Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Circuits and functions of the lateral habenula in health and in disease

Abstract

The past decade has witnessed exponentially growing interest in the lateral habenula (LHb) owing to new discoveries relating to its critical role in regulating negatively motivated behaviour and its implication in major depression. The LHb, sometimes referred to as the brain’s ‘antireward centre’, receives inputs from diverse limbic forebrain and basal ganglia structures, and targets essentially all midbrain neuromodulatory systems, including the noradrenergic, serotonergic and dopaminergic systems. Its unique anatomical position enables the LHb to act as a hub that integrates value-based, sensory and experience-dependent information to regulate various motivational, cognitive and motor processes. Dysfunction of the LHb may contribute to the pathophysiology of several psychiatric disorders, especially major depression. Recently, exciting progress has been made in identifying the molecular and cellular mechanisms in the LHb that underlie negative emotional state in animal models of drug withdrawal and major depression. A future challenge is to translate these advances into effective clinical treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolutionary conservation of lateral habenular pathways and anatomical organization of the habenula in vertebrates.
Fig. 2: Anatomical divisions and cellular and electrophysiological properties of the LHb.
Fig. 3: Summary of the afferent and efferent circuitry of the LHb.
Fig. 4: The LHb is the only brain region showing consistent hyperactivity in multiple animal models of depression.
Fig. 5: Mechanisms of hyperactivity in the LHb in models of depression.

Similar content being viewed by others

References

  1. Bianco, I. H. & Wilson, S. W. The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain. Phil. Trans. R. Soc. Lond. B Biol. Sci. 364, 1005–1020 (2009).

    Google Scholar 

  2. Concha, M. L., Bianco, I. H. & Wilson, S. W. Encoding asymmetry within neural circuits. Nat. Rev. Neurosci. 13, 832–843 (2012).

    CAS  PubMed  Google Scholar 

  3. Aizawa, H. et al. Laterotopic representation of left-right information onto the dorso-ventral axis of a zebrafish midbrain target nucleus. Curr. Biol. 15, 238–243 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Amo, R. et al. Identification of the zebrafish ventral habenula as a homolog of the mammalian lateral habenula. J. Neurosci. 30, 1566–1574 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Herkenham, M. & Nauta, W. J. Efferent connections of the habenular nuclei in the rat. J. Comp. Neurol. 187, 19–47 (1979).

    CAS  PubMed  Google Scholar 

  6. Sutherland, R. J. The dorsal diencephalic conduction system - a review of the anatomy and functions of the habenular complex. Neurosci. Biobehav. Rev. 6, 1–13 (1982).

    CAS  PubMed  Google Scholar 

  7. Jhou, T. C., Fields, H. L., Baxter, M. G., Saper, C. B. & Holland, P. C. The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron 61, 786–800 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jhou, T. C., Geisler, S., Marinelli, M., Degarmo, B. A. & Zahm, D. S. The mesopontine rostromedial tegmental nucleus: a structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta. J. Comp. Neurol. 513, 566–596 (2009).

    PubMed  PubMed Central  Google Scholar 

  9. Wang, R. Y. & Aghajanian, G. K. Physiological evidence for habenula as major link between forebrain and midbrain raphe. Science 197, 89–91 (1977).

    CAS  PubMed  Google Scholar 

  10. Stern, W. C., Johnson, A., Bronzino, J. D. & Morgane, P. J. Effects of Electrical-stimulation of the lateral habenula on single-unit activity of raphe neurons. Exp. Neurol. 65, 326–342 (1979).

    CAS  PubMed  Google Scholar 

  11. Christoph, G. R., Leonzio, R. J. & Wilcox, K. S. Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia-nigra and ventral tegmental area of the rat. J. Neurosci. 6, 613–619 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ji, H. F. & Shepard, P. D. Lateral habenula stimulation inhibits rat midbrain dopamine neurons through a GABA(A) receptor-mediated mechanism. J. Neurosci. 27, 6923–6930 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Matsumoto, M. & Hikosaka, O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447, 1111–1115 (2007). This pioneering study first demonstrates that the LHb encodes negative RPE and inhibits midbrain dopaminergic neurons during coding of negative reward.

    CAS  PubMed  Google Scholar 

  14. Ng, J., Papandreou, A., Heales, S. J. & Kurian, M. A. Monoamine neurotransmitter disorders–clinical advances and future perspectives. Nat. Rev. Neurol. 11, 567–584 (2015).

    CAS  PubMed  Google Scholar 

  15. Hikosaka, O. The habenula: from stress evasion to value-based decision-making. Nat. Rev. Neurosci. 11, 503–513 (2010). This excellent review contains a concise theoretical discussion suggesting the LHb is the ‘antireward centre’ in the brain.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Matsumoto, M. & Hikosaka, O. Representation of negative motivational value in the primate lateral habenula. Nat. Neurosci. 12, 77–84 (2009).

    CAS  PubMed  Google Scholar 

  17. Hong, S., Jhou, T. C., Smith, M., Saleem, K. S. & Hikosaka, O. Negative reward signals from the lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus in primates. J. Neurosci. 31, 11457–11471 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Morissette, M. C. & Boye, S. M. Electrolytic lesions of the habenula attenuate brain stimulation reward. Behavioural Brain Res. 187, 17–26 (2008).

    Google Scholar 

  19. Shabel, S. J., Proulx, C. D., Trias, A., Murphy, R. T. & Malinow, R. Input to the lateral habenula from the basal ganglia is excitatory, aversive, and suppressed by serotonin. Neuron 74, 475–481 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Stamatakis, A. M. & Stuber, G. D. Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nat. Neurosci. 15, 1105–1107 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Proulx, C. D., Hikosaka, O. & Malinow, R. Reward processing by the lateral habenula in normal and depressive behaviors. Nat. Neurosci. 17, 1146–1152 (2014). This excellent review discusses how the LHb processes reward-related information and how dysregulation of the LHb may be involved in depressive behaviours.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Golden, S. A. et al. Basal forebrain projections to the lateral habenula modulate aggression reward. Nature 534, 688–692 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Stamatakis, A. M. et al. Lateral hypothalamic area glutamatergic neurons and their projections to the lateral habenula regulate feeding and reward. J. Neurosci. 36, 302–311 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fakhoury, M. The habenula in psychiatric disorders: more than three decades of translational investigation. Neurosci. Biobehav. Rev. 83, 721–735 (2017).

    PubMed  Google Scholar 

  25. Nuno-Perez, A., Tchenio, A., Mameli, M. & Lecca, S. Lateral habenula gone awry in depression: bridging cellular adaptations with therapeutics. Front. Neurosci. 12, 485 (2018).

    PubMed  PubMed Central  Google Scholar 

  26. Yang, Y., Wang, H., Hu, J. & Hu, H. Lateral habenula in the pathophysiology of depression. Curr. Opin. Neurobiol. 48, 90–96 (2018).

    CAS  PubMed  Google Scholar 

  27. Caldecotthazard, S., Mazziotta, J. & Phelps, M. Cerebral correlates of depressed behavior in rats, visualized using C-14 2-deoxyglucose autoradiography. J. Neurosci. 8, 1951–1961 (1988).

    CAS  Google Scholar 

  28. Mirrione, M. M. et al. Increased metabolic activity in the septum and habenula during stress is linked to subsequent expression of learned helplessness behavior. Front. Hum. Neurosci. 8, 29 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. Andalman, A. S. et al. Neuronal dynamics regulating brain and behavioral state transitions. Cell 177, 970–985.e20 (2019). Using Ca imaging-based whole-brain screening, this study demonstrates that repeated stress elevates activity only in the vHb across whole brain, and that systemic application of a single dose of ketamine attenuates vHb hyperactivity and reduces behavioural passivity.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Morris, J. S., Smith, K. A., Cowen, P. J., Friston, K. J. & Dolan, R. J. Covariation of activity in habenula and dorsal raphe nuclei following tryptophan depletion. Neuroimage 10, 163–172 (1999).

    CAS  PubMed  Google Scholar 

  31. Strotmann, B. et al. Mapping of the internal structure of human habenula with ex vivo MRI at 7T. Front. Hum. Neurosci. 7, 878 (2013).

    PubMed  PubMed Central  Google Scholar 

  32. Schmidt, F. M. et al. Habenula volume increases with disease severity in unmedicated major depressive disorder as revealed by 7T MRI. Eur. Arch. Psychiatry Clin. Neurosci. 267, 107–115 (2017).

    PubMed  Google Scholar 

  33. Sartorius, A. et al. Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol. Psychiatry 67, E9–E11 (2010).

    PubMed  Google Scholar 

  34. Zhang, C. et al. Habenula deep brain stimulation for refractory bipolar disorder. Brain Stimul. 12, 1298–1300 (2019).

    PubMed  Google Scholar 

  35. Li, B. et al. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature 470, 535–539 (2011). This article reports the first cellular basis of depressive disorders mediated by the LHb: increased excitatory synaptic transmission in VTA-projecting LHb neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, K. et al. βCaMKII in lateral habenula mediates core symptoms of depression. Science 341, 1016–1020 (2013). Through a systematic proteomic screen, this study identifies the first key molecular mechanism at the LHb, the upregulation of CaMKIIβ, underlying the synaptic hyperactivity of the LHb and depression-like behaviours.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lecca, S. et al. Rescue of GABAB and GIRK function in the lateral habenula by protein phosphatase 2A inhibition ameliorates depression-like phenotypes in mice. Nat. Med. 22, 254–261 (2016). This article elegantly shows that PP2A activity mediates stress-induced internalization of GABA B receptor and GIRK, leading to increased excitability of LHb neurons and depressive-like behaviours.

    CAS  PubMed  Google Scholar 

  38. Cui, Y. H. et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature 554, 323–327 (2018). This study establishes a key role of glial Kir4.1 in regulating LHb bursting activity and depression through the glial potassium buffering system operating at the tight extracellular space surrounding neuronal soma.

    CAS  PubMed  Google Scholar 

  39. Yang, Y. et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 554, 317–322 (2018). This article reveals NMDAR-dependent burst firing in the LHb is a critical mediator of depression and ketamine’s rapid antidepressant effects.

    CAS  PubMed  Google Scholar 

  40. Cui, Y. H., Hu, S. H. & Hu, H. L. Lateral habenular burst firing as a target of the rapid antidepressant effects of ketamine. Trends Neurosci. 42, 179–191 (2019). This review takes a historical, comprehensive and forward-looking view of ketamine’s antidepressant mechanisms, focusing on LHb bursting as a major target of ketamine.

    CAS  PubMed  Google Scholar 

  41. Aizawa, H., Kobayashi, M., Tanaka, S., Fukai, T. & Okamoto, H. Molecular characterization of the subnuclei in rat habenula. J. Comp. Neurol. 520, 4051–4066 (2012).

    CAS  PubMed  Google Scholar 

  42. Wagner, F., French, L. & Veh, R. W. Transcriptomic-anatomic analysis of the mouse habenula uncovers a high molecular heterogeneity among neurons in the lateral complex, while gene expression in the medial complex largely obeys subnuclear boundaries. Brain Struct. Funct. 221, 39–58 (2016).

    PubMed  Google Scholar 

  43. McLaughlin, I., Dani, J. A. & De Biasi, M. The medial habenula and interpeduncular nucleus circuitry is critical in addiction, anxiety, and mood regulation. J. Neurochem. 142, 130–143 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Viswanath, H., Carter, A. Q., Baldwin, P. R., Molfese, D. L. & Salas, R. The medial habenula: still neglected. Front. Hum. Neurosci. 7, 931 (2014).

    PubMed  PubMed Central  Google Scholar 

  45. Aizawa, H., Amo, R. & Okamoto, H. Phylogeny and ontogeny of the habenular structure. Front. Neurosci. 5, 138 (2011).

  46. Contestabile, A. et al. Topography of cholinergic and substance-P pathways in the habenulo-interpeduncular system of the rat-an immunocytochemical and microchemical approach. Neuroscience 21, 253–270 (1987).

    CAS  PubMed  Google Scholar 

  47. Qin, C. & Luo, M. Neurochemical phenotypes of the afferent and efferent projections of the mouse medial habenula. Neuroscience 161, 827–837 (2009).

    CAS  PubMed  Google Scholar 

  48. Herkenham, M. & Nauta, W. J. Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber-of-passage problem. J. Comp. Neurol. 173, 123–146 (1977).

    CAS  PubMed  Google Scholar 

  49. Brinschwitz, K. et al. Glutamatergic axons from the lateral habenula mainly terminate on GABAergic neurons of the ventral midbrain. Neuroscience 168, 463–476 (2010).

    CAS  PubMed  Google Scholar 

  50. Zhou, L. et al. Organization of functional long-range circuits controlling the activity of serotonergic neurons in the dorsal raphe nucleus. Cell Rep. 18, 3018–3032 (2017); erratum 20, 1991–1993 (2017).

    CAS  PubMed  Google Scholar 

  51. Cuello, A. C., Emson, P. C., Paxinos, G. & Jessell, T. Substance P containing and cholinergic projections from the habenula. Brain Res. 149, 413–429 (1978).

    CAS  PubMed  Google Scholar 

  52. Kim, U. & Chang, S. Y. Dendritic morphology, local circuitry, and intrinsic electrophysiology of neurons in the rat medial and lateral habenular nuclei of the epithalamus. J. Comp. Neurol. 483, 236–250 (2005).

    PubMed  Google Scholar 

  53. Wilcox, K. S., Gutnick, M. J. & Christoph, G. R. Electrophysiological properties of neurons in the lateral habenula nucleus: an in vitro study. J. Neurophysiol. 59, 212–225 (1988).

    CAS  PubMed  Google Scholar 

  54. Meye, F. J., Lecca, S., Valentinova, K. & Mameli, M. Synaptic and cellular profile of neurons in the lateral habenula. Front. Hum. Neurosci. 7, 860 (2013).

    PubMed  PubMed Central  Google Scholar 

  55. Wagner, F., Weiss, T. & Veh, R. W. Electrophysiological properties of neurons and synapses in the lateral habenular complex (LHb). Pharmacol. Biochem. Behav. 162, 38–45 (2017).

    CAS  PubMed  Google Scholar 

  56. Wagner, F., Stroh, T. & Veh, R. W. Correlating habenular subnuclei in rat and mouse by using topographic, morphological, and cytochemical criteria. J. Comp. Neurol. 522, 2650–2662 (2014).

    CAS  PubMed  Google Scholar 

  57. Herzog, E. et al. Localization of VGLUT3, the vesicular glutamate transporter type 3, in the rat brain. Neuroscience 123, 983–1002 (2004).

    CAS  PubMed  Google Scholar 

  58. Geisler, S., Derst, C., Veh, R. W. & Zahm, D. S. Glutamatergic afferents of the ventral tegmental area in the rat. J. Neurosci. 27, 5730–5743 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Congiu, M., Trusel, M., Pistis, M., Mameli, M. & Lecca, S. Opposite responses to aversive stimuli in lateral habenula neurons. Eur. J. Neurosci. 50, 2921–2930 (2019).

    PubMed  Google Scholar 

  60. Zhang, L. M., Hernandez, V. S., Vazquez-Juarez, E., Chay, F. K. & Barrio, R. A. Thirst is associated with suppression of habenula output and active stress coping: is there a role for a non-canonical vasopressin-glutamate pathway? Front. Neural Circuit 10, 13 (2016).

    Google Scholar 

  61. Zhang, L. M. et al. A GABAergic cell type in the lateral habenula links hypothalamic homeostatic and midbrain motivation circuits with sex steroid signaling. Transl. Psychiatry 8, 50 (2018).

    PubMed  PubMed Central  Google Scholar 

  62. Wallace, M. L. et al. Distinct neuronal subtypes of the lateral habenula differentially target ventral tegmental area dopamine neurons. Preprint at bioRxiv https://doi.org/10.1101/743401 (2019).

    Article  Google Scholar 

  63. Flanigan, M. E. et al. Orexin signaling in GABAergic lateral habenula neurons modulates aggressive behavior. Preprint at bioRxiv https://doi.org/10.1101/811265 (2019).

    Article  Google Scholar 

  64. Webster, J. F., Vroman, R., Balueva, K., Wulff, P. & Sakata, S. Disentangling neuronal inhibition and inhibitory pathways in the lateral habenula. Preprint at bioRxiv https://doi.org/10.1101/633271 (2019).

    Article  Google Scholar 

  65. Yang, N. et al. Neuropeptidomics of the rat habenular nuclei. J. Proteome Res. 17, 1463–1473 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Celio, M. R. Calbindin-D-28k and parvalbumin in the rat nervous-system. Neuroscience 35, 375–475 (1990).

    CAS  PubMed  Google Scholar 

  67. Pompeiano, M., Palacios, J. M. & Mengod, G. Distribution of the serotonin 5-HT2 receptor family mRNAs comparison between 5-HT2a and 5-HT2c receptors. Mol. Brain Res. 23, 163–178 (1994).

    CAS  PubMed  Google Scholar 

  68. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    CAS  PubMed  Google Scholar 

  69. Ray, J. P. & Price, J. L. Postnatal changes in the density and distribution of neurotensin-like immunoreactive fibers in the mediodorsal nucleus of the thalamus in the rat. J. Comp. Neurol. 292, 269–282 (1990).

    CAS  PubMed  Google Scholar 

  70. Frahmm, S. et al. An essential role of acetylcholine-glutamate synergy at habenular synapses in nicotine dependence. eLife 4, e11396 (2015).

    Google Scholar 

  71. Gardon, O. et al. Expression of mu opioid receptor in dorsal diencephalic conduction system: new insights for the medial habenula. Neuroscience 277, 595–609 (2014).

    CAS  PubMed  Google Scholar 

  72. Wagner, F., Bernard, R., Derst, C., French, L. & Veh, R. W. Microarray analysis of transcripts with elevated expressions in the rat medial or lateral habenula suggest fast GABAergic excitation in the medial habenula and habenular involvement in the regulation of feeding and energy balance. Brain Struct. Funct. 221, 4663–4689 (2016).

    CAS  PubMed  Google Scholar 

  73. Murtra, P., Sheasby, A. M., Hunt, S. P. & De Felipe, C. Rewarding effects of opiates are absent in mice lacking the receptor for substance P. Nature 405, 180–183 (2000).

    CAS  PubMed  Google Scholar 

  74. Liu, C. et al. GPR139, an orphan receptor highly enriched in the habenula and septum, is activated by the essential amino acids L-tryptophan and L-phenylalanine. Mol. Pharmacol. 88, 911–925 (2015).

    CAS  PubMed  Google Scholar 

  75. Broms, J., Antolin-Fontes, B., Tingstrom, A. & Ibanez-Tallon, I. Conserved expression of the GPR151 receptor in habenular axonal projections of vertebrates. J. Comp. Neurol. 523, 359–380 (2015).

    CAS  PubMed  Google Scholar 

  76. Broms, J. et al. Monosynaptic retrograde tracing of neurons expressing the G-protein coupled receptor Gpr151 in the mouse brain. J. Comp. Neurol. 525, 3227–3250 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Pandey, S., Shekhar, K., Regev, A. & Schier, A. F. Comprehensive identification and spatial mapping of habenular neuronal types using single-cell RNA-Seq. Curr. Biol. 28, 1052–1065.e7 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Cerniauskas, I. et al. Chronic stress induces activity, synaptic, and transcriptional remodeling of the lateral habenula associated with deficits in motivated behaviors. Neuron 104, 899–915.e8 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hashikawa, Y. et al. Transcriptional and spatial resolution of cell types in the mammalian habenula. Preprint at bioRxiv https://doi.org/10.1101/772376 (2019).

    Article  Google Scholar 

  80. Weiss, T. & Veh, R. W. Morphological and electrophysiological characteristics of neurons within identified subnuclei of the lateral habenula in rat brain slices. Neuroscience 172, 74–93 (2011).

    CAS  PubMed  Google Scholar 

  81. Chang, S. Y. & Kim, U. Ionic mechanism of long-lasting discharges of action Potentials triggered by membrane hyperpolarization in the medial lateral habenula. J. Neurosci. 24, 2172–2181 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Cheong, E. & Shin, H. S. T-type Ca2+ channels in normal and abnormal brain functions. Physiol. Rev. 93, 961–992 (2013).

    CAS  PubMed  Google Scholar 

  83. Llinás, R. & Yarom, Y. Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J. Physiol. 315, 549–567 (1981).

    PubMed  PubMed Central  Google Scholar 

  84. Lecca, S. et al. Aversive stimuli drive hypothalamus-to-habenula excitation to promotee scape behavior. eLife 6, e30697 (2017).

    PubMed  PubMed Central  Google Scholar 

  85. Kim, U. & Lee, T. Topography of descending projections from anterior insular and medial prefrontal regions to the lateral habenula of the epithalamus in the rat. Eur. J. Neurosci. 35, 1253–1269 (2012).

    PubMed  Google Scholar 

  86. Warden, M. R. et al. A prefrontal cortex-brainstem neuronal projection that controls response to behavioural challenge. Nature 492, 428–432 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ye, L. et al. Wiring and molecular features of prefrontal ensembles representing distinct experiences. Cell 165, 1776–1788 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Benekareddy, M. et al. Identification of a corticohabenular circuit regulating socially directed behavior. Biol. Psychiatry 83, 607–617 (2018).

    PubMed  Google Scholar 

  89. Root, D. H. et al. Single rodent mesohabenular axons release glutamate and GABA. Nat. Neurosci. 17, 1543–1551 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Stuber, G. D., Stamatakis, A. M. & Kantak, P. A. Considerations when using cre-driver rodent lines for studying ventral tegmental area circuitry. Neuron 85, 439–445 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Xie, G. et al. Serotonin modulates glutamatergic transmission to neurons in the lateral habenula. Sci. Rep. 6, 23798 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang, H. et al. Dorsal raphe projection inhibits the excitatory inputs on lateral habenula and alleviates depressive behaviors in rats. Brain Struct. Funct. 223, 2243–2258 (2018).

    CAS  PubMed  Google Scholar 

  93. Szonyi, A. et al. Median raphe controls acquisition of negative experience in the mouse. Science 366, eaay8746 (2019).

    CAS  PubMed  Google Scholar 

  94. Hong, S. & Hikosaka, O. The globus pallidus sends reward-related signals to the lateral habenula. Neuron 60, 720–729 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Stephenson-Jones, M. et al. A basal ganglia circuit for evaluating action outcomes. Nature 539, 289–293 (2016).

    PubMed  PubMed Central  Google Scholar 

  96. Shabel, S. J., Proulx, C. D., Piriz, J. & Malinow, R. GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment. Science 345, 1494–1498 (2014). This article reports the co-release of glutamate and GABA from the EPN to LHb synapses. It demonstrates the balance of these two co-released transmitters as an important regulator of depression.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Meye, F. J. et al. Shifted pallidal co-release of GABA and glutamate in habenula drives cocaine withdrawal and relapse. Nat. Neurosci. 19, 1019–1024 (2016).

    CAS  PubMed  Google Scholar 

  98. Root, D. H. et al. Selective brain distribution and distinctive synaptic architecture of dual glutamatergic-GABAergic neurons. Cell Rep. 23, 3465–3479 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lazaridis, I. et al. A hypothalamus-habenula circuit controls aversion. Mol. Psychiatry 24, 1351–1368 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Trusel, M. et al. Punishment-predictive cues guide avoidance through potentiation of hypothalamus-to-habenula synapses. Neuron 102, 120–127 (2019).

    CAS  PubMed  Google Scholar 

  101. Yetnikoff, L., Cheng, A. Y., Lavezzi, H. N., Parsley, K. P. & Zahm, D. S. Sources of input to the rostromedial tegmental nucleus, ventral tegmental area, and lateral habenula compared: a study in rat. J. Comp. Neurol. 523, 2426–2456 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Garland, J. C. & Mogenson, G. J. An electrophysiological study of convergence of entopeduncular and lateral preoptic inputs on lateral habenular neurons projecting to the midbrain. Brain Res. 263, 33–41 (1983).

    CAS  PubMed  Google Scholar 

  103. Araki, M., Mcgeer, P. L. & Mcgeer, E. G. Retrograde HRP tracing combined with a pharmacohistochemical method for GABA transaminase for the identification of presumptive GABAergic projections to the habenula. Brain Res. 304, 271–277 (1984).

    CAS  PubMed  Google Scholar 

  104. Barker, D. J. et al. Lateral preoptic control of the lateral habenula through convergent glutamate and GABA transmission. Cell Rep. 21, 1757–1769 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Root, D. H., Melendez, R. I., Zaborszky, L. & Napier, T. C. The ventral pallidum: subregion-specific functional anatomy and roles in motivated behaviors. Prog. Neurobiol. 130, 29–70 (2015).

    PubMed  PubMed Central  Google Scholar 

  106. Knowland, D. et al. Distinct ventral pallidal neural populations mediate separate symptoms of depression. Cell 170, 284–297 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Faget, L. et al. Opponent control of behavioral reinforcement by inhibitory and excitatory projections from the ventral pallidum. Nat. Commun. 9, 849 (2018).

    PubMed  PubMed Central  Google Scholar 

  108. Tooley, J. et al. Glutamatergic ventral pallidal neurons modulate activity of the habenula-tegmental circuitry and constrain reward seeking. Biol. Psychiatry 83, 1012–1023 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Stephenson-Jones, M. et al. Opposing contributions of GABAergic and glutamatergic ventral pallidal neurons to motivational behaviors. Neuron 105, 921–933.e5 (2020).

    PubMed  PubMed Central  Google Scholar 

  110. Mercer, L. F. & Remley, N. R. Mapping of sensory-responsive cells in the septal area of the rat. Brain Res. Bull. 4, 483–490 (1979).

    PubMed  Google Scholar 

  111. Miller, C. L. & Freedman, R. Medial septal neuron activity in relation to an auditory sensory gating paradigm. Neuroscience 55, 373–380 (1993).

    CAS  PubMed  Google Scholar 

  112. Zhang, G. W. et al. Transforming sensory cues into aversive emotion via septal-habenular pathway. Neuron 99, 1016–1028.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Huang, L. et al. A visual circuit related to habenula underlies the antidepressive effects of light therapy. Neuron 102, 128–142.e8 (2019).

    CAS  PubMed  Google Scholar 

  114. Fernandez, D. C. et al. Light affects mood and learning through distinct retina-brain pathways. Cell 175, 71–84.e18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Stamatakis, A. M. et al. A unique population of ventral tegmental area neurons inhibits the lateral habenula to promote reward. Neuron 80, 1039–1053 (2013).

    CAS  PubMed  Google Scholar 

  116. Lammel, S. et al. Diversity of transgenic mouse models for selective targeting of midbrain dopamine neurons. Neuron 85, 429–438 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Yoo, J. H. et al. Ventral tegmental area glutamate neurons co-release GABA and promote positive reinforcement. Nat. Commun. 7, 13697 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kowski, A. B., Veh, R. W. & Weiss, T. Dopaminergic activation excites rat lateral habenular neurons in vivo. Neuroscience 161, 1154–1165 (2009).

    CAS  PubMed  Google Scholar 

  119. Reisine, T. D. et al. Evidence for a dopaminergic innervation of the cat lateral habenula: its role in controlling serotonin transmission in the basal ganglia. Brain Res. 308, 281–288 (1984).

    CAS  PubMed  Google Scholar 

  120. Li, Y. Q., Takada, M., Shinonaga, Y. & Mizuno, N. The sites of origin of dopaminergic afferent fibers to the lateral habenular nucleus in the rat. J. Comp. Neurol. 333, 118–133 (1993).

    CAS  PubMed  Google Scholar 

  121. Muzerelle, A., Scotto-Lomassese, S., Bernard, J. F., Soiza-Reilly, M. & Gaspar, P. Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5–B9) to the forebrain and brainstem. Brain Struct. Funct. 221, 535–561 (2016).

    CAS  PubMed  Google Scholar 

  122. Zahm, D. S. & Root, D. H. Review of the cytology and connections of the lateral habenula, an avatar of adaptive behaving. Pharmacol. Biochem. Behav. 162, 3–21 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kaufling, J., Veinante, P., Pawlowski, S. A., Freund-Mercier, M. J. & Barrot, M. Afferents to the GABAergic tail of the ventral tegmental area in the rat. J. Comp. Neurol. 513, 597–621 (2009).

    PubMed  Google Scholar 

  124. Sanchez-Catalan, M. J. et al. Response of the tail of the ventral tegmental area to aversive stimuli. Neuropsychopharmacology 42, 638–648 (2017).

    CAS  PubMed  Google Scholar 

  125. Li, H., Pullmann, D., Cho, J. Y., Eid, M. & Jhou, T. C. Generality and opponency of rostromedial tegmental (RMTg) roles in valence processing. eLife 8, e41542 (2019).

    PubMed  PubMed Central  Google Scholar 

  126. Balcita-Pedicino, J. J., Omelchenko, N., Bell, R. & Sesack, S. R. The inhibitory influence of the lateral habenula on midbrain dopamine cells: ultrastructural evidence for indirect mediation via the rostromedial mesopontine tegmental nucleus. J. Comp. Neurol. 519, 1143–1164 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Lecca, S., Melis, M., Luchicchi, A., Muntoni, A. L. & Pistis, M. Inhibitory inputs from rostromedial tegmental neurons regulate spontaneous activity of midbrain dopamine cells and their responses to drugs of abuse. Neuropsychopharmacology 37, 1164–1176 (2012).

    CAS  PubMed  Google Scholar 

  128. Kaufling, J. & Aston-Jones, G. Persistent adaptations in afferents to ventral tegmental dopamine neurons after opiate withdrawal. J. Neurosci. 35, 10290–10303 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Lammel, S. et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature 491, 212–217 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Laurent, V., Wong, F. L. & Balleine, B. W. The lateral habenula and its input to the rostromedial tegmental nucleus mediates outcome-specific conditioned inhibition. J. Neurosci. 37, 10932–10942 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Proulx, C. D. et al. A neural pathway controlling motivation to exert effort. Proc. Natl Acad. Sci. USA 115, 5792–5797 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Elmer, G. I. et al. The rostromedial tegmental nucleus modulates the development of stress-induced helpless behavior. Behavioural Brain Res. 359, 950–957 (2019).

    CAS  Google Scholar 

  133. Omelchenko, N., Bell, R. & Sesack, S. R. Lateral habenula projections to dopamine and GABA neurons in the rat ventral tegmental area. Eur. J. Neurosci. 30, 1239–1250 (2009).

    PubMed  PubMed Central  Google Scholar 

  134. Goncalves, L., Sego, C. & Metzger, M. Differential projections from the lateral habenula to the rostromedial tegmental nucleus and ventral tegmental area in the rat. J. Comp. Neurol. 520, 1278–1300 (2012).

    PubMed  Google Scholar 

  135. Brown, P. L. & Shepard, P. D. Functional evidence for a direct excitatory projection from the lateral habenula to the ventral tegmental area in the rat. J. Neurophysiol. 116, 1161–1174 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Sego, C. et al. Lateral habenula and the rostromedial tegmental nucleus innervate neurochemically distinct subdivisions of the dorsal raphe nucleus in the rat. J. Comp. Neurol. 522, 1454–1484 (2014).

    CAS  PubMed  Google Scholar 

  137. Amo, R. et al. The habenulo-raphe serotonergic circuit encodes an aversive expectation value essential for adaptive active avoidance of danger. Neuron 84, 1034–1048 (2014).

    CAS  PubMed  Google Scholar 

  138. Yang, H. B. et al. Laterodorsal tegmentum interneuron subtypes oppositely regulate olfactory cue-induced innate fear. Nat. Neurosci. 19, 283–289 (2016); corrigendum 19, 862 (2016).

    CAS  PubMed  Google Scholar 

  139. Hikosaka, O., Sesack, S. R., Lecourtier, L. & Shepard, P. D. Habenula: crossroad between the basal ganglia and the limbic system. J. Neurosci. 28, 11825–11829 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Mathis, V. et al. The lateral habenula as a relay of cortical information to process working memory. Cereb. Cortex 27, 5485–5495 (2017).

    PubMed  Google Scholar 

  141. Mizumori, S. J. Y. & Baker, P. M. The lateral habenula and adaptive behaviors. Trends Neurosci. 40, 481–493 (2017).

    CAS  PubMed  Google Scholar 

  142. Bano-Otalora, B. & Piggins, H. D. Contributions of the lateral habenula to circadian timekeeping. Pharmacol. Biochem. Behav. 162, 46–54 (2017).

    CAS  PubMed  Google Scholar 

  143. Mendoza, J. Circadian neurons in the lateral habenula: clocking motivated behaviors. Pharmacol. Biochem. Behav. 162, 55–61 (2017).

    CAS  PubMed  Google Scholar 

  144. Shelton, L., Becerra, L. & Borsook, D. Unmasking the mysteries of the habenula in pain and analgesia. Prog. Neurobiol. 96, 208–219 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    CAS  PubMed  Google Scholar 

  146. Bromberg-Martin, E. S. & Hikosaka, O. Midbrain dopamine neurons signal preference for advance information about upcoming rewards. Neuron 63, 119–126 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Salas, R., Baldwin, P., de Biasi, M. & Montague, P. R. BOLD responses to negative reward prediction errors in human habenula. Front. Hum. Neurosci. 4, 36 (2010).

    PubMed  PubMed Central  Google Scholar 

  148. Ullsperger, M. & von Cramon, D. Y. Error monitoring using external feedback: specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging. J. Neurosci. 23, 4308–4314 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Kravitz, A. V. et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622–626 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Tian, J. & Uchida, N. Habenula lesions reveal that multiple mechanisms underlie dopamine prediction errors. Neuron 87, 1304–1316 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Matsumoto, M. & Hikosaka, O. Negative motivational control of saccadic eye movement by the lateral habenula. Prog. Brain Res. 171, 399–402 (2008).

    PubMed  PubMed Central  Google Scholar 

  152. Morales, M. & Margolis, E. B. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat. Rev. Neurosci. 18, 73–85 (2017).

    CAS  PubMed  Google Scholar 

  153. Bromberg-Martin, E. S., Hikosaka, O. & Nakamura, K. Coding of task reward value in the dorsal raphe nucleus. J. Neurosci. 30, 6262–6272 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Stopper, C. M. & Floresco, S. B. What’s better for me? Fundamental role for lateral habenula in promoting subjective decision biases. Nat. Neurosci. 17, 33–35 (2014).

    CAS  PubMed  Google Scholar 

  155. Nakamura, K., Matsumoto, M. & Hikosaka, O. Reward-dependent modulation of neuronal activity in the primate dorsal raphe nucleus. J. Neurosci. 28, 5331–5343 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Luo, M. M., Zhou, J. F. & Liu, Z. X. Reward processing by the dorsal raphe nucleus: 5-HT and beyond. Learn. Mem. 22, 452–460 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Berridge, K. C. Evolving concepts of emotion and motivation. Front. Psychol. 9, 1647 (2018).

    PubMed  PubMed Central  Google Scholar 

  158. Seymour, B., Daw, N. D., Roiser, J. P., Dayan, P. & Dolan, R. Serotonin selectively modulates reward value in human decision-making. J. Neurosci. 32, 5833–5842 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Wirtshafter, D., Asin, K. E. & Pitzer, M. R. Dopamine agonists and stress produce different patterns of fos-like immunoreactivity in the lateral habenula. Brain Res. 633, 21–26 (1994).

    CAS  PubMed  Google Scholar 

  160. Wang, D. et al. Learning shapes the aversion and reward responses of lateral habenula neurons. eLife 6, e23045 (2017).

    PubMed  PubMed Central  Google Scholar 

  161. Shabel, S. J., Wang, C. Y., Monk, B., Aronson, S. & Malinow, R. Stress transforms lateral habenula reward responses into punishment signals. Proc. Natl Acad. Sci. USA 116, 12488–12493 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Shepard, R. D. et al. Ketamine reverses lateral habenula neuronal dysfunction and behavioral immobility in the forced swim test following maternal deprivation in late adolescent rats. Front. Synaptic Neurosci. 10, 39 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Park, H. et al. Exposure to stressors facilitates long-term synaptic potentiation in the lateral habenula. J. Neurosci. 37, 6021–6030 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Park, H., Rhee, J., Lee, S. & Chung, C. Selectively impaired endocannabinoid-dependent long-term depression in the lateral habenula in an animal model of depression. Cell Rep. 20, 289–296 (2017).

    CAS  PubMed  Google Scholar 

  165. Ootsuka, Y., Mohammed, M. & Blessing, W. W. Lateral habenula regulation of emotional hyperthermia: mediation via the medullary raphe. Sci. Rep. 7, 4102 (2017).

    PubMed  PubMed Central  Google Scholar 

  166. Root, D. H., Mejias-Aponte, C. A., Qi, J. & Morales, M. Role of glutamatergic projections from ventral tegmental area to lateral habenula in aversive conditioning. J. Neurosci. 34, 13906–13910 (2014).

    PubMed  PubMed Central  Google Scholar 

  167. Nair, S. G., Strand, N. S. & Neumaier, J. F. DREADDing the lateral habenula: a review of methodological approaches for studying lateral habenula function. Brain Res. 1511, 93–101 (2013).

    CAS  PubMed  Google Scholar 

  168. Tchenio, A., Lecca, S., Valentinova, K. & Mameli, M. Limiting habenular hyperactivity ameliorates maternal separation-driven depressive-like symptoms. Nat. Commun. 8, 1135 (2017).

    PubMed  PubMed Central  Google Scholar 

  169. Dolzani, S. D. et al. Activation of a habenulo-raphe circuit is critical for the behavioral and neurochemical consequences of uncontrollable stress in the male rat. eNeuro 3, ENEURO.0229-16.2016 (2016).

    PubMed  PubMed Central  Google Scholar 

  170. Seligman, M. E. Learned helplessness. Annu. Rev. Med. 23, 407 (1972).

    CAS  PubMed  Google Scholar 

  171. Lee, E. H. Y. & Huang, S. L. Role of lateral habenula in the regulation of exploratory-behavior and its relationship to stress in rats. Behav. Brain Res. 30, 265–271 (1988).

    CAS  PubMed  Google Scholar 

  172. Lecourtier, L. & Kelly, P. H. Bilateral lesions of the habenula induce attentional disturbances in rats. Neuropsychopharmacology 30, 484–496 (2005).

    PubMed  Google Scholar 

  173. Sanders, D. et al. Nicotinic receptors in the habenula: importance for memory. Neuroscience 166, 386–390 (2010).

    CAS  PubMed  Google Scholar 

  174. Lecourtier, L., Neijt, H. C. & Kelly, P. H. Habenula lesions cause impaired cognitive performance in rats: implications for schizophrenia. Eur. J. Neurosci. 19, 2551–2560 (2004).

    PubMed  Google Scholar 

  175. Goutagny, R. et al. Interactions between the lateral habenula and the hippocampus: implication for spatial memory processes. Neuropsychopharmacology 38, 2418–2426 (2013).

    PubMed  PubMed Central  Google Scholar 

  176. Wang, Z., Wang, L., Yamamoto, R., Sugai, T. & Kato, N. Role of the lateral habenula in shaping context-dependent locomotor activity during cognitive tasks. Neuroreport 24, 276–280 (2013).

    PubMed  Google Scholar 

  177. Takeuchi, T., Duszkiewicz, A. J. & Morris, R. G. M. The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Phil. Trans R. Soc. B 369, 20130288 (2014).

    PubMed  PubMed Central  Google Scholar 

  178. Mathis, V., Cosquer, B., Avallone, M., Cassel, J. C. & Lecourtier, L. Excitatory transmission to the lateral habenula is critical for encoding and retrieval of spatial memory. Neuropsychopharmacology 40, 2843–2851 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Cui, Y. et al. Forebrain NR2B overexpression facilitating the prefrontal cortex long-term potentiation and enhancing working memory function in mice. PLoS One 6, e20312 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Thornton, E. W. & Evans, J. A. The effects of lesions of the habenula nucleus on lever press behaviour during a tandem operant schedule with contrasting response requirements. Behav. Brain Res. 12, 327–334 (1984).

    CAS  PubMed  Google Scholar 

  181. Kawai, T., Yamada, H., Sato, N., Takada, M. & Matsumoto, M. Roles of the lateral habenula and anterior cingulate cortex in negative outcome monitoring and behavioral adjustment in nonhuman primates. Neuron 88, 792–804 (2015).

    CAS  PubMed  Google Scholar 

  182. Baker, P. M., Oh, S. E., Kidder, K. S. & Mizumori, S. J. Ongoing behavioral state information signaled in the lateral habenula guides choice flexibility in freely moving rats. Front. Behav. Neurosci. 9, 295 (2015).

    PubMed  PubMed Central  Google Scholar 

  183. Zhao, H. & Rusak, B. Circadian firing-rate rhythms and light responses of rat habenular nucleus neurons in vivo and in vitro. Neuroscience 132, 519–528 (2005).

    CAS  PubMed  Google Scholar 

  184. Guglielmotti, V. & Cristino, L. The interplay between the pineal complex and the habenular nuclei in lower vertebrates in the context of the evolution of cerebral asymmetry. Brain Res. Bull. 69, 475–488 (2006).

    CAS  PubMed  Google Scholar 

  185. Cui, W. et al. Glial dysfunction in the mouse habenula causes depressive-like behaviors and sleep disturbance. J. Neurosci. 34, 16273–16285 (2014).

    PubMed  PubMed Central  Google Scholar 

  186. Zhang, B., Gao, Y., Li, Y., Yang, J. & Zhao, H. Sleep deprivation influences circadian gene expression in the lateral habenula. Behav. Neurol. 2016, 7919534 (2016).

    PubMed  PubMed Central  Google Scholar 

  187. Haun, F., Eckenrode, T. C. & Murray, M. Habenula and thalamus cell transplants restore normal sleep behaviors disrupted by denervation of the interpeduncular nucleus. J. Neurosci. 12, 3282–3290 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Valjakka, A. et al. The fasciculus retroflexus controls the integrity of REM sleep by supporting the generation of hippocampal theta rhythm and rapid eye movements in rats. Brain Res. Bull. 47, 171–184 (1998).

    CAS  PubMed  Google Scholar 

  189. Gelegen, C. et al. Excitatory pathways from the lateral habenula enable propofol-induced sedation. Curr. Biol. 28, 580–587.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Aizawa, H. et al. The synchronous activity of lateral habenular neurons is essential for regulating hippocampal theta oscillation. J. Neurosci. 33, 8909–8921 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Sakhi, K. et al. Intrinsic and extrinsic cues regulate the daily profile of mouse lateral habenula neuronal activity. J. Physiol. 592, 5025–5045 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Abe, M. et al. Circadian rhythms in isolated brain regions. J. Neurosci. 22, 350–356 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Guilding, C., Hughes, A. T. & Piggins, H. D. Circadian oscillators in the epithalamus. Neuroscience 169, 1630–1639 (2010).

    CAS  PubMed  Google Scholar 

  194. Hattar, S. et al. Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J. Comp. Neurol. 497, 326–349 (2006).

    PubMed  PubMed Central  Google Scholar 

  195. Pavel, S. & Eisner, C. A GABAergic habenulo-raphe pathway mediates both serotoninergic and hypnogenic effects of vasotocin in cats. Brain Res. Bull. 13, 623–627 (1984).

    CAS  PubMed  Google Scholar 

  196. Dzirasa, K. et al. Dopaminergic control of sleep-wake states. J. Neurosci. 26, 10577–10589 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Holstege, G. The mesopontine rostromedial tegmental nucleus and the emotional motor system: role in basic survival behavior. J. Comp. Neurol. 513, 559–565 (2009).

    PubMed  Google Scholar 

  198. Vetrivelan, R., Fuller, P. M., Tong, Q. & Lu, J. Medullary circuitry regulating rapid eye movement sleep and motor atonia. J. Neurosci. 29, 9361–9369 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Boivin, D. B. Influence of sleep-wake and circadian rhythm disturbances in psychiatric disorders. J. Psychiatry Neurosci. 25, 446–458 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Li, J. Z. et al. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc. Natl Acad. Sci. USA 110, 9950–9955 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Ben-Hamo, M. et al. Circadian forced desynchrony of the master clock leads to phenotypic manifestation of depression in rats. eNeuro 3, ENEURO.0237-16.2016 (2017).

    PubMed  PubMed Central  Google Scholar 

  202. Riemann, D., Berger, M. & Voderholzer, U. Sleep and depression–results from psychobiological studies: an overview. Biol. Psychol. 57, 67–103 (2001).

    CAS  PubMed  Google Scholar 

  203. Vogel, G. W., Vogel, F., McAbee, R. S. & Thurmond, A. J. Improvement of depression by REM sleep deprivation. New findings and a theory. Arch. Gen. Psychiatry 37, 247–253 (1980).

    CAS  PubMed  Google Scholar 

  204. Nelson, L. E. et al. The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nat. Neurosci. 5, 979–984 (2002).

    CAS  PubMed  Google Scholar 

  205. Nelson, L. E. et al. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology 98, 428–436 (2003).

    CAS  PubMed  Google Scholar 

  206. Allada, R. An emerging link between general anesthesia and sleep. Proc. Natl Acad. Sci. USA 105, 2257–2258 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Lu, J. et al. Role of endogenous sleep-wake and analgesic systems in anesthesia. J. Comp. Neurol. 508, 648–662 (2008).

    PubMed  PubMed Central  Google Scholar 

  208. Abulafia, R., Zalkind, V. & Devor, M. Cerebral activity during the anesthesia-like state induced by mesopontine microinjection of pentobarbital. J. Neurosci. 29, 7053–7064 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Goto, M., Canteras, N. S., Burns, G. & Swanson, L. W. Projections from the subfornical region of the lateral hypothalamic area. J. Comp. Neurol. 493, 412–438 (2005).

    PubMed  PubMed Central  Google Scholar 

  210. Yu, L. C. & Han, J. S. Habenula as a relay in the descending pathway from nucleus-accumbens to periaqueductal gray subserving antinociception. Int. J. Neurosci. 54, 245–251 (1990).

    CAS  PubMed  Google Scholar 

  211. Craig, A. D. Distribution of trigeminothalamic and spinothalamic lamina I terminations in the cat. Somatosens. Mot. Res. 20, 209–222 (2003).

    CAS  PubMed  Google Scholar 

  212. Shelton, L. et al. Mapping pain activation and connectivity of the human habenula. J. Neurophysiol. 107, 2633–2648 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Benabid, A. L. & Jeaugey, L. Cells of the rat lateral habenula respond to high-threshold somatosensory inputs. Neurosci. Lett. 96, 289–294 (1989).

    CAS  PubMed  Google Scholar 

  214. Zastawny, R. L. et al. Cloning, characterization, and distribution of a mu-opioid receptor in rat brain. J. Neurochem. 62, 2099–2105 (1994).

    CAS  PubMed  Google Scholar 

  215. Cohen, S. R. & Melzack, R. Morphine injected into the habenula and dorsal posteromedial thalamus produces analgesia in the formalin test. Brain Res. 359, 131–139 (1985).

    CAS  PubMed  Google Scholar 

  216. Ma, Q. P., Shi, Y. S. & Han, J. S. Further studies on interactions between periaqueductal gray, nucleus accumbens and habenula in antinociception. Brain Res. 583, 292–295 (1992).

    CAS  PubMed  Google Scholar 

  217. Meszaros, J., Gajewska, S. & Tarchalska-Krynska, B. Habenulo-interpeduncular lesions: the effects on pain sensitivity, morphine analgesia and open-field behavior in rats. Pol. J. Pharmacol. Pharm. 37, 469–477 (1985).

    CAS  PubMed  Google Scholar 

  218. Fuchs, P. & Cox, V. C. Habenula lesions attenuate lateral hypothalamic analgesia in the formalin test. Neuroreport 4, 121–124 (1993).

    CAS  PubMed  Google Scholar 

  219. Fowler, C. D. & Kenny, P. J. Habenular signaling in nicotine reinforcement. Neuropsychopharmacology 37, 306–307 (2012).

    PubMed  Google Scholar 

  220. Velasquez, K. M., Molfese, D. L. & Salas, R. The role of the habenula in drug addiction. Front. Hum. Neurosci. 8, 174 (2014).

    PubMed  PubMed Central  Google Scholar 

  221. Schildkraut, J. J. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am. J. Psychiatry 122, 509–522 (1965).

    CAS  PubMed  Google Scholar 

  222. Krishnan, V. & Nestler, E. J. The molecular neurobiology of depression. Nature 455, 894–902 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Seo, J. S., Zhong, P., Liu, A., Yan, Z. & Greengard, P. Elevation of p11 in lateral habenula mediates depression-like behavior. Mol. Psychiatry 23, 1113–1119 (2018).

    CAS  PubMed  Google Scholar 

  224. Han, L. N. et al. Activation of serotonin2C receptors in the lateral habenular nucleus increases the expression of depression-related behaviors in the hemiparkinsonian rat. Neuropharmacology 93, 68–79 (2015).

    CAS  PubMed  Google Scholar 

  225. Dong, Y. & Hu, H. Taming the “Black Dog” by light: a retina-habenula circuit mechanism unveiled. Neuron 102, 3–5 (2019).

    CAS  PubMed  Google Scholar 

  226. Kepecs, A. & Lisman, J. Information encoding and computation with spikes and bursts. Network 14, 103–118 (2003).

    PubMed  Google Scholar 

  227. Cui, Y., Yang, Y., Dong, Y. & Hu, H. Decoding depression: insights from glial and ketamine regulation of neuronal burst firing in lateral habenula. Cold Spring Harb. Symp. Quant. Biol. 83, 141–150 (2018).

    PubMed  Google Scholar 

  228. Lodge, D., Anis, N. A. & Burton, N. R. Effects of optical isomers of ketamine on excitation of cat and rat spinal neurones by amino acids and acetylcholine. Neurosci. Lett. 29, 281–286 (1982).

    CAS  PubMed  Google Scholar 

  229. Tian, Zheng et al. Lack of antidepressant effects of low-voltage-sensitive T-type calcium channel blocker ethosuximide in a chronic social defeat stress model: comparison with (R)-ketamine. Int. J. Neuropsychopharmacol. 21, 1031–1036 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Kang, S., Li, J., Bekker, A. & Ye, J. H. Rescue of glutamate transport in the lateral habenula alleviates depression- and anxiety-like behaviors in ethanol-withdrawn rats. Neuropharmacology 129, 47–56 (2018).

    CAS  PubMed  Google Scholar 

  231. Zhou, W. et al. A neural circuit for comorbid depressive symptoms in chronic pain. Nat. Neurosci. 22, 1649–1658 (2019).

    CAS  PubMed  Google Scholar 

  232. Tan, D., Nuno-Perez, A., Mameli, M. & Meye, F. J. Cocaine withdrawal reduces GABAB R transmission at entopeduncular nucleus — lateral habenula synapses. Eur. J. Neurosci. 50, 2124–2133 (2019).

    PubMed  Google Scholar 

  233. Li, J. et al. Inhibition of AMPA receptor and CaMKII activity in the lateral habenula reduces depressive-like behavior and alcohol intake in rats. Neuropharmacology 126, 108–120 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Ma, H., Li, B. & Tsien, R. W. Distinct roles of multiple isoforms of CaMKII in signaling to the nucleus. Biochim. Biophys. Acta 1853, 1953–1957 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Robinson, T. E. & Kolb, B. Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47, 33–46 (2004).

    CAS  PubMed  Google Scholar 

  236. Luscher, C. & Malenka, R. C. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69, 650–663 (2011).

    PubMed  PubMed Central  Google Scholar 

  237. Chen, Z. X. & Kenny, P. J. Endocannabinoid signaling in the habenula regulates adaptive responses to stress. Biol. Psychiatry 84, 553–554 (2018).

    PubMed  Google Scholar 

  238. West, R. & Gossop, M. Overview-a comparison of withdrawal symptoms from different drug classes. Addiction 89, 1483–1489 (1994).

    CAS  PubMed  Google Scholar 

  239. Koob, G. F. & Le Moal, M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24, 97–129 (2001).

    CAS  PubMed  Google Scholar 

  240. Solomon, R. L. & Corbit, J. D. An opponent-process theory of motivation. I. Temporal dynamics of affect. Psychol. Rev. 81, 119–145 (1974).

    CAS  PubMed  Google Scholar 

  241. Koob, G. F. & Le Moal, M. Addiction and the brain antireward system. Annu. Rev. Psychol. 59, 29–53 (2008).

    PubMed  Google Scholar 

  242. Koob, G. F. & Volkow, N. D. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 3, 760–773 (2016).

    PubMed  PubMed Central  Google Scholar 

  243. Graziane, N. M., Neumann, P. A. & Dong, Y. A focus on reward prediction and the lateral habenula: functional alterations and the behavioral outcomes induced by drugs of abuse. Front. Synaptic Neurosci. 10, 12 (2018).

    PubMed  PubMed Central  Google Scholar 

  244. Jhou, T. C. et al. Cocaine drives aversive conditioning via delayed activation of dopamine-responsive habenular and midbrain pathways. J. Neurosci. 33, 7501–7512 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Lax, E. et al. Neurodegeneration of lateral habenula efferent fibers after intermittent cocaine administration: Implications for deep brain stimulation. Neuropharmacology 75, 246–254 (2013).

    CAS  PubMed  Google Scholar 

  246. Neumann, P. A. et al. Increased excitability of lateral habenula neurons in adolescent rats following cocaine self-administration. Int. J. Neuropsychopharmacol. 18, pyu109 (2014).

    PubMed  Google Scholar 

  247. Valentinova, K. & Mameli, M. mGluR-LTD at excitatory and inhibitory synapses in the lateral habenula tunes neuronal output. Cell Rep. 16, 2298–2307 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Meye, F. J. et al. Cocaine-evoked negative symptoms require AMPA receptor trafficking in the lateral habenula. Nat. Neurosci. 18, 376–378 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Valentinova, K. et al. Morphine withdrawal recruits lateral habenula cytokine signaling to reduce synaptic excitation and sociability. Nat. Neurosci. 22, 1053–1056 (2019).

    CAS  PubMed  Google Scholar 

  250. Zuo, W. H. et al. Nicotine regulates activity of lateral habenula neurons via presynaptic and postsynaptic mechanisms. Sci. Rep. 6, 32937 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Zuo, W. H. et al. Ethanol drives aversive conditioning through dopamine 1 receptor and glutamate receptor-mediated activation of lateral habenula neurons. Addiction Biol. 22, 103–116 (2017).

    CAS  Google Scholar 

  252. Margolis, E. B. & Fields, H. L. Mu opioid receptor actions in the lateral habenula. PLoS One 11, e0159097 (2016).

    PubMed  PubMed Central  Google Scholar 

  253. van Rossum, J. M. The significance of dopamine-receptor blockade for the mechanism of action of neuroleptic drugs. Arch. Int. Pharmacodyn. Ther. 160, 492–494 (1966).

    PubMed  Google Scholar 

  254. Creese, I., Burt, D. R. & Snyder, S. H. Dopamine receptors and average clinical doses. Science 194, 546 (1976).

    CAS  PubMed  Google Scholar 

  255. Shepard, P. D., Holcomb, H. H. & Gold, J. M. Schizophrenia in translation: the presence of absence: habenular regulation of dopamine neurons and the encoding of negative outcomes. Schizophr. Bull. 32, 417–421 (2006).

    PubMed  PubMed Central  Google Scholar 

  256. Sandyk, R. Pineal and habenula calcification in schizophrenia. Int. J. Neurosci. 67, 19–30 (1992).

    CAS  PubMed  Google Scholar 

  257. Zhang, L. et al. Altered volume and functional connectivity of the habenula in schizophrenia. Front. Hum. Neurosci. 11, 636 (2017).

    PubMed  PubMed Central  Google Scholar 

  258. Pizzolato, G., Soncrant, T. T. & Rapoport, S. I. Haloperidol and cerebral metabolism in the conscious rat: relation to pharmacokinetics. J. Neurochem. 43, 724–732 (1984).

    CAS  PubMed  Google Scholar 

  259. Dedeurwaerdere, S., Wintmolders, C., Vanhoof, G. & Langlois, X. Patterns of brain glucose metabolism induced by phosphodiesterase 10A inhibitors in the mouse: a potential translational biomarker. J. Pharmacol. Exp. Ther. 339, 210–217 (2011).

    CAS  PubMed  Google Scholar 

  260. Madularu, D. et al. High estrogen and chronic haloperidol lead to greater amphetamine-induced BOLD activation in awake, amphetamine-sensitized female rats. Horm. Behav. 82, 56–63 (2016).

    CAS  PubMed  Google Scholar 

  261. Yui, K., Ikemoto, S., Ishiguro, T. & Goto, K. Studies of amphetamine or methamphetamine psychosis in Japan: relation of methamphetamine psychosis to schizophrenia. Ann. NY Acad. Sci. 914, 1–12 (2000).

    CAS  PubMed  Google Scholar 

  262. Lim, J. et al. The relationship between negative symptom subdomains and cognition. Psychol. Med. 46, 2169–2177 (2016).

    CAS  PubMed  Google Scholar 

  263. Domino, E. F., Chodoff, P. & Corssen, G. Pharmacologic effects of Ci-581, a new dissociative anesthetic, in man. Clin. Pharmacol. Ther. 6, 279–291 (1965).

    CAS  PubMed  Google Scholar 

  264. Javitt, D. C. & Zukin, S. R. Recent advances in the phencyclidine model of schizophrenia. Am. J. Psychiatry 148, 1301–1308 (1991).

    CAS  PubMed  Google Scholar 

  265. Krystal, J. H. et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 51, 199–214 (1994).

    CAS  PubMed  Google Scholar 

  266. Lodge, D. & Mercier, M. S. Ketamine and phencyclidine: the good, the bad and the unexpected. Br. J. Pharmacol. 172, 4254–4276 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Javitt, D. C. Glutamatergic theories of schizophrenia. Isr. J. Psychiatry Relat. Sci. 47, 4–16 (2010).

    PubMed  Google Scholar 

  268. Hu, W., MacDonald, M. L., Elswick, D. E. & Sweet, R. A. The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies. Ann. NY Acad. Sci. 1338, 38–57 (2015).

    CAS  PubMed  Google Scholar 

  269. Snyder, M. A. & Gao, W. J. NMDA receptor hypofunction for schizophrenia revisited: perspectives from epigenetic mechanisms. Schizophr. Res. https://doi.org/10.1016/j.schres.2019.03.010 (2019).

  270. Uno, Y. & Coyle, J. T. Glutamate hypothesis in schizophrenia. Psychiatry Clin. Neurosci. 73, 204–215 (2019).

    PubMed  Google Scholar 

  271. Janak, P. H. & Tye, K. M. From circuits to behaviour in the amygdala. Nature 517, 284–292 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Kim, J. et al. Rapid, biphasic CRF neuronal responses encode positive and negative valence. Nat. Neurosci. 22, 576–585 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Yuan, Y. et al. Reward Inhibits paraventricular CRH neurons to relieve stress. Curr. Biol. 29, 1243–1251.e4 (2019).

    CAS  PubMed  Google Scholar 

  274. Zhu, Y., Wienecke, C. F., Nachtrab, G. & Chen, X. A thalamic input to the nucleus accumbens mediates opiate dependence. Nature 530, 219–222 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Burgess, A. & Hynynen, K. Microbubble-assisted ultrasound for drug delivery in the brain and central nervous system. Adv. Exp. Med. Biol. 880, 293–308 (2016).

    CAS  PubMed  Google Scholar 

  276. Namboodiri, V. M., Rodriguez-Romaguera, J. & Stuber, G. D. The habenula. Curr. Biol. 26, R873–R877 (2016).

    CAS  PubMed  Google Scholar 

  277. Hikosaka, O. Habenula. Scholarpedia https://doi.org/10.4249/scholarpedia.2703 (2007).

    Article  Google Scholar 

  278. Fore, S., Palumbo, F., Pelgrims, R. & Yaksi, E. Information processing in the vertebrate habenula. Semin. Cell Dev. Biol. 78, 130–139 (2018).

    PubMed  Google Scholar 

  279. Kowski, A. B., Geisler, S., Krauss, M. & Veh, R. W. Differential projections from subfields in the lateral preoptic area to the lateral habenular complex of the rat. J. Comp. Neurol. 507, 1465–1478 (2008).

    PubMed  Google Scholar 

  280. Quina, L. A. et al. Efferent pathways of the mouse lateral habenula. J. Comp. Neurol. 523, 32–60 (2015).

    PubMed  Google Scholar 

  281. Caldecott-Hazard, S., Mazziotta, J. & Phelps, M. Cerebral correlates of depressed behavior in rats, visualized using 14C-2-deoxyglucose autoradiography. J. Neurosci. 8, 1951–1961 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ research work is supported by grants from the National Natural Science Foundation of China to H.H. (31830032, 81527901), to Y.C. (31922031) and to Y.Y. (81600954), the non-profit Central Research Institute Fund of the Chinese Academy of Medical Sciences (2017PT31038, 2018PT31041), the National Key R&D Program of China (2016YFA0501000), the Science and Technology Program of Guangdong Province (2018B030334001, 2018B030331001), the 111 Project (B13026) and the Fountain-Valley Life Sciences Fund of University of Chinese Academy of Sciences Education Foundation to H.H. The authors thank the reviewers, whose comments greatly improved this Review.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and made substantial contributions to discussions of its content and to writing, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Hailan Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks P. L. Brown, P. D. Shepard and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Databases Allen Brain Atlas Mouse brain Atlas: http://mouse.brain-map.org/experiment/show?id=252

http://mouse.brain-map.org/experiment/show?id=79556738

http://mouse.brain-map.org

Gene Expression Nervous System Atlas Project: http://gensat.org/

Supplementary information

Glossary

Reward

Psychologically, ‘reward’ refers to a positive emotional stimulus, which is reinforcing and promotes repeated responding to obtain the same stimulus.

Reward prediction error

(RPE). The difference between the actual outcome of a situation or action and the expected outcome. A positive RPE indicates the outcome was better than expected, whereas a negative RPE indicates it was worse than expected.

Optogenetic

Optogentics involves the use of genetically encoded light-activated proteins (for example, light-sensitive ion channels and pumps) to control the functional parameters (for example, membrane potential and firing rate) of targeted neuronal populations.

Deep brain stimulation

A method that involves chronically implanted electrodes for stimulation of specific subcortical brain areas to treat symptoms of neurological and psychiatric diseases.

Ketamine

An inhibitor of NMDA-type glutamate receptors; it was initially discovered as an anaesthetic drug and was later found to be a rapid-acting antidepressant treatment.

NMDA-type glutamate receptors

(NMDARs). NMDARs are one of the three types of ionotropic glutamate receptors. Calcium flux through the NMDAR is critical in synaptic plasticity, as well as burst firing in several brain regions.

Real-time place aversion

Behavioural tests in which an animal avoids a compartment that was paired with an aversive stimulus (is often mimicked by optogenetic stimulation) in a real-time manner.

Real-time place preference

Behavioural tests in which an animal approaches a compartment that was paired with a rewarding stimulus (is often mimicked by optogenetic stimulation) in a real-time manner.

Resilience

Psychologically, ‘resilience’ refers to the ability to maintain the original normal physiological and behavioural function in the face of severe stress.

Valences

Psychologically, ‘valence’ refers to the emotional value associated with a stimulus.

Anhedonia

A depression-like phenotype that refers to loss of the ability to experience pleasure from normally rewarding stimuli. In mice and rats, the anhedonia aspect of depression is classically modelled by the sucrose preference test.

Burst firing

Burst firing, or bursting, is an activity pattern of neurons involving clusters of rapid action potential spiking.

Despair

A depression-like phenotype that reflects the feeling that nothing will improve. In mice and rats, the despair aspect of depression is classically modelled by several behavioural paradigms, including the forced-swim test, the tail suspension test and the learned helplessness test.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Cui, Y. & Yang, Y. Circuits and functions of the lateral habenula in health and in disease. Nat Rev Neurosci 21, 277–295 (2020). https://doi.org/10.1038/s41583-020-0292-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-020-0292-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing