Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transplanting neural progenitor cells to restore connectivity after spinal cord injury

Abstract

Spinal cord injury remains a scientific and therapeutic challenge with great cost to individuals and society. The goal of research in this field is to find a means of restoring lost function. Recently we have seen considerable progress in understanding the injury process and the capacity of CNS neurons to regenerate, as well as innovations in stem cell biology. This presents an opportunity to develop effective transplantation strategies to provide new neural cells to promote the formation of new neuronal networks and functional connectivity. Past and ongoing clinical studies have demonstrated the safety of cell therapy, and preclinical research has used models of spinal cord injury to better elucidate the underlying mechanisms through which donor cells interact with the host and thus increase long-term efficacy. While a variety of cell therapies have been explored, we focus here on the use of neural progenitor cells obtained or derived from different sources to promote connectivity in sensory, motor and autonomic systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spinal cord injury: pathophysiological events and potential therapeutic targets.
Fig. 2: Forming a relay using neural progenitor cells.
Fig. 3: Restoring connectivity in the respiratory system.
Fig. 4: Restoring connectivity in autonomic systems.

Similar content being viewed by others

References

  1. Ahuja, C. S. et al. Traumatic spinal cord injury. Nat. Rev. Dis. Prim. 3, 17018 (2017).

    Article  PubMed  Google Scholar 

  2. Mautes, A. E., Weinzierl, M. R., Donovan, F. & Noble, L. J. Vascular events after spinal cord injury: contribution to secondary pathogenesis. Phys. Ther. 80, 673–687 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Beattie, M. S. Inflammation and apoptosis: linked therapeutic targets in spinal cord injury. Trends Mol. Med. 10, 580–583 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Donnelly, D. J. & Popovich, P. G. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp. Neurol. 209, 378–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Jia, Z. et al. Oxidative stress in spinal cord injury and antioxidant-based intervention. Spinal Cord 50, 264–274 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Hilton, B. J., Moulson, A. J. & Tetzlaff, W. Neuroprotection and secondary damage following spinal cord injury: concepts and methods. Neurosci. Lett. 652, 3–10 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Fitch, M. T. & Silver, J. CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp. Neurol. 209, 294–301 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Schwab, J. M., Zhang, Y., Kopp, M. A., Brommer, B. & Popovich, P. G. The paradox of chronic neuroinflammation, systemic immune suppression, autoimmunity after traumatic chronic spinal cord injury. Exp. Neurol. 258, 121–129 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Dulin, J. N. & Lu, P. Bridging the injured spinal cord with neural stem cells. Neural Regen. Res. 9, 229–231 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Papastefanaki, F. & Matsas, R. From demyelination to remyelination: the road toward therapies for spinal cord injury. Glia 63, 1101–1125 (2015).

    Article  PubMed  Google Scholar 

  11. Hollis, E. R., 2nd. Axon guidance molecules and neural circuit remodeling after spinal cord injury. Neurotherapeutics 13, 360–369 (2016).

    Article  PubMed  Google Scholar 

  12. Hilton, B. J. & Bradke, F. Can injured adult CNS axons regenerate by recapitulating development? Development 144, 3417–3429 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Assinck, P., Duncan, G. J., Hilton, B. J., Plemel, J. R. & Tetzlaff, W. Cell transplantation therapy for spinal cord injury. Nat. Neurosci. 20, 637–647 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Lane, M. A., Lepore, A. C. & Fischer, I. Improving the therapeutic efficacy of neural progenitor cell transplantation following spinal cord injury. Expert Rev. Neurother. 17, 433–440 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. White, T. E. et al. Neuronal progenitor transplantation and respiratory outcomes following upper cervical spinal cord injury in adult rats. Exp. Neurol. 225, 231–236 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bonner, J. F. et al. Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord. J. Neurosci. 31, 4675–4686 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu, P. et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 150, 1264–1273 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee, K. Z. et al. Intraspinal transplantation and modulation of donor neuron electrophysiological activity. Exp. Neurol. 251, 47–57 (2014).

    Article  PubMed  Google Scholar 

  19. Yokota, K. et al. Engrafted neural stem/progenitor cells promote functional recovery through synapse reorganization with spared host neurons after spinal cord injury. Stem Cell Rep. 5, 264–277 (2015).

    Article  CAS  Google Scholar 

  20. Dougherty, B. J. et al. Respiratory outcomes after mid-cervical transplantation of embryonic medullary cells in rats with cervical spinal cord injury. Exp. Neurol. 278, 22–26 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Adler, A. F., Lee-Kubli, C., Kumamaru, H., Kadoya, K. & Tuszynski, M. H. Comprehensive monosynaptic rabies virus mapping of host connectivity with neural progenitor grafts after spinal cord injury. Stem Cell Rep. 8, 1525–1533 (2017).

    Article  Google Scholar 

  22. Zholudeva, L. V. et al. Transplantation of neural progenitors and V2a Interneurons after spinal cord injury. J. Neurotrauma 35, 2883–2903 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Spruance, V. M. et al. Integration of transplanted neural precursors with the injured cervical spinal cord. J. Neurotrauma 35, 1781–1799 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ceto, S., Sekiguchi, K. J., Takashima, Y., Nimmerjahn, A. & Tuszynski, M. H. Calcium imaging reveals host-graft synaptic network formation in spinal cord injury. Preprint at https://doi.org/10.1101/795583 (2019).

  25. Koffler, J. et al. Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat. Med. 25, 263–269 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McDonald, J. W. et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat. Med. 5, 1410–1412 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Lepore, A. C. et al. Differential fate of multipotent and lineage-restricted neural precursors following transplantation into the adult CNS. Neuron Glia Biol. 1, 113–126 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Watanabe, K. et al. Comparison between fetal spinal-cord- and forebrain-derived neural stem/progenitor cells as a source of transplantation for spinal cord injury. Dev. Neurosci. 26, 275–287 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Lepore, A. C. & Fischer, I. Lineage-restricted neural precursors survive, migrate, and differentiate following transplantation into the injured adult spinal cord. Exp. Neurol. 194, 230–242 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Lepore, A. C. et al. Long-term fate of neural precursor cells following transplantation into developing and adult CNS. Neuroscience 139, 513–530 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Medalha, C. C., Jin, Y., Yamagami, T., Haas, C. & Fischer, I. Transplanting neural progenitors into a complete transection model of spinal cord injury. J. Neurosci. Res. 92, 607–618 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Lien, B. V., Tuszynski, M. H. & Lu, P. Astrocytes migrate from human neural stem cell grafts and functionally integrate into the injured rat spinal cord. Exp. Neurol. 314, 46–57 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Reier, P. J., Bregman, B. S. & Wujek, J. R. Intraspinal transplantation of embryonic spinal cord tissue in neonatal and adult rats. J. Comp. Neurol. 247, 275–296 (1986).

    Article  CAS  PubMed  Google Scholar 

  34. Bregman, B. S. Spinal cord transplants permit the growth of serotonergic axons across the site of neonatal spinal cord transection. Brain Res. 431, 265–279 (1987).

    Article  CAS  PubMed  Google Scholar 

  35. Tessler, A., Himes, B. T., Houle, J. & Reier, P. J. Regeneration of adult dorsal root axons into transplants of embryonic spinal cord. J. Comp. Neurol. 270, 537–548 (1988).

    Article  CAS  PubMed  Google Scholar 

  36. Houle, J. D. & Reier, P. J. Regrowth of calcitonin gene-related peptide (CGRP) immunoreactive axons from the chronically injured rat spinal cord into fetal spinal cord tissue transplants. Neurosci. Lett. 103, 253–258 (1989).

    Article  CAS  PubMed  Google Scholar 

  37. Itoh, Y. & Tessler, A. Regeneration of adult dorsal root axons into transplants of fetal spinal cord and brain: a comparison of growth and synapse formation in appropriate and inappropriate targets. J. Comp. Neurol. 302, 272–293 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. Jakeman, L. B. & Reier, P. J. Axonal projections between fetal spinal cord transplants and the adult rat spinal cord: a neuroanatomical tracing study of local interactions. J. Comp. Neurol. 307, 311–334 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Itoh, Y., Sugawara, T., Kowada, M. & Tessler, A. Time course of dorsal root axon regeneration into transplants of fetal spinal cord: I. A light microscopic study. J. Comp. Neurol. 323, 198–208 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Haas, C., Neuhuber, B., Yamagami, T., Rao, M. & Fischer, I. Phenotypic analysis of astrocytes derived from glial restricted precursors and their impact on axon regeneration. Exp. Neurol. 233, 717–732 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Haas, C. & Fischer, I. Human astrocytes derived from glial restricted progenitors support regeneration of the injured spinal cord. J. Neurotrauma 30, 1035–1052 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kadoya, K. et al. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration. Nat. Med. 22, 479–487 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Merianda, T. T. et al. Neural progenitor cells promote axonal growth and alter axonal mRNA localization in adult neurons. eNeuro https://doi.org/10.1523/ENEURO.0171-16.2017 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dulin, J. N. et al. Injured adult motor and sensory axons regenerate into appropriate organotypic domains of neural progenitor grafts. Nat. Commun. 9, 84 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Jin, Y., Shumsky, J. S. & Fischer, I. Axonal regeneration of different tracts following transplants of human glial restricted progenitors into the injured spinal cord in rats. Brain Res. 1686, 101–112 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cao, Q. et al. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. J. Neurosci. 25, 6947–6957 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hwang, D. H. et al. Transplantation of human neural stem cells transduced with Olig2 transcription factor improves locomotor recovery and enhances myelination in the white matter of rat spinal cord following contusive injury. BMC Neurosci. 10, 117 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Yasuda, A. et al. Significance of remyelination by neural stem/progenitor cells transplanted into the injured spinal cord. Stem Cells 29, 1983–1994 (2011).

    Article  PubMed  Google Scholar 

  49. Hawryluk, G. W. et al. An examination of the mechanisms by which neural precursors augment recovery following spinal cord injury: a key role for remyelination. Cell Transpl. 23, 365–380 (2014).

    Article  Google Scholar 

  50. Park, K. I. et al. Neural stem cells may be uniquely suited for combined gene therapy and cell replacement: Evidence from engraftment of neurotrophin-3-expressing stem cells in hypoxic-ischemic brain injury. Exp. Neurol. 199, 179–190 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Cusimano, M. et al. Transplanted neural stem/precursor cells instruct phagocytes and reduce secondary tissue damage in the injured spinal cord. Brain 135, 447–460 (2012).

    Article  PubMed  Google Scholar 

  52. Karova, K. et al. Transplantation of neural precursors generated from spinal progenitor cells reduces inflammation in spinal cord injury via NF-kappaB pathway inhibition. J. Neuroinflammation 16, 12 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Houle, J. D. & Reier, P. J. Transplantation of fetal spinal cord tissue into the chronically injured adult rat spinal cord. J. Comp. Neurol. 269, 535–547 (1988).

    Article  CAS  PubMed  Google Scholar 

  54. Bonner, J. F. & Steward, O. Repair of spinal cord injury with neuronal relays: from fetal grafts to neural stem cells. Brain Res. 1619, 115–123 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Falnikar, A., Li, K. & Lepore, A. C. Therapeutically targeting astrocytes with stem and progenitor cell transplantation following traumatic spinal cord injury. Brain Res. 1619, 91–103 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Yousefifard, M. et al. Neural stem/progenitor cell transplantation for spinal cord injury treatment; A systematic review and meta-analysis. Neuroscience 322, 377–397 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Zhu, Y., Uezono, N., Yasui, T. & Nakashima, K. Neural stem cell therapy aiming at better functional recovery after spinal cord injury. Dev. Dyn. 247, 75–84 (2018).

    Article  PubMed  Google Scholar 

  58. Trawczynski, M., Liu, G., David, B. T. & Fessler, R. G. Restoring motor neurons in spinal cord injury with induced pluripotent stem cells. Front. Cell Neurosci. 13, 369 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nagoshi, N., Tsuji, O., Nakamura, M. & Okano, H. Cell therapy for spinal cord injury using induced pluripotent stem cells. Regen. Ther. 11, 75–80 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Katoh, H., Yokota, K. & Fehlings, M. G. Regeneration of spinal cord connectivity through stem cell transplantation and biomaterial scaffolds. Front. Cell Neurosci. 13, 248 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gash, D. M. in Neural Transplants: Development and Function (eds Sladek, Jr. J. R. & Gash D. M.) Ch. 1, 1–12 (Plenum Press, 1984).

  62. Stein, D. G. Fetal brain tissue grafting as therapy for brain dysfunctions: unanswered questions, unknown factors, and practical concerns. J. Neurosurg. Anesthesiol. 3, 170–189 (1991).

    Article  CAS  PubMed  Google Scholar 

  63. Thompson, W. G. Successful brain grafting. Science 16, 78–79 (1890).

    Google Scholar 

  64. Dunn, E. H. Primary and secondary findings in a series of attempts to transplant cerebral cortex in the albino rat. J. Comp. Neurol. 27, 565–582 (1917).

    Article  Google Scholar 

  65. Tello, J. F. La influencia del neurotropismo en la generacion de los centros nervioso. Trab. Lab. Invest. Biol. 9, 123–159 (1911).

    Google Scholar 

  66. David, S. & Aguayo, A. J. Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214, 931–933 (1981).

    Article  CAS  PubMed  Google Scholar 

  67. Hodges, C. V., Pickering, D. E., Murray, J. E. & Goodwin, W. E. Kidney transplant between identical twins. J. Urol. 89, 115–121 (1963).

    Article  CAS  PubMed  Google Scholar 

  68. Ishii, T. & Eto, K. Fetal stem cell transplantation: past, present, and future. World J. Stem Cells 6, 404–420 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bjorklund, A. & Stenevi, U. Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res. 177, 555–560 (1979).

    Article  CAS  PubMed  Google Scholar 

  70. Perlow, M. J. et al. Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science 204, 643–647 (1979).

    Article  CAS  PubMed  Google Scholar 

  71. Brundin, P. et al. Human fetal dopamine neurons grafted in a rat model of Parkinson’s disease: immunological aspects, spontaneous and drug-induced behaviour, and dopamine release. Exp. Brain Res. 70, 192–208 (1988).

    CAS  PubMed  Google Scholar 

  72. Lindvall, O. et al. Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson’s disease. A detailed account of methodology and a 6-month follow-up. Arch. Neurol. 46, 615–631 (1989).

    Article  CAS  PubMed  Google Scholar 

  73. Lindvall, O. Update on fetal transplantation: the Swedish experience. Mov. Disord. 13(Suppl 1), 83–87 (1998).

    PubMed  Google Scholar 

  74. Barker, R. A., Barrett, J., Mason, S. L. & Bjorklund, A. Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson’s disease. Lancet Neurol. 12, 84–91 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Gonzalez, C., Bonilla, S., Flores, A. I., Cano, E. & Liste, I. An update on human stem cell-based therapy in Parkinson’s disease. Curr. Stem Cell Res. Ther. 11, 561–568 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Reier, P. J. Neural tissue grafts and repair of the injured spinal cord. Neuropathol. Appl. Neurobiol. 11, 81–104 (1985).

    Article  CAS  PubMed  Google Scholar 

  77. Reier, P. J., Houle, J. D., Jakeman, L., Winialski, D. & Tessler, A. Transplantation of fetal spinal cord tissue into acute and chronic hemisection and contusion lesions of the adult rat spinal cord. Prog. Brain Res. 78, 173–179 (1988).

    Article  CAS  PubMed  Google Scholar 

  78. Jakeman, L. B. et al. Differentiation of substantia gelatinosa-like regions in intraspinal and intracerebral transplants of embryonic spinal cord tissue in the rat. Exp. Neurol. 103, 17–33 (1989).

    Article  CAS  PubMed  Google Scholar 

  79. Bregman, B. S. et al. Recovery of function after spinal cord injury: mechanisms underlying transplant-mediated recovery of function differ after spinal cord injury in newborn and adult rats. Exp. Neurol. 123, 3–16 (1993).

    Article  CAS  PubMed  Google Scholar 

  80. Mayer-Proschel, M., Kalyani, A. J., Mujtaba, T. & Rao, M. S. Isolation of lineage-restricted neuronal precursors from multipotent neuroepithelial stem cells. Neuron 19, 773–785 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Kalyani, A. J., Piper, D., Mujtaba, T., Lucero, M. T. & Rao, M. S. Spinal cord neuronal precursors generate multiple neuronal phenotypes in culture. J. Neurosci. 18, 7856–7868 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rao, M. S. & Mayer-Proschel, M. Glial-restricted precursors are derived from multipotent neuroepithelial stem cells. Dev. Biol. 188, 48–63 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Bonner, J. F., Haas, C. J. & Fischer, I. Preparation of neural stem cells and progenitors: neuronal production and grafting applications. Methods Mol. Biol. 1078, 65–88 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Jessell, T. M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Lu, D. C., Niu, T. & Alaynick, W. A. Molecular and cellular development of spinal cord locomotor circuitry. Front. Mol. Neurosci. 8, 25 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Weiss, S. et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J. Neurosci. 16, 7599–7609 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Stenudd, M., Sabelstrom, H. & Frisen, J. Role of endogenous neural stem cells in spinal cord injury and repair. JAMA Neurol. 72, 235–237 (2015).

    Article  PubMed  Google Scholar 

  88. Mothe, A. J., Zahir, T., Santaguida, C., Cook, D. & Tator, C. H. Neural stem/progenitor cells from the adult human spinal cord are multipotent and self-renewing and differentiate after transplantation. PLoS One 6, e27079 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Goulao, M. & Lepore, A. C. iPS cell transplantation for traumatic spinal cord injury. Curr. Stem Cell Res. Ther. 11, 321–328 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. White, N. & Sakiyama-Elbert, S. E. Derivation of specific neural populations from pluripotent cells for understanding and treatment of spinal cord injury. Dev. Dyn. 248, 78–87 (2019).

    Article  PubMed  Google Scholar 

  91. Tsuji, O. et al. Concise review: laying the groundwork for a first-in-human study of an induced pluripotent stem cell-based intervention for spinal cord injury. Stem Cells 37, 6–13 (2019).

    Article  PubMed  Google Scholar 

  92. Ulndreaj, A., Badner, A. & Fehlings, M. G. Promising neuroprotective strategies for traumatic spinal cord injury with a focus on the differential effects among anatomical levels of injury. F1000Res 6, 1907 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zukor, K. et al. Short hairpin RNA against PTEN enhances regenerative growth of corticospinal tract axons after spinal cord injury. J. Neurosci. 33, 15350–15361 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu, X., Williams, P. R. & He, Z. SOCS3: a common target for neuronal protection and axon regeneration after spinal cord injury. Exp. Neurol. 263, 364–367 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Tran, A. P., Warren, P. M. & Silver, J. The biology of regeneration failure and success after spinal cord injury. Physiol. Rev. 98, 881–917 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jorge, A., Taylor, T., Agarwal, N. & Hamilton, D. K. Current agents and related therapeutic targets for inflammation after acute traumatic spinal cord injury. World Neurosurg. 132, 138–147 (2019).

    Article  PubMed  Google Scholar 

  97. Wang, S., Smith, G. M., Selzer, M. E. & Li, S. Emerging molecular therapeutic targets for spinal cord injury. Expert. Opin. Ther. Targets 23, 787–803 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Rejc, E., Angeli, C. A., Atkinson, D. & Harkema, S. J. Motor recovery after activity-based training with spinal cord epidural stimulation in a chronic motor complete paraplegic. Sci. Rep. 7, 13476 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Attwell, C. L., van Zwieten, M., Verhaagen, J. & Mason, M. R. J. The dorsal column lesion model of spinal cord injury and its use in deciphering the neuron-intrinsic injury response. Dev. Neurobiol. 78, 926–951 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Han, S. S., Kang, D. Y., Mujtaba, T., Rao, M. S. & Fischer, I. Grafted lineage-restricted precursors differentiate exclusively into neurons in the adult spinal cord. Exp. Neurol. 177, 360–375 (2002).

    Article  PubMed  Google Scholar 

  101. Bonner, J. F., Blesch, A., Neuhuber, B. & Fischer, I. Promoting directional axon growth from neural progenitors grafted into the injured spinal cord. J. Neurosci. Res. 88, 1182–1192 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Ketschek, A. R., Haas, C., Gallo, G. & Fischer, I. The roles of neuronal and glial precursors in overcoming chondroitin sulfate proteoglycan inhibition. Exp. Neurol. 235, 627–637 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hayakawa, K., Haas, C. & Fischer, I. Examining the properties and therapeutic potential of glial restricted precursors in spinal cord injury. Neural Regen. Res. 11, 529–533 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. McComish, S. F. & Caldwell, M. A. Generation of defined neural populations from pluripotent stem cells. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20170214 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Khazaei, M., Ahuja, C. S., Rodgers, C. E., Chan, P. & Fehlings, M. G. Generation of definitive neural progenitor cells from human pluripotent stem cells for transplantation into spinal cord injury. Methods Mol. Biol. 1919, 25–41 (2019).

    Article  CAS  PubMed  Google Scholar 

  106. Dugan, E. A., Jergova, S. & Sagen, J. Mutually beneficial effects of intensive exercise and GABAergic neural progenitor cell transplants in reducing neuropathic pain and spinal pathology in rats with spinal cord injury. Exp. Neurol. 327, 113208 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Mothe, A. J. & Tator, C. H. Advances in stem cell therapy for spinal cord injury. J. Clin. Invest. 122, 3824–3834 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tuszynski, M. H. & Steward, O. Concepts and methods for the study of axonal regeneration in the CNS. Neuron 74, 777–791 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Antonic, A. et al. Stem cell transplantation in traumatic spinal cord injury: a systematic review and meta-analysis of animal studies. PLoS Biol. 11, e1001738 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Mothe, A. J. & Tator, C. H. Review of transplantation of neural stem/progenitor cells for spinal cord injury. Int. J. Dev. Neurosci. 31, 701–713 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Deep, A. et al. Mouse models of spinal cord injury and stem cell transplantation. Transl. Res. Anat. 1, 2–10 (2015).

    Google Scholar 

  112. Zholudeva, L. V. & Lane, M. A. Choosing the right cell for spinal cord repair. J. Neurosci. Res. 97, 109–111 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Zholudeva, L. V. & Lane, M. A. Transplanting cells for spinal cord repair: who, what, when, where and why? Cell Transplant 28, 388–399 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Anderson, A. J., Piltti, K. M., Hooshmand, M. J., Nishi, R. A. & Cummings, B. J. Preclinical efficacy failure of human CNS-derived stem cells for use in the pathway study of cervical spinal cord injury. Stem Cell Rep. 8, 249–263 (2017).

    Article  Google Scholar 

  115. Sharp, K. G., Yee, K. M. & Steward, O. A re-assessment of long distance growth and connectivity of neural stem cells after severe spinal cord injury. Exp. Neurol. 257, 186–204 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Stokes, B. T. & Reier, P. J. Fetal grafts alter chronic behavioral outcome after contusion damage to the adult rat spinal cord. Exp. Neurol. 116, 1–12 (1992).

    Article  CAS  PubMed  Google Scholar 

  117. Kiehn, O. Locomotor circuits in the mammalian spinal cord. Annu. Rev. Neurosci. 29, 279–306 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Courtine, G. et al. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat. Med. 14, 69–74 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, X. et al. Deconstruction of corticospinal circuits for goal-directed motor skills. Cell 171, 440–455 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hayashi, M. et al. Graded arrays of spinal and supraspinal V2a interneuron subtypes underlie forelimb and hindlimb motor control. Neuron 97, 869–884 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hunt, M., Lu, P. & Tuszynski, M. H. Myelination of axons emerging from neural progenitor grafts after spinal cord injury. Exp. Neurol. 296, 69–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Rosenzweig, E. S. et al. Restorative effects of human neural stem cell grafts on the primate spinal cord. Nat. Med. 24, 484–490 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Brown, R., DiMarco, A. F., Hoit, J. D. & Garshick, E. Respiratory dysfunction and management in spinal cord injury. Respir. Care 51, 853–868 (2006).

    PubMed  Google Scholar 

  124. Goulao, M. et al. Astrocyte progenitor transplantation promotes regeneration of bulbospinal respiratory axons, recovery of diaphragm function, and a reduced macrophage response following cervical spinal cord injury. Glia 67, 452–466 (2018).

    PubMed  PubMed Central  Google Scholar 

  125. Jin, Y. et al. Transplantation of human glial restricted progenitors and derived astrocytes into a contusion model of spinal cord injury. J. Neurotrauma 28, 579–594 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Li, K. et al. Human iPS cell-derived astrocyte transplants preserve respiratory function after spinal cord injury. Exp. Neurol. 271, 479–492 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gonzalez-Rothi, E. J. et al. Intermittent hypoxia and neurorehabilitation. J. Appl. Physiol. 119, 1455–1465 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Reier, P. J., Thompson, F. J., Fessler, R., Anderson, D. K. & Wirth Iii, E. D. in Axonal Regeneration in the Central Nervous System (eds Ingoglia N. A. & Murray M.) Ch. 23, 603–648 (Marcel Dekker, 2001).

  129. Lin, C. C., Lai, S. R., Shao, Y. H., Chen, C. L. & Lee, K. Z. The therapeutic effectiveness of delayed fetal spinal cord tissue transplantation on respiratory function following mid-cervical spinal cord injury. Neurotherapeutics 14, 792–809 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Teasell, R. W., Arnold, J. M., Krassioukov, A. & Delaney, G. A. Cardiovascular consequences of loss of supraspinal control of the sympathetic nervous system after spinal cord injury. Arch. Phys. Med. Rehabil. 81, 506–516 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Furlan, J. C., Fehlings, M. G., Shannon, P., Norenberg, M. D. & Krassioukov, A. V. Descending vasomotor pathways in humans: correlation between axonal preservation and cardiovascular dysfunction after spinal cord injury. J. Neurotrauma 20, 1351–1363 (2003).

    Article  PubMed  Google Scholar 

  132. Krassioukov, A. & Claydon, V. E. The clinical problems in cardiovascular control following spinal cord injury: an overview. Prog. Brain Res. 152, 223–229 (2006).

    Article  PubMed  Google Scholar 

  133. Anderson, K. D. Targeting recovery: priorities of the spinal cord-injured population. J. Neurotrauma 21, 1371–1383 (2004).

    Article  PubMed  Google Scholar 

  134. Maiorov, D. N., Weaver, L. C. & Krassioukov, A. V. Relationship between sympathetic activity and arterial pressure in conscious spinal rats. Am. J. Physiol. 272, H625–H631 (1997).

    CAS  PubMed  Google Scholar 

  135. Hou, S., Lu, P. & Blesch, A. Characterization of supraspinal vasomotor pathways and autonomic dysreflexia after spinal cord injury in F344 rats. Auton. Neurosci. 176, 54–63 (2013).

    Article  PubMed  Google Scholar 

  136. Hou, S., Tom, V. J., Graham, L., Lu, P. & Blesch, A. Partial restoration of cardiovascular function by embryonic neural stem cell grafts after complete spinal cord transection. J. Neurosci. 33, 17138–17149 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bader, M. S., Loeb, M. & Brooks, A. A. An update on the management of urinary tract infections in the era of antimicrobial resistance. Postgrad. Med. 129, 242–258 (2017).

    Article  PubMed  Google Scholar 

  138. de Groat, W. C., Griffiths, D. & Yoshimura, N. Neural control of the lower urinary tract. Compr. Physiol. 5, 327–396 (2015).

    PubMed  PubMed Central  Google Scholar 

  139. de Groat, W. C. Mechanisms underlying the recovery of lower urinary tract function following spinal cord injury. Paraplegia 33, 493–505 (1995).

    PubMed  Google Scholar 

  140. Zinck, N. D. & Downie, J. W. Plasticity in the injured spinal cord: can we use it to advantage to reestablish effective bladder voiding and continence? Prog. Brain Res. 152, 147–162 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Mitsui, T., Shumsky, J. S., Lepore, A. C., Murray, M. & Fischer, I. Transplantation of neuronal and glial restricted precursors into contused spinal cord improves bladder and motor functions, decreases thermal hypersensitivity, and modifies intraspinal circuitry. J. Neurosci. 25, 9624–9636 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Fandel, T. M. et al. Transplanted human stem cell-derived interneuron precursors mitigate mouse bladder dysfunction and central neuropathic pain after spinal cord injury. Cell Stem Cell 19, 544–557 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Lee, Y. S. et al. Nerve regeneration restores supraspinal control of bladder function after complete spinal cord injury. J. Neurosci. 33, 10591–10606 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Falci, S. et al. Obliteration of a posttraumatic spinal cord cyst with solid human embryonic spinal cord grafts: first clinical attempt. J. Neurotrauma 14, 875–884 (1997).

    Article  CAS  PubMed  Google Scholar 

  145. Thompson, F. J. et al. Neurophysiological assessment of the feasibility and safety of neural tissue transplantation in patients with syringomyelia. J. Neurotrauma 18, 931–945 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Wirth, E. D., 3rd et al. Feasibility and safety of neural tissue transplantation in patients with syringomyelia. J. Neurotrauma 18, 911–929 (2001).

    Article  PubMed  Google Scholar 

  147. Anderson, D. K. Neural tissue transplantation in syringomyelia: feasibility and safety. Ann. N. Y. Acad. Sci. 961, 263–264 (2002).

    Article  PubMed  Google Scholar 

  148. Shin, J. C. et al. Clinical trial of human fetal brain-derived neural stem/progenitor cell transplantation in patients with traumatic cervical spinal cord injury. Neural Plast. 2015, 630932 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Priest, C. A., Manley, N. C., Denham, J., Wirth, E. D., 3rd & Lebkowski, J. S. Preclinical safety of human embryonic stem cell-derived oligodendrocyte progenitors supporting clinical trials in spinal cord injury. Regen. Med. 10, 939–958 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Manley, N. C., Priest, C. A., Denham, J., Wirth, E. D., 3rd & Lebkowski, J. S. Human embryonic stem cell-derived oligodendrocyte progenitor cells: preclinical efficacy and safety in cervical spinal cord injury. Stem Cell Transl. Med. 6, 1917–1929 (2017).

    Article  CAS  Google Scholar 

  151. Watzlawick, R. et al. Olfactory ensheathing cell transplantation in experimental spinal cord injury: effect size and reporting bias of 62 experimental treatments: a systematic review and meta-analysis. PLoS Biol. 14, e1002468 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Guest, J., Santamaria, A. J. & Benavides, F. D. Clinical translation of autologous Schwann cell transplantation for the treatment of spinal cord injury. Curr. Opin. Organ. Transpl. 18, 682–689 (2013).

    Google Scholar 

  153. Anderson, K. D. et al. Safety of autologous human schwann cell transplantation in subacute thoracic spinal cord injury. J. Neurotrauma 34, 2950–2963 (2017).

    Article  PubMed  Google Scholar 

  154. Levi, A. D. et al. Clinical outcomes from a multi-center study of human neural stem cell transplantation in chronic cervical spinal cord injury. J. Neurotrauma 36, 891–902 (2019).

    Article  PubMed  Google Scholar 

  155. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02302157 (2014)

  156. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02163876 (2014)

  157. Goutman, S. A. et al. Long-term Phase 1/2 intraspinal stem cell transplantation outcomes in ALS. Ann. Clin. Transl. Neurol. 5, 730–740 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01772810 (2013)

  159. Riley, J. et al. Cervical spinal cord therapeutics delivery: preclinical safety validation of a stabilized microinjection platform. Neurosurgery 65, 754–761 (2009).

    Article  PubMed  Google Scholar 

  160. Boulis, N. & Federici, T. Surgical approach and safety of spinal cord stem cell transplantation. Neurosurgery 68, E599–E600 (2011).

    Article  PubMed  Google Scholar 

  161. Cefalo, M. G. et al. Human iPSC for therapeutic approaches to the nervous system: present and future applications. Stem Cell Int. 2016, 4869071 (2016).

    Google Scholar 

  162. Doulames, V. M. & Plant, G. W. Induced pluripotent stem cell therapies for cervical spinal cord injury. Int. J. Mol. Sci. 17, 530 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Khazaei, M., Ahuja, C. S. & Fehlings, M. G. Generation of oligodendrogenic spinal neural progenitor cells from human induced pluripotent stem cells. Curr. Protoc. Stem Cell Biol. 42, 2D.20.1–2D.20.14 (2017).

    Article  CAS  Google Scholar 

  164. Coumans, J. V. et al. Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins. J. Neurosci. 21, 9334–9344 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Lu, P., Graham, L., Wang, Y., Wu, D. & Tuszynski, M. Promotion of survival and differentiation of neural stem cells with fibrin and growth factor cocktails after severe spinal cord injury. J. Vis. Exp. https://doi.org/10.3791/50641 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Cao, Q. L. et al. Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Exp. Neurol. 167, 48–58 (2001).

    Article  CAS  PubMed  Google Scholar 

  167. Suzuki, H. et al. Neural stem cell mediated recovery is enhanced by chondroitinase ABC pretreatment in chronic cervical spinal cord injury. PLoS One 12, e0182339 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Chen, J., Bernreuther, C., Dihne, M. & Schachner, M. Cell adhesion molecule L1-transfected embryonic stem cells with enhanced survival support regrowth of corticospinal tract axons in mice after spinal cord injury. J. Neurotrauma 22, 896–906 (2005).

    Article  PubMed  Google Scholar 

  169. Fan, W. L. et al. Transplantation of hypoxic preconditioned neural stem cells benefits functional recovery via enhancing neurotrophic secretion after spinal cord injury in rats. J. Cell Biochem. 119, 4339–4351 (2018).

    Article  CAS  PubMed  Google Scholar 

  170. Wang, Z. Z. & Sakiyama-Elbert, S. E. Matrices, scaffolds & carriers for cell delivery in nerve regeneration. Exp. Neurol. 319, 112837 (2019).

    Article  PubMed  CAS  Google Scholar 

  171. Kumamaru, H., Lu, P., Rosenzweig, E. S. & Tuszynski, M. H. Activation of intrinsic growth state enhances host axonal regeneration into neural progenitor cell grafts. Stem Cell Rep. 11, 861–868 (2018).

    Article  CAS  Google Scholar 

  172. Steward, O. & Willenberg, R. Rodent spinal cord injury models for studies of axon regeneration. Exp. Neurol. 287, 374–383 (2017).

    Article  PubMed  Google Scholar 

  173. Mahar, M. & Cavalli, V. Intrinsic mechanisms of neuronal axon regeneration. Nat. Rev. Neurosci. 19, 323–337 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Brown, A. R. & Martinez, M. From cortex to cord: motor circuit plasticity after spinal cord injury. Neural Regen. Res. 14, 2054–2062 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  175. O’Shea, T. M., Burda, J. E. & Sofroniew, M. V. Cell biology of spinal cord injury and repair. J. Clin. Invest. 127, 3259–3270 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Bradbury, E. J. & Burnside, E. R. Moving beyond the glial scar for spinal cord repair. Nat. Commun. 10, 3879 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Dell’Anno, M. T. & Strittmatter, S. M. Rewiring the spinal cord: direct and indirect strategies. Neurosci. Lett. 652, 25–34 (2017).

    Article  PubMed  CAS  Google Scholar 

  178. Sofroniew, M. V. Dissecting spinal cord regeneration. Nature 557, 343–350 (2018).

    Article  CAS  PubMed  Google Scholar 

  179. Anderson, M. A. et al. Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature 561, 396–400 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Geoffroy, C. G., Hilton, B. J., Tetzlaff, W. & Zheng, B. Evidence for an age-dependent decline in axon regeneration in the adult mammalian central nervous system. Cell Rep. 15, 238–246 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Hofstetter, C. P. et al. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat. Neurosci. 8, 346–353 (2005).

    Article  CAS  PubMed  Google Scholar 

  182. Takeoka, A. et al. Axon regeneration can facilitate or suppress hindlimb function after olfactory ensheathing glia transplantation. J. Neurosci. 31, 4298–4310 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wang, Z., Reynolds, A., Kirry, A., Nienhaus, C. & Blackmore, M. G. Overexpression of sox11 promotes corticospinal tract regeneration after spinal injury while interfering with functional recovery. J. Neurosci. 35, 3139–3145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Liu, S., Schackel, T., Weidner, N. & Puttagunta, R. Biomaterial-supported cell transplantation treatments for spinal cord injury: challenges and perspectives. Front. Cell Neurosci. 11, 430 (2017).

    Article  PubMed  CAS  Google Scholar 

  185. Liu, S., Xie, Y. Y. & Wang, B. Role and prospects of regenerative biomaterials in the repair of spinal cord injury. Neural Regen. Res. 14, 1352–1363 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Jayaprakash, N. et al. Restoration of direct corticospinal communication across sites of spinal injury. Preprint at https://doi.org/10.1101/546374 (2019).

  187. Sudhof, T. C. Towards an understanding of synapse formation. Neuron 100, 276–293 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Card, J. P. & Enquist, L. W. Transneuronal circuit analysis with pseudorabies viruses. Curr. Protoc. Neurosci. 68, 1.5.1–1.5.39 (2014).

    Article  Google Scholar 

  189. Adler, A. F., Bjorklund, A. & Parmar, M. Transsynaptic tracing and its emerging use to assess graft-reconstructed neural circuits. Stem Cells https://doi.org/10.1002/stem.3166 (2020).

    Article  PubMed  Google Scholar 

  190. Pierani, A. et al. Control of interneuron fate in the developing spinal cord by the progenitor homeodomain protein Dbx1. Neuron 29, 367–384 (2001).

    Article  CAS  PubMed  Google Scholar 

  191. Shirasaki, R. & Pfaff, S. L. Transcriptional codes and the control of neuronal identity. Annu. Rev. Neurosci. 25, 251–281 (2002).

    Article  CAS  PubMed  Google Scholar 

  192. Gonzalez-Rothi, E. J. et al. Spinal interneurons and forelimb plasticity after incomplete cervical spinal cord injury in adult rats. J. Neurotrauma 32, 893–907 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Kirkeby, A. et al. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep. 1, 703–714 (2012).

    Article  CAS  PubMed  Google Scholar 

  194. Lippmann, E. S. et al. Deterministic HOX patterning in human pluripotent stem cell-derived neuroectoderm. Stem Cell Rep. 4, 632–644 (2015).

    Article  CAS  Google Scholar 

  195. Tao, Y. & Zhang, S. C. Neural subtype specification from human pluripotent stem cells. Cell Stem Cell 19, 573–586 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hoang, P. T. et al. Subtype diversification and synaptic specificity of stem cell-derived spinal interneurons. Neuron 100, 135–149 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Zholudeva, L. V., Karliner, J. S., Dougherty, K. J. & Lane, M. A. Anatomical recruitment of spinal V2a interneurons into phrenic motor circuitry after high cervical spinal cord injury. J. Neurotrauma 34, 3058–3065 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Eaton, M. J. et al. Subarachnoid transplant of a human neuronal cell line attenuates chronic allodynia and hyperalgesia after excitotoxic spinal cord injury in the rat. J. Pain. 8, 33–50 (2007).

    Article  PubMed  Google Scholar 

  199. Kim, D. S. et al. Transplantation of GABAergic neurons from ESCs attenuates tactile hypersensitivity following spinal cord injury. Stem Cell 28, 2099–2108 (2010).

    Article  CAS  Google Scholar 

  200. Hwang, I. et al. Intrathecal transplantation of embryonic stem cell-derived spinal GABAergic neural precursor cells attenuates neuropathic pain in a spinal cord injury rat model. Cell Transpl. 25, 593–607 (2016).

    Article  Google Scholar 

  201. Lu, P. et al. Origins of neural progenitor cell-derived axons projecting caudally after spinal cord injury. Stem Cell Rep. 13, 105–114 (2019).

    Article  CAS  Google Scholar 

  202. Yuan, X. B. et al. Guiding migration of transplanted glial progenitor cells in the injured spinal cord. Sci. Rep. 6, 22576 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Michelsen, K. A. et al. Area-specific reestablishment of damaged circuits in the adult cerebral cortex by cortical neurons derived from mouse embryonic stem cells. Neuron 85, 982–997 (2015).

    Article  CAS  PubMed  Google Scholar 

  204. Cardoso, T. et al. Target-specific forebrain projections and appropriate synaptic inputs of hESC-derived dopamine neurons grafted to the midbrain of parkinsonian rats. J. Comp. Neurol. 526, 2133–2146 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Adler, A. F. et al. hESC-derived dopaminergic transplants integrate into basal ganglia circuitry in a preclinical model of Parkinson’s disease. Cell Rep. 28, 3462–3473 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Kennedy, T. E. & Tessier-Lavigne, M. Guidance and induction of branch formation in developing axons by target-derived diffusible factors. Curr. Opin. Neurobiol. 5, 83–90 (1995).

    Article  CAS  PubMed  Google Scholar 

  207. Moxon, K. A., Oliviero, A., Aguilar, J. & Foffani, G. Cortical reorganization after spinal cord injury: always for good? Neuroscience 283, 78–94 (2014).

    Article  CAS  PubMed  Google Scholar 

  208. Oza, C. S. & Giszter, S. F. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats. J. Neurosci. 35, 7174–7189 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Martin, J. H. Harnessing neural activity to promote repair of the damaged corticospinal system after spinal cord injury. Neural Regen. Res. 11, 1389–1391 (2016).

    PubMed  PubMed Central  Google Scholar 

  210. Serradj, N., Agger, S. F. & Hollis, E. R., 2nd. Corticospinal circuit plasticity in motor rehabilitation from spinal cord injury. Neurosci. Lett. 652, 94–104 (2017).

    Article  CAS  PubMed  Google Scholar 

  211. Li, Q., Houdayer, T., Liu, S. & Belegu, V. Induced neural activity promotes an oligodendroglia regenerative response in the injured spinal cord and improves motor function after spinal cord injury. J. Neurotrauma 34, 3351–3361 (2017).

    Article  PubMed  Google Scholar 

  212. Filli, L. & Schwab, M. E. Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury. Neural Regen. Res. 10, 509–513 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Hilton, B. J. et al. Re-establishment of cortical motor output maps and spontaneous functional recovery via spared dorsolaterally projecting corticospinal neurons after dorsal column spinal cord injury in adult mice. J. Neurosci. 36, 4080–4092 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Ferguson, A. R. et al. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury. Front. Physiol. 3, 399 (2012).

    PubMed  PubMed Central  Google Scholar 

  215. Grau, J. W. et al. When pain hurts: nociceptive stimulation induces a state of maladaptive plasticity and impairs recovery after spinal cord injury. J. Neurotrauma 34, 1873–1890 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Turtle, J. D. et al. Pain input impairs recovery after spinal cord injury: treatment with lidocaine. J. Neurotrauma 34, 1200–1208 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Lu, P., Jones, L. L., Snyder, E. Y. & Tuszynski, M. H. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp. Neurol. 181, 115–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  218. Macias, M. Y. et al. Pain with no gain: allodynia following neural stem cell transplantation in spinal cord injury. Exp. Neurol. 201, 335–348 (2006).

    Article  CAS  PubMed  Google Scholar 

  219. van Gorp, S. et al. Amelioration of motor/sensory dysfunction and spasticity in a rat model of acute lumbar spinal cord injury by human neural stem cell transplantation. Stem Cell Res. Ther. 4, 57 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Cizkova, D. et al. Functional recovery in rats with ischemic paraplegia after spinal grafting of human spinal stem cells. Neuroscience 147, 546–560 (2007).

    Article  CAS  PubMed  Google Scholar 

  221. Kwon, B. K. et al. Large animal and primate models of spinal cord injury for the testing of novel therapies. Exp. Neurol. 269, 154–168 (2015).

    Article  PubMed  Google Scholar 

  222. Lemon, R. N. & Griffiths, J. Comparing the function of the corticospinal system in different species: organizational differences for motor specialization? Muscle Nerve 32, 261–279 (2005).

    Article  PubMed  Google Scholar 

  223. Strnadel, J. et al. Survival of syngeneic and allogeneic iPSC-derived neural precursors after spinal grafting in minipigs. Sci. Transl. Med. 10, eaam6651 (2018).

    Article  PubMed  CAS  Google Scholar 

  224. Yamane, J. et al. Transplantation of galectin-1-expressing human neural stem cells into the injured spinal cord of adult common marmosets. J. Neurosci. Res. 88, 1394–1405 (2010).

    CAS  PubMed  Google Scholar 

  225. Kobayashi, Y. et al. Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity. PLoS One 7, e52787 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Iwai, H. et al. Allogeneic neural stem/progenitor cells derived from embryonic stem cells promote functional recovery after transplantation into injured spinal cord of nonhuman primates. Stem Cell Transl. Med. 4, 708–719 (2015).

    Article  Google Scholar 

  227. NIH. Consideration of Sex as a Biological Variable in NIH-Funded Research https://grants.nih.gov/grants/guide/notice-files/not-od-15-102.html (2015).

  228. Moore, S. A. et al. Targeting translational successes through CANSORT-SCI: using pet dogs to identify effective treatments for spinal cord injury. J. Neurotrauma 34, 2007–2018 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Roberts, T. T., Leonard, G. R. & Cepela, D. J. Classifications in brief: American Spinal Injury Association (ASIA) impairment scale. Clin. Orthop. Relat. Res. 475, 1499–1504 (2017).

    Article  PubMed  Google Scholar 

  230. Jones, L. A. T. et al. Considerations and recommendations for selection and utilization of upper extremity clinical outcome assessments in human spinal cord injury trials. Spinal Cord. 56, 414–425 (2018).

    Article  PubMed  Google Scholar 

  231. Beaudoin, M. et al. Usability of the participation and quality of life (PAR-QoL) outcomes toolkit website for spinal cord injury. Top. Spinal Cord. Inj. Rehabil. 26, 64–77 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Steward, O., Sharp, K. G., Yee, K. M., Hatch, M. N. & Bonner, J. F. Characterization of ectopic colonies that form in widespread areas of the nervous system with neural stem cell transplants into the site of a severe spinal cord injury. J. Neurosci. 34, 14013–14021 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Levi, A. D. et al. Emerging safety of intramedullary transplantation of human neural stem cells in chronic cervical and thoracic spinal cord injury. Neurosurgery 82, 562–575 (2018).

    Article  PubMed  Google Scholar 

  234. Dalamagkas, K., Tsintou, M., Seifalian, A. & Seifalian, A. M. Translational regenerative therapies for chronic spinal cord injury. Int. J. Mol. Sci. 19, E1776 (2018).

    Article  PubMed  CAS  Google Scholar 

  235. Pereira, I. M., Marote, A., Salgado, A. J. & Silva, N. A. Filling the gap: neural stem cells as a promising therapy for spinal cord injury. Pharmaceuticals 12, E65 (2019).

    Article  PubMed  CAS  Google Scholar 

  236. Chhabra, H. S. et al. Stem cell/cellular interventions in human spinal cord injury: is it time to move from guidelines to regulations and legislations? Literature review and spinal cord society position statement. Eur. Spine J. 28, 1837–1845 (2019).

    Article  PubMed  Google Scholar 

  237. Fawcett, J. W. et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord. 45, 190–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  238. Jin, D. et al. Restoration of skilled locomotion by sprouting corticospinal axons induced by co-deletion of PTEN and SOCS3. Nat. Commun. 6, 8074 (2015).

    Article  CAS  PubMed  Google Scholar 

  239. Charsar, B. A., Urban, M. W. & Lepore, A. C. Harnessing the power of cell transplantation to target respiratory dysfunction following spinal cord injury. Exp. Neurol. 287, 268–275 (2017).

    Article  PubMed  Google Scholar 

  240. Stevens, L. C. & Little, C. C. Spontaneous testicular teratomas in an inbred strain of mice. Proc. Natl Acad. Sci. USA 40, 1080–1087 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Solter, D. From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nat. Rev. Genet. 7, 319–327 (2006).

    Article  CAS  PubMed  Google Scholar 

  242. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  CAS  PubMed  Google Scholar 

  243. Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA 78, 7634–7638 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Gossler, A., Doetschman, T., Korn, R., Serfling, E. & Kemler, R. Transgenesis by means of blastocyst-derived embryonic stem cell lines. Proc. Natl Acad. Sci. USA 83, 9065–9069 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Robertson, E., Bradley, A., Kuehn, M. & Evans, M. Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 323, 445–448 (1986).

    Article  CAS  PubMed  Google Scholar 

  246. Thomas, K. R. & Capecchi, M. R. Introduction of homologous DNA sequences into mammalian cells induces mutations in the cognate gene. Nature 324, 34–38 (1986).

    Article  CAS  PubMed  Google Scholar 

  247. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  248. Shamblott, M. J. et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl Acad. Sci. USA 95, 13726–13731 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Richards, M., Fong, C. Y., Chan, W. K., Wong, P. C. & Bongso, A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat. Biotechnol. 20, 933–936 (2002).

    Article  CAS  PubMed  Google Scholar 

  250. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  251. Soldner, F. & Jaenisch, R. Medicine. iPSC disease modeling. Science 338, 1155–1156 (2012).

    Article  PubMed  Google Scholar 

  252. Kim, K. et al. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat. Biotechnol. 29, 1117–1119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Lujan, E., Chanda, S., Ahlenius, H., Sudhof, T. C. & Wernig, M. Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proc. Natl Acad. Sci. USA 109, 2527–2532 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Banda, E. & Grabel, L. Directed differentiation of human embryonic stem cells into neural progenitors. Methods Mol. Biol. 1307, 289–298 (2016).

    Article  PubMed  Google Scholar 

  255. Daadi, M. M. Differentiation of neural stem cells derived from induced pluripotent stem cells into dopaminergic neurons. Methods Mol. Biol. 1919, 89–96 (2019).

    Article  CAS  PubMed  Google Scholar 

  256. Anderson, S. & Vanderhaeghen, P. Cortical neurogenesis from pluripotent stem cells: complexity emerging from simplicity. Curr. Opin. Neurobiol. 27, 151–157 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Hu, B. Y. & Zhang, S. C. Differentiation of spinal motor neurons from pluripotent human stem cells. Nat. Protoc. 4, 1295–1304 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Pritchard, C. D. et al. Establishing a model spinal cord injury in the African green monkey for the preclinical evaluation of biodegradable polymer scaffolds seeded with human neural stem cells. J. Neurosci. Methods 188, 258–269 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Mothe, A. J., Tam, R. Y., Zahir, T., Tator, C. H. & Shoichet, M. S. Repair of the injured spinal cord by transplantation of neural stem cells in a hyaluronan-based hydrogel. Biomaterials 34, 3775–3783 (2013).

    Article  CAS  PubMed  Google Scholar 

  260. Conova, L. et al. A pilot study of poly(N-isopropylacrylamide)-g-polyethylene glycol and poly(N-isopropylacrylamide)-g-methylcellulose branched copolymers as injectable scaffolds for local delivery of neurotrophins and cellular transplants into the injured spinal cord. J. Neurosurg. Spine 15, 594–604 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Günther, M. I., Weidner, N., Müller, R. & Blesch, A. Cell-seeded alginate hydrogel scaffolds promote directed linear axonal regeneration in the injured rat spinal cord. Acta Biomater. 27, 140–150 (2015).

    Article  PubMed  CAS  Google Scholar 

  262. Partyka, P. P. et al. Harnessing neurovascular interaction to guide axon growth. Sci. Rep. 9, 2190 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  263. Marchini, A. et al. Multifunctionalized hydrogels foster hNSC maturation in 3D cultures and neural regeneration in spinal cord injuries. Proc. Natl Acad. Sci. USA 116, 7483–7492 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Totoiu, M. O. & Keirstead, H. S. Spinal cord injury is accompanied by chronic progressive demyelination. J. Comp. Neurol. 486, 373–383 (2005).

    Article  PubMed  Google Scholar 

  265. Guest, J. D., Hiester, E. D. & Bunge, R. P. Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury. Exp. Neurol. 192, 384–393 (2005).

    Article  CAS  PubMed  Google Scholar 

  266. Franklin, R. J. & Ffrench-Constant, C. Remyelination in the CNS: from biology to therapy. Nat. Rev. Neurosci. 9, 839–855 (2008).

    Article  CAS  PubMed  Google Scholar 

  267. Plemel, J. R. et al. Remyelination after spinal cord injury: is it a target for repair? Prog. Neurobiol. 117, 54–72 (2014).

    Article  CAS  PubMed  Google Scholar 

  268. Myers, S. A., Bankston, A. N., Burke, D. A., Ohri, S. S. & Whittemore, S. R. Does the preclinical evidence for functional remyelination following myelinating cell engraftment into the injured spinal cord support progression to clinical trials? Exp. Neurol. 283, 560–572 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Keirstead, H. S. et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J. Neurosci. 25, 4694–4705 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Powers, B. E. et al. Axonal thinning and extensive remyelination without chronic demyelination in spinal injured rats. J. Neurosci. 32, 5120–5125 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Duncan, G. J. et al. Locomotor recovery following contusive spinal cord injury does not require oligodendrocyte remyelination. Nat. Commun. 9, 3066 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  272. Duncan, G. J. et al. The fate and function of oligodendrocyte progenitor cells after traumatic spinal cord injury. Glia 68, 227–245 (2020).

    Article  PubMed  Google Scholar 

  273. Tripathi, R. & McTigue, D. M. Prominent oligodendrocyte genesis along the border of spinal contusion lesions. Glia 55, 698–711 (2007).

    Article  PubMed  Google Scholar 

  274. Pukos, N., Goodus, M. T., Sahinkaya, F. R. & McTigue, D. M. Myelin status and oligodendrocyte lineage cells over time after spinal cord injury: what do we know and what still needs to be unwrapped? Glia 67, 2178–2202 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. Houle for helpful suggestions and reviewing the manuscript, S. Hou for help with the autonomic function section, A. Lepore for reading the respiratory section, J. Bouyer for help in preparation of figures and E. Wirth III for comments on clinical trials. The authors’ work has been supported by NIH grant 2PO1 NS055976, the Craig H. Neilsen Foundation and a Louis and Bessie Stein Family grant (I.F.); Mission Connect (a project of the TIRR Foundation), the Craig H. Neilsen Foundation and the Paralyzed Veterans of America Research Foundation (J.N.D.); and the Lisa Dean Moseley Foundation, Wings for Life Spinal Cord Research Foundation, and NIH grant R01 NS104291(M.A.L.).

Author information

Authors and Affiliations

Authors

Contributions

I.F. researched data for the article. I.F., J.N.D. and M.A.L. substantially contributed to the discussion of the content of the article, wrote the article and reviewed/edited the article before submission.

Corresponding author

Correspondence to Itzhak Fischer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks O. Steward and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Oligodendrocyte progenitor cells

Cells that can differentiate into oligodendrocytes and produce myelin. They are also known as oligodendrocyte precursor cells, often described as NG2 cells (chondroitin sulfate proteoglycan neuron/glia antigen 2) or polydendrocytes and were previously known as oligodendrocyte type 2 astrocyte (O-2A) progenitor cells.

Neural progenitor cells

(NPCs). Neural cells with less proliferative potential than neural stem cells. NPCs give rise to glial and neuronal cell types that are present in the CNS in the developing embryo, neonate and adult rodent. Embryonic NPCs include neuronal-restricted precursors and glial-restricted precursors.

Neuronal relays

At their simplest, three synaptically connected neurons; in the case of transplantation after spinal cord injury, these are the injured neuron, the transplant-derived neuron and the target neuron.

Glial scar

The fibroglial cell layer surrounding the core of a lesion after spinal cord injury, composed of chondroitin sulfate proteoglycans and fibrous connective tissue.

Autologous grafting

Transplantation of cells or tissue derived from the individual’s own body, including autografts (transplants of tissue from one point to another in the same individual’s body, such as a skin or nerve graft) as well as grafts of reprogrammed autologous cells (for example, induced pluripotent stem cells).

Allografting

Transplantation of tissue or cells from a genetically non-identical member of the same species. When cells from a different species are transplanted, they are xenografts.

Fetal spinal cord

(FSC). Tissue or cells originating from animals at the fetal stage or embryonic stage of development. This cell population has been extensively characterized and widely applied to studies of animal spinal cord injury.

Neural stem cells

(NSCs). Multipotent neural cells with high proliferative potential that can generate both neurons and glial cells, such as the neuroepithelial cells present in the developing and adult spinal cord of rodents.

Extracellular matrix

The non-cellular component that provides physical and chemical scaffolding for cells and signalling for tissue differentiation and homeostasis. In the context of spinal cord injury, it refers to the molecular components of the scar, such as chondroitin sulfate proteoglycans.

Neuropathic pain

Pain resulting from injury to the somatosensory nervous system. Neuropathic pain resulting from spinal cord injury typically manifests itself as sharp, shooting or burning sensations experienced in the absence of noxious stimulation or exaggerated pain responses on noxious stimulation.

Maladaptive plasticity

Spontaneous reorganization of spared neural circuits in such a way that it produces undesired neurological outcomes such as pain or spasticity.

Contusion lesion

Spinal cord injury produced by a blunt force impact, typically resulting in incomplete neurological deficits with partial function remaining below the level of injury. This lesion model has been widely used in experimental studies due to its anatomical similarities to most human spinal cord injury.

Principal component analysis

An approach that uses an orthogonal transformation to convert observations that may be correlated into a set of uncorrelated variables referred to as principal components.

Compression injury

A condition that puts pressure on the spinal cord, which can be achieved in animal models of spinal cord injury using calibrated clips or by placing a specific weight in the epidural space. (A mixed contusion–compression spinal cord injury model can also be generated by delivering an initial blunt impact followed by sustained pressure.)

Chondroitinase ABC

A bacterial enzyme that degrades polysaccharide chains on chondroitin sulfate proteoglycans. This enzyme has been used as a potential therapeutic treatment for spinal cord injury due to its degradation of axon growth-inhibiting chondroitin sulfate proteoglycans that are present in the extracellular matrix of the injured spinal cord.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, I., Dulin, J.N. & Lane, M.A. Transplanting neural progenitor cells to restore connectivity after spinal cord injury. Nat Rev Neurosci 21, 366–383 (2020). https://doi.org/10.1038/s41583-020-0314-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-020-0314-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing