Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuronal regulation of the blood–brain barrier and neurovascular coupling

Abstract

To continuously process neural activity underlying sensation, movement and cognition, the CNS requires a homeostatic microenvironment that is not only enriched in nutrients to meet its high metabolic demands but that is also devoid of toxins that might harm the sensitive neural tissues. This highly regulated microenvironment is made possible by two unique features of CNS vasculature absent in the peripheral organs. First, the blood–blood barrier, which partitions the circulating blood from the CNS, acts as a gatekeeper to facilitate the selective trafficking of substances between the blood and the parenchyma. Second, neurovascular coupling ensures that, following local neural activation, regional blood flow is increased to quickly supply more nutrients and remove metabolic waste. Here, we review how neural and vascular activity act on one another with regard to these two properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The neurovascular unit and cerebrovascular anatomy.
Fig. 2: Properties of the BBB.
Fig. 3: The direct pathway to elicit neurovascular coupling.
Fig. 4: The endothelium-dependent model of neurovascular coupling.

Similar content being viewed by others

References

  1. Tsai, P. S. et al. Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels. J. Neurosci. 29, 14553–14570 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ehrlich, P. Das Sauerstoff-Bedürfniss des Organismus: eine Farbenanalytische Studie (Hirschwald, 1885).

  3. Ehrlich, P. Ueber die Beziehungen von chemischer Constitution, Vertheilung, und pharmakologischen Wirkung (Hirschwald, 1904).

  4. Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018). This study provides a single-cell transcriptomic analysis of the BBB vasculature with direct comparison with peripheral vasculature.

    Article  CAS  PubMed  Google Scholar 

  5. Simionescu, M., Simionescu, N. & Palade, G. E. Segmental differentiations of cell junctions in the vascular endothelium: arteries and veins. J. Cell Biol. 68, 705–723 (1976).

    Article  CAS  PubMed  Google Scholar 

  6. Sweeney, M. D., Sagare, A. P. & Zlokovic, B. V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 14, 133–150 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Drew, P. J., Shih, A. Y. & Kleinfeld, D. Fluctuating and sensory-induced vasodynamics in rodent cortex extend arteriole capacity. Proc. Natl Acad. Sci. USA 108, 8473–8478 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chow, B. W. & Gu, C. The molecular constituents of the blood–brain barrier. Trends Neurosci. 38, 598–608 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao, Z., Nelson, A. R., Betsholtz, C. & Zlokovic, B. V. Establishment and dysfunction of the blood–brain barrier. Cell 163, 1064–1078 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Langen, U. H., Ayloo, S. & Gu, C. Development and cell biology of the blood–brain barrier. Annu. Rev. Cell Dev. Biol. 35, 100617–062608 (2019).

    Article  CAS  Google Scholar 

  11. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schaum, N. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  14. Sabbagh, M. F. & Nathans, J. A genome-wide view of the de-differentiation of central nervous system endothelial cells in culture. eLife 9, e51276 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, Y. et al. Beta-catenin signaling regulates barrier-specific gene expression in circumventricular organ and ocular vasculatures. eLife 8, e43257 (2019). This study shows that β-catenin gain of function confers barrier properties to the normally leaky vasculature of CVOs.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sabbagh, M. F. et al. Transcriptional and epigenomic landscapes of CNS and non-CNS vascular endothelial cells. eLife 7, e36187 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Munji, R. N. et al. Profiling the mouse brain endothelial transcriptome in health and disease models reveals a core blood–brain barrier dysfunction module. Nat. Neurosci. 22, 1892–1902 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Daneman, R. et al. The mouse blood–brain barrier transcriptome: a new resource for understanding the development and function of brain endothelial cells. PLoS ONE 5, 1–16 (2010).

    Article  CAS  Google Scholar 

  19. Yousef, H. et al. Aged blood impairs hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1. Nat. Med. 25, 988–1000 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Profaci, C. P., Munji, R. N., Pulido, R. S. & Daneman, R. The blood–brain barrier in health and disease: Important unanswered questions. J. Exp. Med. 217, 1–16 (2020).

    Article  Google Scholar 

  21. Reese, T. S. & Karnovsky, M. J. Fine structural localization of a blood–brain barrier to exogenous peroxidase. J. Cell Biol. 34, 207–217 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karnovsky, M. J. The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J. Cell Biol. 35, 213–236 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Daneman, R., Zhou, L., Kebede, A. A. & Barres, B. A. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468, 562–566 (2010). This study shows that inhibition of pericyte recruitment in development results in BBB dysfunction proportional to the pericyte reduction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Armulik, A. et al. Pericytes regulate the blood–brain barrier. Nature 468, 557–561 (2010). This study shows that inhibition of pericyte recruitment during development results in aberrant transcytosis at the BBB throughout life.

    Article  CAS  PubMed  Google Scholar 

  25. Ben-zvi, A. et al. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature 509, 507–511 (2014). This study identifies active molecular suppression of EC transcytosis to ensure BBB integrity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Andreone, B. J. et al. Blood–brain barrier permeability is regulated by lipid transport-dependent suppression of caveolae-mediated transcytosis. Neuron 94, 581–594 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ayloo, S. & Gu, C. Transcytosis at the blood–brain barrier. Curr. Opin. Neurobiol. 57, 32–38 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Andreone BJ, Lacoste B, Gu C. Neuronal and vascular interactions. Annu. Rev. Neurosci. 38, 25–46 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chow, B. W. & Gu, C. Gradual suppression of transcytosis governs functional blood-retinal barrier formation. Neuron 93, 1325–1333.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schinkel, A. H. et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77, 491–502 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Alvarez, J. I., Katayama, T. & Prat, A. Glial influence on the blood brain barrier. Glia 61, 1939–1958 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. O’Brown, N. M., Pfau, S. J. & Gu, C. Bridging barriers: a comparative look at the blood–brain barrier across organisms. Genes Dev. 32, 466–478 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Siegenthaler, J. A., Sohet, F. & Daneman, R. ‘Sealing off the CNS’: Cellular and molecular regulation of blood–brain barriergenesis. Curr. Opin. Neurobiol. 23, 1057–1064 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Blanchette, M. & Daneman, R. Formation and maintenance of the BBB. Mech. Dev. 138, 8–16 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Brightman, M. W. & Reese, T. S. Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40, 648–677 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Simionescu, M., Simionescu, N. & Palade, G. E. Characteristic endothelial junctions in different segments of the vascular system. Thromb. Res. 8, 247–256 (1976).

    Article  CAS  PubMed  Google Scholar 

  37. Liebner, S., Kniesel, U., Kalbacher, H. & Wolburg, H. Correlation of tight junction morphology with the expression of tight junction proteins in blood-brain barrier endothelial cells. Eur. J. Cell Biol. 79, 707–717 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Stamatovic, S. M., Johnson, A. M., Keep, R. F. & Andjelkovic, A. V. Junctional proteins of the blood-brain barrier: new insights into function and dysfunction. Tissue Barriers 4, e1154641 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Murakami, T., Felinski, E. A. & Antonetti, D. A. Occludin phosphorylation and ubiquitination regulate tight junction trafficking and vascular endothelial growth factor-induced permeability. J. Biol. Chem. 284, 21036–21046 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ishizaki, T. et al. Cyclic AMP induces phosphorylation of claudin-5 immunoprecipitates and expression of claudin-5 gene in blood-brain-barrier endothelial cells via protein kinase A-dependent and -independent pathways. Exp. Cell Res. 290, 275–288 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Dörfel, M. J. & Huber, O. Modulation of tight junction structure and function by kinases and phosphatases targeting occludin. J. Biomed. Biotechnol. 2012, 1–14 (2012).

    Article  CAS  Google Scholar 

  42. Van Itallie, C. M., Gambling, T. M., Carson, J. L. & Anderson, J. M. Palmitoylation of claudins is required for efficient tight-junction localization. J. Cell Sci. 118, 1427–1436 (2005).

    Article  PubMed  CAS  Google Scholar 

  43. Saitou, M. et al. Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J. Cell Biol. 141, 397–408 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Saitou, M. et al. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol. Biol. Cell 11, 4131–4142 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Umeda, K. et al. ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 126, 741–754 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Katsuno, T. et al. Deficiency of zonula occludens-1 causes embryonic lethal phenotype associated with defected yolk sac angiogenesis and apoptosis of embryonic cells. Mol. Biol. Cell 19, 2465–2475 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu, J. et al. Early embryonic lethality of mice lacking ZO-2, but not ZO-3, reveals critical and nonredundant roles for individual zonula occludens proteins in mammalian development. Mol. Cell. Biol. 28, 1669–1678 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Castro Dias, M. et al. Claudin-3-deficient C57BL/6J mice display intact brain barriers. Sci. Rep. 9, 203 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Castro Dias, M. et al. Claudin-12 is not required for blood–brain barrier tight junction function. Fluids Barriers CNS 16, 30 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Nitta, T. et al. Size-selective loosening of the blood–brain barrier in claudin-5-deficient mice. J. Cell Biol. 161, 653–660 (2003). This study shows that depletion of the principle TJ component at the BBB results in BBB permeability to low-molecular-weight molecules.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sohet, F. et al. LSR/angulin-1 is a tricellular tight junction protein involved in blood–brain barrier formation. J. Cell Biol. 208, 703–711 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ding, L. et al. Inflammation and disruption of the mucosal architecture in claudin-7-deficient mice. Gastroenterology 142, 305–315 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Lu, Z. et al. A non-tight junction function of claudin-7 — interaction with integrin signaling in suppressing lung cancer cell proliferation and detachment. Mol. Cancer 14, 120 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Huerta, M. et al. Cyclin D1 is transcriptionally down-regulated by ZO-2 via an E box and the transcription factor c-Myc. Mol. Biol. Cell 18, 4826–4836 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sourisseau, T. et al. Regulation of PCNA and cyclin D1 expression and epithelial morphogenesis by the ZO-1-regulated transcription factor ZONAB/DbpA. Mol. Cell. Biol. 26, 2387–2398 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stamatovic, S. M., Sladojevic, N., Keep, R. F. & Andjelkovic, A. V. Relocalization of junctional adhesion molecule a during inflammatory stimulation of brain endothelial cells. Mol. Cell. Biol. 32, 3414–3427 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tuma, P. L. & Hubbard, A. L. Transcytosis: crossing cellular barriers. Physiol. Rev. 83, 871–932 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Mayor, S., Parton, R. G. & Donaldson, J. G. Clathrin-independent pathways of endocytosis. Cold Spring Harb. Perspect. Biol. 6, a016758 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Villaseñor, R., Lampe, J., Schwaninger, M. & Collin, L. Intracellular transport and regulation of transcytosis across the blood–brain barrier. Cell. Mol. Life Sci. 76, 1081–1092 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Naslavsky, N. & Caplan, S. The enigmatic endosome — sorting the ins and outs of endocytic trafficking. J. Cell Sci. 131, jcs216499 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Parton, R. G. Caveolae: structure, function, and relationship to disease. Annu. Rev. Cell Dev. Biol. 34, 111–136 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. De Bock, M. et al. Into rather unexplored terrain — transcellular transport across the blood–brain barrier. Glia 64, 1097–1123 (2016).

    Article  PubMed  Google Scholar 

  63. Preston, J. E., Joan Abbott, N. & Begley, D. J. Transcytosis of macromolecules at the blood–brain barrier. Adv. Pharmacol. 71, 147–163 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Knowland, D. et al. Stepwise recruitment of transcellular and paracellular pathways underlies blood–brain barrier breakdown in stroke. Neuron 82, 603–617 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ye, X. et al. Norrin, Frizzled-4, and Lrp5 signaling in endothelial cells controls a genetic program for retinal vascularization. Cell 139, 285–298 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ye, X., Smallwood, P. & Nathans, J. Expression of the Norrie disease gene (Ndp) in developing and adult mouse eye, ear, and brain. Gene Expr. Patterns 11, 151–155 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Anbalagan, S. et al. Pituicyte cues regulate the development of permeable neuro-vascular interfaces. Dev. Cell 47, 711–726.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Cambier, S. et al. Integrin αvβ8-mediated activation of transforming growth factor-β by perivascular astrocytes: an angiogenic control switch. Am. J. Pathol. 166, 1883–1894 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gautam, J., Miner, J. H. & Yao, Y. Loss of endothelial laminin α5 exacerbates hemorrhagic brain injury. Transl Stroke Res. 10, 705–718 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bell, R. D. et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 485, 512–516 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Park, D. Y. et al. Plastic roles of pericytes in the blood–retinal barrier. Nat. Commun. 8, 15296 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Janzer, R. C. & Raff, M. C. Astrocytes induce blood–brain barrier properties in endothelial cells. Nature 325, 253–257 (1987).

    Article  CAS  PubMed  Google Scholar 

  73. Stewart, P. A. & Wiley, M. J. Developing nervous tissue induces formation of blood–brain barrier characteristics in invading endothelial cells: a study using quail-chick transplantation chimeras. Dev. Biol. 84, 183–192 (1981).

    Article  CAS  PubMed  Google Scholar 

  74. Daneman, R. & Prat, A. The blood–brain barrier. Cold Spring Harb. Perspect. Biol. 7, a020412 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bell, R. D. et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68, 409–427 (2010). This study shows that pericyte-deficient mice have progressively worsening BBB function as well as degeneration of the NVU.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Villaseñor, R. et al. Region-specific permeability of the blood–brain barrier upon pericyte loss. J. Cereb. Blood Flow. Metab. 37, 3683–3694 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Winkler, E. A., Sengillo, J. D., Bell, R. D., Wang, J. & Zlokovic, B. V. Blood–spinal cord barrier pericyte reductions contribute to increased capillary permeability. J. Cereb. Blood Flow. Metab. 32, 1841–1852 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nikolakopoulou, A. M. et al. Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss. Nat. Neurosci. 22, 1089–1098 (2019). Using an intersectional genetic approach, the authors genetically target pericytes specifically and avoid manipulating SMCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ruedl, C. & Jung, S. DTR-mediated conditional cell ablation — progress and challenges. Eur. J. Immunol. 48, 1114–1119 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. Reyahi, A. et al. Foxf2 is required for brain pericyte differentiation and development and maintenance of the blood–brain barrier. Dev. Cell 34, 19–32 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Diéguez-Hurtado, R. et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat. Commun. 10, 2817 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Kutuzov, N., Flyvbjerg, H. & Lauritzen, M. Contributions of the glycocalyx, endothelium, and extravascular compartment to the blood–brain barrier. Proc. Natl Acad. Sci. USA 115, E9429–E9438 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sofroniew, M. V. & Vinters, H. V. Astrocytes: biology and pathology. Acta Neuropathol. 119, 7–35 (2010).

    Article  PubMed  Google Scholar 

  84. Freeman, M. R. Specification and morphogenesis of astrocytes. Science 330, 774–778 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yao, Y., Chen, Z. L., Norris, E. H. & Strickland, S. Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nat. Commun. 5, 3413 (2014).

    Article  PubMed  CAS  Google Scholar 

  86. Chen, Z.-L. et al. Ablation of astrocytic laminin impairs vascular smooth muscle cell function and leads to hemorrhagic stroke. J. Cell Biol. 202, 381–395 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Schreiner, B. et al. Astrocyte depletion impairs redox homeostasis and triggers neuronal loss in the adult CNS. Cell Rep. 12, 1377–1384 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Tsai, H. H. et al. Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337, 358–362 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kubotera, H. et al. Astrocytic endfeet re-cover blood vessels after removal by laser ablation. Sci. Rep. 9, 1263 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Senatorov, V. V. et al. Blood–brain barrier dysfunction in aging induces hyperactivation of TGFβ signaling and chronic yet reversible neural dysfunction. Sci. Transl Med. 11, eaaw8283 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Alvarez, J. I. et al. The hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science 334, 1727–1732 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Li, F. et al. Endothelial Smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with Notch. Dev. Cell 20, 291–302 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Mizee, M. R. et al. Retinoic acid induces blood–brain barrier development. J. Neurosci. 33, 1660–1671 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sweeney, M. D., Ayyadurai, S. & Zlokovic, B. V. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat. Neurosci. 19, 771–783 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Obermeier, B., Daneman, R. & Ransohoff, R. M. Development, maintenance and disruption of the blood–brain barrier. Nat. Med. 19, 1584–1596 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Daneman, R. et al. Wnt/β-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc. Natl Acad. Sci. USA 106, 641–646 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liebner, S. et al. Wnt/β-catenin signaling controls development of the blood–brain barrier. J. Cell Biol. 183, 409–417 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang, Y. et al. Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity. Cell 151, 1332–1344 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhou, Y. & Nathans, J. Gpr124 controls CNS angiogenesis and blood-brain barrier integrity by promoting ligand-specific canonical Wnt signaling. Dev. Cell 31, 248–256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen, J. et al. Retinal expression of Wnt-pathway mediated genes in low-density lipoprotein receptor-related protein 5 (Lrp5) knockout mice. PLoS ONE 7, e30203 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, Y. et al. Interplay of the Norrin and Wnt7a/Wnt7b signaling systems in blood–brain barrier and blood–retina barrier development and maintenance. Proc. Natl Acad. Sci. USA 115, E11827–E11836 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Weindl, A. & Joynt, R. J. Barrier properties of the subcommissural organ. Arch. Neurol. 29, 16–22 (1973).

    Article  CAS  PubMed  Google Scholar 

  103. Ufnal, M. & Skrzypecki, J. Blood borne hormones in a cross-talk between peripheral and brain mechanisms regulating blood pressure, the role of circumventricular organs. Neuropeptides 48, 65–73 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Benz, F. et al. Low Wnt/β-catenin signaling determines leaky vessels in the subfornical organ and affects water homeostasis in mice. eLife 8, e43818 (2019). This study shows that β-catenin gain of function conveys barrier properties on the normally leaky subfornical organ, affecting neural activity in water-restricted mice.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Yu, L. et al. Wnt signaling is altered by spinal cord neuronal dysfunction in amyotrophic lateral sclerosis transgenic mice. Neurochem. Res. 38, 1904–1913 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. van Meeteren, L. A. & ten Dijke, P. Regulation of endothelial cell plasticity by TGF-β. Cell Tissue Res. 347, 177–186 (2012).

    Article  PubMed  CAS  Google Scholar 

  107. ten Dijke, P. & Arthur, H. M. Extracellular control of TGFβ signalling in vascular development and disease. Nat. Rev. Mol. Cell Biol. 8, 857–869 (2007).

    Article  PubMed  CAS  Google Scholar 

  108. Lan, Y. et al. Essential role of endothelial Smad4 in vascular remodeling and integrity. Mol. Cell. Biol. 27, 7683–7692 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Martin, J. S. et al. Analysis of homozygous TGFβ1 null mouse embryos demonstrates defects in yolk sac vasculogenesis and hematopoiesis. Ann. NY Acad. Sci. 752, 300–308 (1995).

    Article  CAS  PubMed  Google Scholar 

  110. Hellbach, N. et al. Neural deletion of Tgfbr2 impairs angiogenesis through an altered secretome. Hum. Mol. Genet. 23, 6177–6190 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Seo, J. H. et al. Oligodendrocyte precursor cells support blood-brain barrier integrity via TGF-β signaling. PLoS ONE 9, e103174 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Walshe, T. E. et al. TGF-β is required for vascular barrier function, endothelial survival and homeostasis of the adult microvasculature. PLoS ONE 4, e5149 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Ferrer-Vaquer, A. et al. A sensitive and bright single-cell resolution live imaging reporter of Wnt/β-catenin signaling in the mouse. BMC Dev. Biol. 10, 121 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lin, A. H. et al. Global analysis of Smad2/3-dependent TGF-β signaling in living mice reveals prominent tissue-specific responses to injury. J. Immunol. 175, 547–554 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Lacoste, B. & Gu, C. Control of cerebrovascular patterning by neural activity during postnatal development. Mech. Dev. 138, 43–49 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Whiteus, C., Freitas, C. & Grutzendler, J. Perturbed neural activity disrupts cerebral angiogenesis during a postnatal critical period. Nature 505, 407–411 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Lacoste, B. et al. Sensory-related neural activity regulates the structure of vascular networks in the cerebral cortex. Neuron 83, 1117–1130 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rosa, J. M. et al. Neuron-glia signaling in developing retina mediated by neurotransmitter spillover. eLife 4, 1–20 (2015).

    Article  Google Scholar 

  119. Feller, M. B., Wellis, D. P., Stellwagen, D., Werblin, F. S. & Shatz, C. J. Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science 272, 1182–1187 (1996).

    Article  CAS  PubMed  Google Scholar 

  120. Huberman, A. D., Feller, M. B. & Chapman, B. Mechanisms underlying development of visual maps and receptive fields. Annu. Rev. Neurosci. 31, 479–509 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Weiner, G. A. et al. Cholinergic neural activity directs retinal layer-specific angiogenesis and blood retinal barrier formation. Nat. Commun. 10, 2477 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hrvatin, S. et al. Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex. Nat. Neurosci. 21, 120–129 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Augustin, H. G., Young Koh, G., Thurston, G. & Alitalo, K. Control of vascular morphogenesis and homeostasis through the angiopoietin–Tie system. Nat. Rev. Mol. Cell Biol. 10, 165–177 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Vazana, U. et al. Glutamate-mediated blood–brain barrier opening: implications for neuroprotection and drug delivery. J. Neurosci. 36, 7727–7739 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lu, L. et al. Astrocytes drive cortical vasodilatory signaling by activating endothelial NMDA receptors. J. Cereb. Blood Flow. Metab. 39, 481–496 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. András, I. E. et al. The NMDA and AMPA/KA Receptors are involved in glutamate-induced alterations of occludin expression and phosphorylation in brain endothelial cells. J. Cereb. Blood Flow. Metab. 27, 1431–1443 (2007).

    Article  PubMed  CAS  Google Scholar 

  127. Moussawi, K., Riegel, A., Nair, S. & Kalivas, P. W. Extracellular glutamate: functional compartments operate in different concentration ranges. Front. Syst. Neurosci. 5, 94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Liu, J. P., Baker, J., Perkins, A. S., Robertson, E. J. & Efstratiadis, A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75, 59–72 (1993).

    CAS  PubMed  Google Scholar 

  129. Beck, K. D., Powell-Braxtont, L., Widmer, H. R., Valverde, J. & Hefti, F. Igf1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons. Neuron 14, 717–730 (1995).

    Article  CAS  PubMed  Google Scholar 

  130. Aberg, M. A., Aberg, N. D., Hedbäcker, H., Oscarsson, J. & Eriksson, P. S. Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J. Neurosci. 20, 2896–2903 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Trejo, J. L., Carro, E. & Torres-Aleman, I. Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J. Neurosci. 21, 1628–1634 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Nishijima, T. et al. Neuronal activity drives localized blood–brain-barrier transport of serum insulin-like growth factor-I into the CNS. Neuron 67, 834–846 (2010). This study shows that driving neural activity by either electrical or sensory stimulation leads to accumulation of IGF1 from the circulation in the stimulated brain regions.

    Article  CAS  PubMed  Google Scholar 

  133. Shen, J. et al. Neurovascular coupling in the dentate gyrus regulates adult hippocampal neurogenesis. Neuron 103, 878–890.e3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mañes, S. et al. The matrix metalloproteinase-9 regulates the insulin-like growth factor- triggered autocrine response in DU-145 carcinoma cells. J. Biol. Chem. 274, 6935–6945 (1999).

    Article  PubMed  Google Scholar 

  135. Reinhard, S. M., Razak, K. & Ethell, I. M. A delicate balance: role of MMP-9 in brain development and pathophysiology of neurodevelopmental disorders. Front. Cell. Neurosci. 9, 280 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Huang, S. S. et al. Cellular growth inhibition by IGFBP-3 and TGF-β1 requires LRP-1. FASEB J. 17, 2068–2081 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Zapf, A., Hsu, D. & Olefsky, J. M. Comparison of the intracellular itineraries of insulin-like growth factor-I and insulin and their receptors in rat-1 fibroblasts. Endocrinology 134, 2445–2452 (1994).

    Article  CAS  PubMed  Google Scholar 

  138. Nation, D. et al. Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 25, 270–276 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tomkins, O. et al. Frequent blood–brain barrier disruption in the human cerebral cortex. Cell. Mol. Neurobiol. 21, 675–691 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Milikovsky, D. Z. et al. Paroxysmal slow cortical activity in Alzheimer’s disease and epilepsy is associated with blood–brain barrier dysfunction. Sci. Transl Med. 11, eaaw8954 (2019).

    Article  PubMed  Google Scholar 

  141. Tărlungeanu, D. C. et al. Impaired amino acid transport at the blood brain barrier is a cause of autism spectrum disorder. Cell 167, 1481–1494.e18 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Winkler, E. A. et al. GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat. Neurosci. 18, 521–530 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Nguyen, L. N. et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 509, 503–506 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Guemez-Gamboa, A. et al. Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome. Nat. Genet. 47, 809–813 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Alakbarzade, V. et al. A partially inactivating mutation in the sodium-dependent lysophosphatidylcholine transporter MFSD2A causes a non-lethal microcephaly syndrome. Nat. Genet. 47, 814–817 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Chan, J. P. et al. The lysolipid transporter Mfsd2a regulates lipogenesis in the developing brain. PLoS Biol. 16, e2006443 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Menard, C. et al. Social stress induces neurovascular pathology promoting depression. Nat. Neurosci. 20, 1752–1760 (2017). This study shows that claudin 5 modulates BBB permeability, leading to susceptibility to social stress.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hodes, G. E. et al. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. Proc. Natl Acad. Sci.USA 111, 16136–16141 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chourbaji, S. et al. IL-6 knockout mice exhibit resistance to stress-induced development of depression-like behaviors. Neurobiol. Dis. 23, 587–594 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Shin Yim, Y. et al. Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature 549, 482–487 (2017).

    Article  PubMed  CAS  Google Scholar 

  151. Pan, W. & Kastin, A. J. The blood–brain barrier: regulatory roles in wakefulness and sleep. Neuroscientist 23, 124–136 (2017).

    Article  PubMed  Google Scholar 

  152. Zhang, S. L., Yue, Z., Arnold, D. M., Artiushin, G. & Sehgal, A. A circadian clock in the blood–brain barrier regulates xenobiotic efflux. Cell 173, 130–139.e10 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Berthiaume, A. A. et al. Dynamic remodeling of pericytes in vivo maintains capillary coverage in the adult mouse brain. Cell Rep. 22, 8–16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sherington, C. S. & Roy, C. S. On the regulation of the blood-supply of the brain. J. Physiol. 11, 85–158.17 (1980).

    Google Scholar 

  155. Hillman, E. M. C. Coupling mechanism and significance of the BOLD signal: a status report. Annu. Rev. Neurosci. 37, 161–181 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. O’Herron, P. et al. Neural correlates of single-vessel haemodynamic responses in vivo. Nature 534, 378–382 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Tran, C. H. T., Peringod, G. & Gordon, G. R. Astrocytes integrate behavioral state and vascular signals during functional hyperemia. Neuron 100, 1133–1148.e3 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Kisler, K., Nelson, A. R., Montagne, A. & Zlokovic, B. V. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 18, 419–434 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Iadecola, C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96, 17–42 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Blinder, P. et al. The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow. Nat. Neurosci. 16, 889–897 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Shen, Z., Lu, Z., Chhatbar, P. Y., O’Herron, P. & Kara, P. An artery-specific fluorescent dye for studying neurovascular coupling. Nat. Methods 9, 273–276 (2012). This study serendipitously identifies a dye, Hydrazide 633, that can robustly label arteries.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hill, R. A. et al. Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87, 95–110 (2015). This study used Acta2 (encoding SMA) as a molecular marker to distinguish SMCs and pericytes and reports that only SMA + mural cells display vasomotion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Damisah, E. C., Hill, R. A., Tong, L., Murray, K. N. & Grutzendler, J. A fluoro-Nissl dye identifies pericytes as distinct vascular mural cells during in vivo brain imaging. Nat. Neurosci. 20, 1023–1032 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hall, C. N. et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508, 55–60 (2014). This study, which uses morphological and general mural cell markers, reports that pericytes on capillaries can dilate on neural activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kisler, K. et al. Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat. Neurosci. 20, 406–416 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kisler, K. et al. Acute ablation of cortical pericytes leads to rapid neurovascular uncoupling. Front. Cell. Neurosci. 14, 27 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Montagne, A. et al. Pericyte degeneration causes white matter dysfunction in the mouse central nervous system. Nat. Med. 24, 326–337 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Armulik, A., Genové, G. & Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  169. Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical areas. Nature 563, 72–78 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Mishra, A. et al. Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles. Nat. Neurosci. 19, 1619–1627 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Wang, H. U., Chen, Z. F. & Anderson, D. J. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741–753 (1998).

    Article  CAS  PubMed  Google Scholar 

  172. Lee, J. H. et al. Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 465, 788–792 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ji, L. et al. Cortical neurovascular coupling driven by stimulation of channelrhodopsin-2. PLoS ONE 7, e46607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Lacroix, A. et al. COX-2-derived prostaglandin E2 produced by pyramidal neurons contributes to neurovascular coupling in the rodent cerebral cortex. J. Neurosci. 35, 11791–11810 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Vaucher, E., Tong, X. K., Cholet, N., Lantin, S. & Hamel, E. GABA neurons provide a rich input to microvessels but not nitric oxide neurons in the rat cerebral cortex: a means for direct regulation of local cerebral blood flow. J. Comp. Neurol. 421, 161–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  176. Anenberg, E., Chan, A. W., Xie, Y., LeDue, J. M. & Murphy, T. H. Optogenetic stimulation of GABA neurons can decrease local neuronal activity while increasing cortical blood flow. J. Cereb. Blood Flow. Metab. 35, 1579–1586 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Uhlirova, H. et al. Cell type specificity of neurovascular coupling in cerebral cortex. eLife 5, e14315 (2016). This study finds that selective activation of GABAergic interneurons can also induce NVC, despite an overall net decreased in neural activity. Furthermore, the authors show that NPY + interneurons may modulate the vasoconstriction phase.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Devor, A. et al. Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal. J. Neurosci. 27, 4452–4459 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Longden, T. A. et al. Capillary K+-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nat. Neurosci. 20, 717–726 (2017). This study finds that capillary ECs express the Kir2.1 potassium channel to sense neural activity and can relay this information through propagation of hyperpolarization to upstream arteries.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Niwa, K., Araki, E., Morham, S. G., Ross, M. E. & Iadecola, C. Cyclooxygenase-2 contributes to functional hyperemia in whisker-barrel cortex. J. Neurosci. 20, 763–770 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Edvinsson, L., Ekman, R., Jansen, I., Ottosson, A. & Uddman, R. Peptide-containing nerve fibers in human cerebral arteries: Immunocytochemistry, radioimmunoassay and in vitro pharmacology. Ann. Neurol. 21, 431–437 (1987).

    Article  CAS  PubMed  Google Scholar 

  182. Huang, M. & Rorstad, O. P. Effects of vasoactive intestinal polypeptide, monoamines, prostaglandins, and 2-chloroadenosine on adenylate cyclase in rat cerebral microvessels. J. Neurochem. 40, 719–726 (1983).

    Article  CAS  PubMed  Google Scholar 

  183. Cauli, B. et al. Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J. Neurosci. 24, 8940–8949 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Perrenoud, Q. et al. Characterization of type I and type II nNOS-expressing interneurons in the barrel cortex of mouse. Front. Neural Circuits 6, 1–31 (2012).

    Google Scholar 

  185. Ma, J., Ayata, C., Huang, P. L., Fishman, M. C. & Moskowitz, M. A. Regional cerebral blood flow response to vibrissal stimulation in mice lacking type I NOS gene expression. Am. J. Physiol. 270, H1085–H1090 (1996).

    CAS  PubMed  Google Scholar 

  186. Yang, G., Zhang, Y., Ross, M. E. & Iadecola, C. Attenuation of activity-induced increases in cerebellar blood flow in mice lacking neuronal nitric oxide synthase. Am. J. Physiol. Heart Circ. Physiol. 285, 298–304 (2003).

    Article  Google Scholar 

  187. Takano, T. et al. Astrocyte-mediated control of cerebral blood flow. Nat. Neurosci. 9, 260–267 (2006).

    Article  CAS  PubMed  Google Scholar 

  188. Filosa, J. A. et al. Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat. Neurosci. 9, 1397–1403 (2006).

    Article  CAS  PubMed  Google Scholar 

  189. Zonta, M. et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci. 6, 43–50 (2003).

    Article  CAS  PubMed  Google Scholar 

  190. Sun, W. et al. Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science 339, 197–200 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Niwa, K., Haensel, C., Ross, M. E. & Iadecola, C. Cyclooxygenase-1 participates in selected vasodilator responses of the cerebral circulation. Circ. Res. 88, 600–608 (2001).

    Article  CAS  PubMed  Google Scholar 

  192. Bonder, D. E. & McCarthy, K. D. Astrocytic Gq-GPCR-linked IP3R-dependent Ca2+ signaling does not mediate neurovascular coupling in mouse visual cortex in vivo. J. Neurosci. 34, 13139–13150 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Nizar, K. et al. In vivo stimulus-induced vasodilation occurs without IP3 receptor activation and may precede astrocytic calcium increase. J. Neurosci. 33, 8411–8422 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Takata, N. et al. Cerebral blood flow modulation by basal forebrain or whisker stimulation can occur independently of large cytosolic Ca2+ signaling in astrocytes. PLoS ONE 8, e66525 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Girouard, H. et al. Astrocytic endfoot Ca2+ and BK channels determine both arteriolar dilation and constriction. Proc. Natl Acad. Sci. USA 107, 3811–3816 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Attwell, D. et al. Glial and neuronal control of brain blood flow. Nature 468, 232–243 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Chen, B. R., Kozberg, M. G., Bouchard, M. B., Shaik, M. A. & Hillman, E. M. C. A critical role for the vascular endothelium in functional neurovascular coupling in the brain. J. Am. Heart Assoc. 3, e000787 (2014). This is the first study to highlight the importance of ECs in NVC, proposing the retrograde propagation model.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Won, C. et al. Autonomous vascular networks synchronize GABA neuron migration in the embryonic forebrain. Nat. Commun. 4, 2149 (2013).

    Article  PubMed  CAS  Google Scholar 

  199. Hogan-Cann, A. D., Lu, P. & Anderson, C. M. Endothelial NMDA receptors mediate activity-dependent brain hemodynamic responses in mice. Proc. Natl Acad. Sci. USA 116, 10229–10231 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Li, S. et al. Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior. Cell Res. 28, 221–248 (2018).

    Article  CAS  PubMed  Google Scholar 

  201. Tallini, Y. N. et al. Propagated endothelial Ca2+ waves and arteriolar dilation in vivo: Measurements in Cx40BAC-GCaMP2 transgenic mice. Circ. Res. 101, 1300–1309 (2007).

    Article  CAS  PubMed  Google Scholar 

  202. Reaume, A. et al. Cardiac malformation in neonatal mice lacking connexin43. Science 267, 1831–1834 (1995).

    Article  CAS  PubMed  Google Scholar 

  203. Kruger, O. et al. Defective vascular development in connexin 45-deficient mice. Development 127, 4179–4193 (2000).

    Article  CAS  PubMed  Google Scholar 

  204. Kumai, M. et al. Loss of connexin45 causes a cushion defect in early cardiogenesis. Development 127, 3501–3512 (2000).

    Article  CAS  PubMed  Google Scholar 

  205. Simon, A. M. & McWhorter, A. R. Decreased intercellular dye-transfer and downregulation of non-ablated connexins in aortic endothelium deficient in connexin37 or connexin40. J. Cell Sci. 116, 2223–2236 (2003).

    Article  CAS  PubMed  Google Scholar 

  206. Saliez, J. et al. Role of caveolar compartmentation in endothelium-derived hyperpolarizing factor–mediated relaxation. Circulation 117, 1065–1074 (2008).

    Article  CAS  PubMed  Google Scholar 

  207. Zechariah, A. et al. Intercellular conduction optimizes arterial network function and conserves blood flow homeostasis during cerebrovascular challenges. Arterioscler. Thromb. Vasc. Biol. 40, 733–750 (2020).

    Article  CAS  PubMed  Google Scholar 

  208. Lagaud, G., Karicheti, V., Knot, H. J., Christ, G. J. & Laher, I. Inhibitors of gap junctions attenuate myogenic tone in cerebral arteries. Am. J. Physiol. Circ. Physiol. 283, H2177–H2186 (2002).

    Article  CAS  Google Scholar 

  209. Watanabe, N., Sasaki, S., Masamoto, K. & Hotta, H. Vascular gap junctions contribute to forepaw stimulation-induced vasodilation differentially in the pial and penetrating arteries in isoflurane-anesthetized rats. Front. Mol. Neurosci. 11, 446 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Tare, M., Coleman, H. A. & Parkington, H. C. Glycyrrhetinic derivatives inhibit hyperpolarization in endothelial cells of guinea pig and rat arteries. Am. J. Physiol. 282, 335–341 (2002).

    Google Scholar 

  211. Matchkov, V. V., Rahman, A., Peng, H., Nilsson, H. & Aalkjær, C. Junctional and nonjunctional effects of heptanol and glycyrrhetinic acid derivates in rat mesenteric small arteries. Br. J. Pharmacol. 142, 961–972 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Connors, B. W. Tales of a dirty drug: carbenoxolone, gap junctions, and seizures. Epilepsy Curr. 12, 66–68 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Hannah, R. M., Dunn, K. M., Bonev, A. D. & Nelson, M. T. Endothelial SKCa and IKCa channels regulate brain parenchymal arteriolar diameter and cortical cerebral blood flow. J. Cereb. Blood Flow. Metab. 31, 1175–1186 (2011).

    Article  CAS  PubMed  Google Scholar 

  214. Chow, B. W. et al. Caveolae in CNS arterioles mediate neurovascular coupling. Nature 579, 106–110 (2020). This study demonstrates caveolae play an active role in aECs in mediating NVC. It also demonstrates loss of caveolae and eNOS leads to a complete loss of NVC in the barrel cortex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Wendling, O., Bornert, J. M., Chambon, P. & Metzger, D. Efficient temporally-controlled targeted mutagenesis in smooth muscle cells of the adult mouse. Genesis 47, 14–18 (2009).

    Article  CAS  PubMed  Google Scholar 

  216. Armstrong, J. J., Larina, I. V., Dickinson, M. E., Zimmer, W. E. & Hirschi, K. K. Characterization of bacterial artificial chromosome transgenic mice expressing mCherry fluorescent protein substituted for the murine smooth muscle alpha-actin gene. Genesis 48, 457–463 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Wirth, A. et al. G12-G13-LARG-mediated signaling in vascular smooth muscle is required for salt-induced hypertension. Nat. Med. 14, 64–68 (2008).

    Article  CAS  PubMed  Google Scholar 

  218. Long, X. et al. Smooth muscle calponin: An unconventional CArG-dependent gene that antagonizes neointimal formation. Arterioscler. Thromb. Vasc. Biol. 31, 2172–2180 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Holtwick, R. et al. Smooth muscle-selective deletion of guanylyl cyclase-A prevents the acute but not chronic effects of ANP on blood pressure. Proc. Natl Acad. Sci. USA 99, 7142–7147 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Ando, K. et al. Peri-arterial specification of vascular mural cells from naïve mesenchyme requires Notch signaling. Development 146, dev165589 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Ehling, M., Adams, S., Benedito, R. & Adams, R. H. Notch controls retinal blood vessel maturation and quiescence. Development 140, 3051–3061 (2013).

    Article  CAS  PubMed  Google Scholar 

  222. Rajantie, I. et al. Bmx tyrosine kinase has a redundant function downstream of angiopoietin and vascular endothelial growth factor receptors in arterial endothelium. Mol. Cell. Biol. 21, 4647–4655 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Miquerol, L. et al. Endothelial plasticity drives arterial remodeling within the endocardium after myocardial infarction. Circ. Res. 116, 1765–1771 (2015).

    Article  CAS  PubMed  Google Scholar 

  224. Pu, W. et al. Mfsd2a+ hepatocytes repopulate the liver during injury and regeneration. Nat. Commun. 7, 13369 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Lyck, R. et al. Culture-induced changes in blood–brain barrier transcriptome: implications for amino-acid transporters in vivo. J. Cereb. Blood Flow Metab. 29, 1491–1502 (2009).

    Article  CAS  PubMed  Google Scholar 

  226. Urich, E., Lazic, S. E., Molnos, J., Wells, I. & Freskgård, P. O. Transcriptional profiling of human brain endothelial cells reveals key properties crucial for predictive in vitro blood–brain barrier models. PLoS ONE 7, e38149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Miranda-Azpiazu, P., Panagiotou, S., Jose, G. & Saha, S. A novel dynamic multicellular co-culture system for studying individual blood–brain barrier cell types in brain diseases and cytotoxicity testing. Sci. Rep. 8, 8784 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Neal, E. H. et al. A Simplified, fully defined differentiation scheme for producing blood–brain barrier endothelial cells from human iPSCs. Stem Cell Rep. 12, 1380–1388 (2019).

    Article  CAS  Google Scholar 

  229. Lippmann, E. S. et al. Derivation of blood–brain barrier endothelial cells from human pluripotent stem cells. Nat. Biotechnol. 30, 783–791 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Lippmann, E. S., Al-Ahmad, A., Azarin, S. M., Palecek, S. P. & Shusta, E. V. A retinoic acid-enhanced, multicellular human blood–brain barrier model derived from stem cell sources. Sci. Rep. 4, 4160 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Cho, C. F. et al. Blood–brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents. Nat. Commun. 8, 15623 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Park, T. E. et al. Hypoxia-enhanced blood–brain barrier chip recapitulates human barrier function and shuttling of drugs and antibodies. Nat. Commun. 10, 2621 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Srinivasan, B. et al. TEER measurement techniques for in vitro barrier model systems. J. Lab. Autom. 20, 107–126 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Taheri, S., Gasparovic, C., Shah, N. J. & Rosenberg, G. A. Quantitative measurement of blood-brain barrier permeability in human using dynamic contrast-enhanced MRI with fast T1 mapping. Magn. Reson. Med. 65, 1036–1042 (2011).

    Article  PubMed  Google Scholar 

  236. Heye, A. K., Culling, R. D., Valdés Hernández, M. D. C., Thrippleton, M. J. & Wardlaw, J. M. Assessment of blood-brain barrier disruption using dynamic contrast-enhanced MRI. A systematic review. Neuroimage Clin. 6, 262–274 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Sweeney, M. D., Sagare, A. P. & Zlokovic, B. V. Cerebrospinal fluid biomarkers of neurovascular dysfunction in mild dementia and Alzheimer’s disease. J. Cereb. Blood Flow. Metab. 35, 1055–1068 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Mulligan, S. J. & MacVicar, B. A. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431, 195–199 (2004).

    Article  CAS  PubMed  Google Scholar 

  239. He, L., Linden, D. J. & Sapirstein, A. Astrocyte inositol triphosphate receptor type 2 and cytosolic phospholipase A2 alpha regulate arteriole responses in mouse neocortical brain slices. PLoS ONE 7, e42194 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Liang, Z., King, J. & Zhang, N. Anticorrelated resting-state functional connectivity in awake rat brain. Neuroimage 59, 1190–1199 (2012).

    Article  PubMed  Google Scholar 

  241. Nimmerjahn, A., Mukamel, E. A. & Schnitzer, M. J. Motor behavior activates Bergmann glial networks. Neuron 62, 400–412 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Maekawa, T., Tommasino, C., Shapiro, H. M., Keifer-Goodman, J. & Kohlenberger, R. W. Local cerebral blood flow and glucose utilization during isoflurane anesthesia in the rat. Anesthesiology 65, 144–151 (1986).

    Article  CAS  PubMed  Google Scholar 

  243. Tsubokawa, T. et al. Changes in local cerebral blood flow and neuronal activity during sensory stimulation in normal and sympathectomized cats. Brain Res. 190, 51–65 (1980).

    Article  CAS  PubMed  Google Scholar 

  244. Miyauchi, Y., Sakabe, T., Maekawa, T., Ishikawa, T. & Takeshita, H. Responses of EEG, cerebral oxygen consumption and blood flow to peripheral nerve stimulation during thiopentone anaesthesia in the dog. Can. Anaesth. Soc. J. 32, 491–498 (1985).

    Article  CAS  PubMed  Google Scholar 

  245. Lindauer, U., Villringer, A. & Dirnagl, U. Characterization of CBF response to somatosensory stimulation: model and influence of anesthetics. Am. J. Physiol. 264, H1223–H1228 (1993).

    CAS  PubMed  Google Scholar 

  246. Aksenov, D. P., Li, L., Miller, M. J., Iordanescu, G. & Wyrwicz, A. M. Effects of anesthesia on BOLD signal and neuronal activity in the somatosensory cortex. J. Cereb. Blood Flow. Metab. 35, 1819–1826 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Ueki, M., Mies, G. & Hossmann, K.-A. Effect of alpha-chloralose, halothane, pentobarbital and nitrous oxide anesthesia on metabolic coupling in somatosensory cortex of rat. Acta Anaesthesiol. Scand. 36, 318–322 (1992).

    Article  CAS  PubMed  Google Scholar 

  248. Lyons, D. G., Parpaleix, A., Roche, M. & Charpak, S. Mapping oxygen concentration in the awake mouse brain. eLife 5, e12024 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Andrea Pisauro, M., Dhruv, N. T., Carandini, M. & Benucci, A. Fast hemodynamic responses in the visual cortex of the awake mouse. J. Neurosci. 33, 18343–18351 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Urban, D. J. & Roth, B. L. DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu. Rev. Pharmacol. Toxicol. 55, 399–417 (2015).

    Article  CAS  PubMed  Google Scholar 

  251. Smith, C. J. et al. Pharmacological analysis of cyclooxygenase-1 in inflammation. Proc. Natl Acad. Sci. USA 95, 13313–13318 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all the Gu laboratory members for reading and providing feedback on the Review. This work was supported by a Quan Fellowship (B.W.C.), a Mahoney Postdoctoral Fellowship (L.K.), a US National Institutes of Health Pioneer Award (DP1-NS092473 to C.G.), The Paul G. Allen Frontiers Group, Allen Distinguished Investigator (C.G.), NIH/NIDA, BRAIN Initiative Grant (C.G.) and the Fidelity Biosciences Research Initiative (C.G.). The research of C.G. was also supported in part by a Faculty Scholar grant from the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the article’s content, wrote the article, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Chenghua Gu.

Ethics declarations

Competing interests

This research was funded by the Fidelity Biosciences Research Initiative. C.G. is listed as a co-inventor on the following patent application: ‘Methods and compositions relating to modulation of the permeability of the blood–brain barrier’, inventors C.G. and A. Ben-Zvi; US Patent Application 14/897,264.

Additional information

Peer review information

Nature Reviews Neuroscience thanks S. Liebner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Blood–brain barrier

(BBB). A physiological barrier formed by CNS endothelial cells to regulate the trafficking of molecules between the blood and the brain.

Neurovascular coupling

(NVC). The process by which local neural activation can rapidly increase local blood flow; it is the basis of functional MRI.

Mural cell

A collective term to describe the cell types that wrap around blood vessels, including the smooth muscle cells on arteries and pericytes on capillaries

Caveolae

Flask-shaped vesicular structures formed by caveolins, approximately 70 nm in diameter.

Diphtheria toxin

A toxin that inhibits protein synthesis, leading to cell death.

Angiogenesis

Growth of new blood vessels from existing blood vessels.

Circumventricular organs

(CVOs). Midline brain structures with permeable vasculature allowing ready exchange of molecules between neurons and the blood.

Polyinosinic:polycytidylic acid

Synthetic mimic of double-stranded RNA mimicking the effect of viral infection on the immune system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaplan, L., Chow, B.W. & Gu, C. Neuronal regulation of the blood–brain barrier and neurovascular coupling. Nat Rev Neurosci 21, 416–432 (2020). https://doi.org/10.1038/s41583-020-0322-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-020-0322-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing