Jenkins, W. M. & Masterton, R. B. Sound localization: effects of unilateral lesions in central auditory system. J. Neurophysiol. 47, 987–1016 (1982).

    CAS  PubMed  Google Scholar 

  148. Jenkins, W. M. & Merzenich, M. M. Role of cat primary auditory cortex for sound-localization behavior. J. Neurophysiol. 52, 819–847 (1984).

    CAS  PubMed  Google Scholar 

  149. Kumpik, D. P. & King, A. J. A review of the effects of unilateral hearing loss on spatial hearing. Hear. Res. 372, 17–28 (2019).

    PubMed  PubMed Central  Google Scholar 

  150. Moore, D. R. et al. Conductive hearing loss produces a reversible binaural hearing impairment. J. Neurosci. 19, 8704–8711 (1999).

    CAS  PubMed  Google Scholar 

  151. Wilmington, D., Gray, L. & Jahrsdoerfer, R. Binaural processing after corrected congenital unilateral conductive hearing loss. Hear. Res. 74, 99–114 (1994).

    CAS  PubMed  Google Scholar 

  152. Keating, P. & King, A. J. Developmental plasticity of spatial hearing following asymmetric hearing loss: context-dependent cue integration and its clinical implications. Front. Syst. Neurosci. 7, 123 (2013).

    PubMed  PubMed Central  Google Scholar 

  153. Agterberg, M. J., Hol, M. K., Van Wanrooij, M. M., Van Opstal, A. J. & Snik, A. F. Single-sided deafness and directional hearing: contribution of spectral cues and high-frequency hearing loss in the hearing ear. Front. Neurosci. 8, 188 (2014).

    PubMed  PubMed Central  Google Scholar 

  154. Slattery, W. H. III & Middlebrooks, J. C. Monaural sound localization: acute versus chronic unilateral impairment. Hear. Res. 75, 38–46 (1994).

    PubMed  Google Scholar 

  155. Van Wanrooij, M. M. & Van Opstal, A. J. Contribution of head shadow and pinna cues to chronic monaural sound localization. J. Neurosci. 24, 4163–4171 (2004).

    PubMed  PubMed Central  Google Scholar 

  156. Keating, P., Dahmen, J. C. & King, A. J. Context-specific reweighting of auditory spatial cues following altered experience during development. Curr. Biol. 23, 1291–1299 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Keating, P., Rosenior-Patten, O., Dahmen, J. C., Bell, O. & King, A. J. Behavioral training promotes multiple adaptive processes following acute hearing loss. eLife 5, e12264 (2016).

    PubMed  PubMed Central  Google Scholar 

  158. Keating, P., Dahmen, J. C. & King, A. J. Complementary adaptive processes contribute to the developmental plasticity of spatial hearing. Nat. Neurosci. 18, 185–187 (2015). Extracellular recordings mapping ILD sensitivity in the primary auditory cortex of ferrets reared with one ear plugged, demonstrating plastic remapping of ILD sensitivity in asymmetric hearing loss.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Popescu, M. V. & Polley, D. B. Monaural deprivation disrupts development of binaural selectivity in auditory midbrain and cortex. Neuron 65, 718–731 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. King, A. J., Parsons, C. H. & Moore, D. R. Plasticity in the neural coding of auditory space in the mammalian brain. Proc. Natl Acad. Sci. USA 97, 11821–11828 (2000).

    CAS  PubMed  Google Scholar 

  161. Yin, T. C. T. Neural mechanisms of encoding binaural localization cues in the auditory brainstem. In Integrative Functions in the Mammalian Auditory Pathway (eds Oertel, D. & Fay, R. R.) 99–159 (Springer, 2002).

  162. Edmonds, B. A. & Krumbholz, K. Are interaural time and level differences represented by independent or integrated codes in the human auditory cortex? J. Assoc. Res. Otolaryngol. 15, 103–114 (2014).

    PubMed  Google Scholar 

  163. Salminen, N. H. et al. Integrated processing of spatial cues in human auditory cortex. Hear. Res. 327, 143–152 (2015).

    PubMed  Google Scholar 

  164. Bendor, D. & Wang, X. The neuronal representation of pitch in primate auditory cortex. Nature 436, 1161–1165 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. De Angelis, V. et al. Cortical processing of pitch: model-based encoding and decoding of auditory fMRI responses to real-life sounds. Neuroimage 180, 291–300 (2018).

    PubMed  Google Scholar 

  166. Bendor, D., Osmanski, M. S. & Wang, X. Dual-pitch processing mechanisms in primate auditory cortex. J. Neurosci. 32, 16149–16161 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Oxenham, A. J. How we hear: the perception and neural coding of sound. Annu. Rev. Psychol. 69, 27–50 (2018).

    PubMed  Google Scholar 

  168. Blauert, J. Spatial Hearing: The Psychophysics of Human Sound Localization (MIT Press, 1997).

  169. Hawley, M. L., Litovsky, R. Y. & Colburn, H. S. Speech intelligibility and localization in a multi-source environment. J. Acoust. Soc. Am. 105, 3436–3448 (1999).

    CAS  PubMed  Google Scholar 

  170. Langendijk, E. H., Kistler, D. J. & Wightman, F. L. Sound localization in the presence of one or two distracters. J. Acoust. Soc. Am. 109, 2123–2134 (2001).

    CAS  PubMed  Google Scholar 

  171. Best, V., van Schaik, A. & Carlile, S. Separation of concurrent broadband sound sources by human listeners. J. Acoust. Soc. Am. 115, 324–336 (2004).

    PubMed  Google Scholar 

  172. Braasch, J. & Hartung, K. Localization in the presence of a distracter and reverberation in the frontal horizontal plane. I. Psychoacoustical data. Acta Acust. U. Acust. 88, 942–955 (2002).

    Google Scholar 

  173. Shinn-Cunningham, B. G. Influences of spatial cues on grouping and understanding sound. Proc. Forum Acusticum Budapest 2005, 4th European Congress on Acoustics 1539–1544 (Hirzel, 2005).

  174. Furukawa, S., Xu, L. & Middlebrooks, J. C. Coding of sound-source location by ensembles of cortical neurons. J. Neurosci. 20, 1216–1228 (2000).

    CAS  PubMed  Google Scholar 

  175. Faller, C. & Merimaa, J. Source localization in complex listening situations: selection of binaural cues based on interaural coherence. J. Acoust. Soc. Am. 116, 3075–3089 (2004).

    PubMed  Google Scholar 

  176. Dietz, M., Ewert, S. D. & Hohmann, V. Auditory model based direction estimation of concurrent speakers from binaural signals. Speech Commun. 53, 592–605 (2011).

    Google Scholar 

  177. Coffey, C. S. et al. Detection of interaural correlation by neurons in the superior olivary complex, inferior colliculus and auditory cortex of the unanesthetized rabbit. Hear. Res. 221, 1–16 (2006).

    PubMed  Google Scholar 

  178. Bregman, A. S. Auditory Scene Analysis: the Perceptual Organization of Sound (MIT Press, 1994).

  179. David, M., Lavandier, M. & Grimault, N. Sequential streaming, binaural cues and lateralization. J. Acoust. Soc. Am. 138, 3500–3512 (2015).

    PubMed  Google Scholar 

  180. Füllgrabe, C. & Moore, B. C. Objective and subjective measures of pure-tone stream segregation based on interaural time differences. Hear. Res. 291, 24–33 (2012).

    PubMed  Google Scholar 

  181. Stainsby, T. H., Füllgrabe, C., Flanagan, H. J., Waldman, S. K. & Moore, B. C. Sequential streaming due to manipulation of interaural time differences. J. Acoust. Soc. Am. 130, 904–914 (2011).

    PubMed  Google Scholar 

  182. Micheyl, C. et al. The role of auditory cortex in the formation of auditory streams. Hear. Res. 229, 116–131 (2007).

    PubMed  PubMed Central  Google Scholar 

  183. Micheyl, C., Tian, B., Carlyon, R. P. & Rauschecker, J. P. Perceptual organization of tone sequences in the auditory cortex of awake macaques. Neuron 48, 139–148 (2005).

    CAS  PubMed  Google Scholar 

  184. Gutschalk, A., Oxenham, A. J., Micheyl, C., Wilson, E. C. & Melcher, J. R. Human cortical activity during streaming without spectral cues suggests a general neural substrate for auditory stream segregation. J. Neurosci. 27, 13074–13081 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Fishman, Y. I., Reser, D. H., Arezzo, J. C. & Steinschneider, M. Neural correlates of auditory stream segregation in primary auditory cortex of the awake monkey. Hear. Res. 151, 167–187 (2001).

    CAS  PubMed  Google Scholar 

  186. Middlebrooks, J. C. & Bremen, P. Spatial stream segregation by auditory cortical neurons. J. Neurosci. 33, 10986–11001 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Middlebrooks, J. C. & Onsan, Z. A. Stream segregation with high spatial acuity. J. Acoust. Soc. Am. 132, 3896–3911 (2012).

    PubMed  PubMed Central  Google Scholar 

  188. Griffiths, T. D. & Warren, J. D. The planum temporale as a computational hub. Trends Neurosci. 25, 348–353 (2002).

    CAS  PubMed  Google Scholar 

  189. Deike, S., Scheich, H. & Brechmann, A. Active stream segregation specifically involves the left human auditory cortex. Hear. Res. 265, 30–37 (2010).

    PubMed  Google Scholar 

  190. Golding, N. L. & Oertel, D. Synaptic integration in dendrites: exceptional need for speed. J. Physiol. 590, 5563–5569 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Plauška, A., Borst, J. G. & van der Heijden, M. Predicting binaural responses from monaural responses in the gerbil medial superior olive. J. Neurophysiol. 115, 2950–2963 (2016).

    PubMed  PubMed Central  Google Scholar 

  192. Yin, T. & Chan, J. Interaural time sensitivity in medial superior olive of cat. J. Neurophysiol. 64, 465–488 (1990).

    CAS  PubMed  Google Scholar 

  193. Franken, T. P., Bremen, P. & Joris, P. X. Coincidence detection in the medial superior olive: mechanistic implications of an analysis of input spiking patterns. Front. Neural Circuits 8, 42 (2014).

    PubMed  PubMed Central  Google Scholar 

  194. Caird, D. & Klinke, R. Processing of binaural stimuli by cat superior olivary complex neurons. Exp. Brain Res. 52, 385–399 (1983).

    CAS  PubMed  Google Scholar 

  195. Park, T. J., Grothe, B., Pollak, G. D., Schuller, G. & Koch, U. Neural delays shape selectivity to interaural intensity differences in the lateral superior olive. J. Neurosci. 16, 6554–6566 (1996).

    CAS  PubMed  Google Scholar 

  196. Moore, J. K. The human auditory brain stem: a comparative view. Hear. Res. 29, 1–32 (1987).

    CAS  PubMed  Google Scholar 

  197. De Martino, F. et al. Spatial organization of frequency preference and selectivity in the human inferior colliculus. Nat. Commun. 4, 1386 (2013).

    PubMed  PubMed Central  Google Scholar 

  198. Moerel, M., De Martino, F., Uğurbil, K., Yacoub, E. & Formisano, E. Processing of frequency and location in human subcortical auditory structures. Sci. Rep. 5, 17048 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of K.v.d.H. is partially supported by the Erasmus Mundus Auditory Cognitive Neuroscience Network. The work of E.F. is partially supported by The Netherlands Organization for Scientific Research (VICI grant number 453–12–002) and the Dutch Province of Limburg (Maastricht Centre for Systems Biology). The work of J.P.R. is partially supported by the US National Science Foundation (PIRE grant number OISE-0730255), the US National Institutes of Health (grant numbers R01EY018923 and R01DC014989) and the Technische Universität München Institute for Advanced Study, funded by the German Excellence Initiative and the European Union Seventh Framework Programme (grant number 291763). The work of B.d.G. is partially supported by the European Union Seventh Framework Programme (grant number 295673) and the European Union’s Horizon 2020 Research and Innovation Programme (grant number 645553).

Author information

Authors and Affiliations

Authors

Contributions

K.v.d.H. researched data for the article, made substantial contributions to the discussion of content, wrote the article and reviewed or edited the manuscript before submission. J.P.R., B.d.G. and E.F. made substantial contributions to the discussion of content, and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Kiki van der Heijden.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks G. Recanzone and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Front–back ambiguities

Humans can have difficulty distinguishing whether a sound source is located behind or in front of them because the interaural time and level differences are identical for sound sources at the same angular position with respect to the interaural midline.

Coincidence detectors

Neurons whose firing rate is modulated by the time of arrival of input from two lower-level neurons, such that they respond maximally when the input arrives simultaneously.

Sparse coding

A neural coding strategy in which single neurons encode sensory stimuli efficiently by representing the maximal amount of information possible (thereby saving computational resources), and neuronal populations consist of neurons that encode unique information (that is, neural responses are independent).

Opponent coding

A neural representational mechanism in which sensory stimuli are represented by the integrated activity of two neuronal populations tuned to opposite values of the characteristic under consideration (for sound location: the integrated activity of a population tuned to the left hemifield and a population tuned to the right hemifield).

Relative sound location

In multi-source listening environments, the relative sound location refers to the location of the individual sound sources with respect to each other, that is, the spatial separation.

Spatial selective attention

The attentional focus of a listener on a particular location and the sounds presented at this location, while ignoring sounds at other locations.

Auditory stream segregation

The segregation and grouping of concurrent or interleaved sound streams in multi-source listening environments into their respective sound sources.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Heijden, K., Rauschecker, J.P., de Gelder, B. et al. Cortical mechanisms of spatial hearing. Nat Rev Neurosci 20, 609–623 (2019). https://doi.org/10.1038/s41583-019-0206-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-019-0206-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing