Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular senescence and Alzheimer disease: the egg and the chicken scenario

An Author Correction to this article was published on 13 August 2020

This article has been updated

Abstract

Globally, 50 million people live with dementia, with Alzheimer disease (AD) being responsible for two-thirds of the total cases. As ageing is the main risk factor for dementia-related neurodegeneration, changes in the timing or nature of the cellular hallmarks of normal ageing might be key to understanding the events that convert normal ageing into neurodegeneration. Cellular senescence is a candidate mechanism that might be important for this conversion. Under persistent stress, as occurs in ageing, both postmitotic cells — including neurons — and proliferative cells — such as astrocytes and microglia, among others — can engender a state of chronic cellular senescence that is characterized by the secretion of pro-inflammatory molecules that promote the functional decline of tissues and organs. Ablation of senescent cells has been postulated as a promising therapeutic venue to target the ageing phenotype and, thus, prevent or mitigate ageing-related diseases. However, owing to a lack of evidence, it is not possible to label cellular senescence as a cause or a consequence of neurodegeneration. This Review examines cellular senescence in the context of ageing and AD, and discusses which of the processes — cellular senescence or AD — might come first.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Role of senescence in the context of ageing, Alzheimer disease and Alzheimer disease-related dementias.
Fig. 2: Cellular mechanisms and phenotypic features of senescent cells in ageing and neurodegeneration.
Fig. 3: Alzheimer disease pathology in the context of myelin fragmentation and senescence.

Similar content being viewed by others

Change history

References

  1. Wortmann, M. World Alzheimer Report 2014: dementia and risk reduction. Alzheimer’s Dement. 11, P837 (2015).

    Google Scholar 

  2. Winblad, B. et al. Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol. 15, 455–532 (2016).

    Article  PubMed  Google Scholar 

  3. Ritchie, K. & Lovestone, S. The dementias. Lancet 360, 1759–1766 (2002).

    Article  PubMed  Google Scholar 

  4. Corriveau, R. A. et al. Alzheimer’s Disease-Related Dementias Summit 2016: national research priorities. Neurology 89, 2381–2391 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hou, Y. et al. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 15, 565–581 (2019).

    Article  PubMed  Google Scholar 

  6. Soto, C. & Pritzkow, S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat. Neurosci. 21, 1332–1340 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Golde, T. E., Borchelt, D. R., Giasson, B. I. & Lewis, J. Thinking laterally about neurodegenerative proteinopathies. J. Clin. Invest. 123, 1847–1855 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yen, S. H., Dickson, D. W., Crowe, A., Butler, M. & Shelanski, M. L. Alzheimer’s neurofibrillary tangles contain unique epitopes and epitopes in common with the heat-stable microtubule associated proteins tau and MAP2. Am. J. Pathol. 126, 81–91 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Grundke-Iqbal, I. et al. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl Acad. Sci. USA 83, 4913–4917 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kosik, K. S., Joachim, C. L. & Selkoe, D. J. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl Acad. Sci. USA 83, 4044–4048 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Glenner, G. G. & Wong, C. W. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. Masters, C. L. et al. Amyloid plaque core protein in Alzheimer disease and down syndrome. Proc. Natl Acad. Sci. USA 82, 4245–4249 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Spillantini, M. G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Arai, T. et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 351, 602–611 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Elobeid, A., Libard, S., Leino, M., Popova, S. N. & Alafuzoff, I. Altered proteins in the aging brain. J. Neuropathol. Exp. Neurol. 75, 316–325 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wyss-Coray, T. Ageing, neurodegeneration and brain rejuvenation. Nature 539, 180–186 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kennedy, B. K. et al. Geroscience: linking aging to chronic disease. Cell 159, 709–713 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baker, D. J. & Petersen, R. C. Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. J. Clin. Invest. 128, 1208–1216 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636 (1965).

    Article  CAS  PubMed  Google Scholar 

  22. Kuilman, T., Michaloglou, C., Mooi, W. J. & Peeper, D. S. The essence of senescence. Genes. Dev. 24, 2463–2479 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Coppé, J.-P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008).

    Article  PubMed  CAS  Google Scholar 

  24. van Deursen, J. M. The role of senescent cells in ageing. Nature 509, 439–446 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Salminen, A., Kauppinen, A. & Kaarniranta, K. Emerging role of NF-κB signaling in the induction of senescence-associated secretory phenotype (SASP). Cell. Signal. 24, 835–845 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Bussian, T. J. et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562, 578–582 (2018). This research paper shows that clearance of senescent astrocytes and microglia in a mouse model of tauopathy (MAPTP301SPS19 mice) alleviates NFT formation and gliosis with a consequent improvement in cognition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Musi, N. et al. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell 17, e12840 (2018). This article finds that the formation of tau-containing NFTs activates senescence in both human and mouse NFT-containing neurons.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Zhang, P. et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat. Neurosci. 22, 719–728 (2019). This paper shows that senescent OPCs accumulate around amyloid plaque deposition in samples of mice and human brains with AD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tan, F. C. C., Hutchison, E. R., Eitan, E. & Mattson, M. P. Are there roles for brain cell senescence in aging and neurodegenerative disorders? Biogerontology 15, 643–660 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486–541 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tavana, O. et al. Absence of p53-dependent apoptosis leads to UV radiation hypersensitivity, enhanced immunosuppression and cellular senescence. Cell Cycle 9, 3328–3336 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, Q. M., Juping, L. I. U. & Merrett, J. B. Apoptosis or senescence-like growth arrest: influence of cell-cycle position, p53, p21 and bax in H2O2 response of normal human fibroblasts. Biochem. J. 347, 543–551 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    Article  CAS  PubMed  Google Scholar 

  34. Song, Y. S., Lee, B. Y. & Hwang, E. S. Dinstinct ROS and biochemical profiles in cells undergoing DNA damage-induced senescence and apoptosis. Mech. Ageing Dev. 126, 580–590 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Spallarossa, P. et al. Doxorubicin induces senescence or apoptosis in rat neonatal cardiomyocytes by regulating the expression levels of the telomere binding factors 1 and 2. Am. J. Physiol. Heart Circ. Physiol. 297, H2169–H2181 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Kuilman, T. et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019–1031 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Özcan, S. et al. Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses. Aging 8, 1316–1329 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Coppé, J.-P., Desprez, P.-Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Freund, A., Orjalo, A. V., Desprez, P.-Y. & Campisi, J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol. Med. 16, 238–246 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ovadya, Y. et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat. Commun. 9, 5435 (2018). This article provides evidence to support the notion that impaired immune surveillance contributes to the accumulation of senescent cells in ageing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lanna, A., Henson, S. M., Escors, D. & Akbar, A. N. The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nat. Immunol. 15, 965–972 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, A. S., Ong, P. F., Chojnowski, A., Clavel, C. & Dreesen, O. Loss of lamin B1 is a biomarker to quantify cellular senescence in photoaged skin. Sci. Rep. 7, 15678 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Helman, A. et al. p16Ink4a-induced senescence of pancreatic β cells enhances insulin secretion. Nat. Med. 22, 412–420 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thompson, P. J. et al. Targeted elimination of senescent β cells prevents type 1 diabetes. Cell Metab. 29, e10 (2019).

    Article  CAS  Google Scholar 

  46. He, S. & Sharpless, N. E. Senescence in health and disease. Cell 169, 1000–1011 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Riessland, M. et al. Loss of SATB1 induces p21-dependent cellular senescence in post-mitotic dopaminergic neurons. Cell Stem Cell 25, 514–530.e8 (2019). This paper finds that the expression of SATB1, a genetic risk factor in Parkinson disease that encodes a regulator of senescence in dopaminergic neurons specifically, is reduced in the substantia nigra of brain tissue from individuals with sporadic Parkinson disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Arendt, T., Holzer, M. & Gärtner, U. Neuronal expression of cycline dependent kinase inhibitors of the INK4 family in Alzheimer’s disease. J. Neural Transm. 105, 949–960 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Gärtner, U., Holzer, M., Heumann, R. & Arendt, T. Induction of p21ras in Alzheimer pathology. NeuroReport 6, 1441–1444 (1995).

    Article  PubMed  Google Scholar 

  50. Anderson, R. et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J. 38, e100492 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Maejima, Y., Adachi, S., Ito, H., Hirao, K. & Isobe, M. Induction of premature senescence in cardiomyocytes by doxorubicin as a novel mechanism of myocardial damage. Aging Cell 7, 125–136 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Gorissen, B. et al. Hypoxia negatively affects senescence in osteoclasts and delays osteoclastogenesis. J. Cell. Physiol. 234, 414–426 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Farr, J. N. et al. Identification of senescent cells in the bone microenvironment. J. Bone Miner. Res. 31, 1920–1929 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Storer, M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119–1130 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Campisi, J. Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol. 11, S27–S31 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Rodríguez, J. A. et al. Antagonistic pleiotropy and mutation accumulation influence human senescence and disease. Nat. Ecol. Evol. 1, 55 (2017).

    Article  PubMed  Google Scholar 

  59. Sharpless, N. E. & Sherr, C. J. Forging a signature of in vivo senescence. Nat. Rev. Cancer 15, 397–408 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Hernandez-Segura, A. et al. Unmasking transcriptional heterogeneity in senescent cells. Curr. Biol. 27, 2652–2660.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Herbig, U., Jobling, W. A., Chen, B. P. C., Chen, D. J. & Sedivy, J. M. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21CIP1, but not p16INK4a. Mol. Cell 14, 501–513 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Bodnar, A. G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Sedelnikova, O. A. et al. Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nat. Cell Biol. 6, 168–170 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Stöckl, P., Hütter, E., Zwerschke, W. & Jansen-Dürr, P. Sustained inhibition of oxidative phosphorylation impairs cell proliferation and induces premature senescence in human fibroblasts. Exp. Gerontol. 41, 674–682 (2006).

    Article  PubMed  CAS  Google Scholar 

  65. Sasaki, M., Kajiya, H., Ozeki, S., Okabe, K. & Ikebe, T. Reactive oxygen species promotes cellular senescence in normal human epidermal keratinocytes through epigenetic regulation of p16INK4a. Biochem. Biophys. Res. Commun. 452, 622–628 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Gorgoulis, V. G. & Halazonetis, T. D. Oncogene-induced senescence: the bright and dark side of the response. Curr. Opin. Cell Biol. 22, 816–827 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Sabin, R. J. & Anderson, R. M. Cellular senescence — its role in cancer and the response to ionizing radiation. Genome Integr. 2, 7 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chapman, J., Fielder, E. & Passos, J. F. Mitochondrial dysfunction and cell senescence: deciphering a complex relationship. FEBS Lett. 593, 1566–1579 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Safaiyan, S. et al. Age-related myelin degradation burdens the clearance function of microglia during aging. Nat. Neurosci. 19, 995–998 (2016). This paper shows that age-dependent myelin fragmentation could contribute to the overload of microglial lysosomes, and that these microglial cells exhibit markers of senescence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Caldeira, C. et al. Key aging-associated alterations in primary microglia response to β-amyloid stimulation. Front. Aging Neurosci. 9, 277 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Wiley, C. D. et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 23, 303–314 (2016). This paper shows that mitochondrial impairment is capable of inducing mitochondrial dysfunction-associated senescence, which causes growth arrest and is associated with an SASP of a particular composition.

    Article  CAS  PubMed  Google Scholar 

  72. d’Adda di Fagagna, F. Living on a break: cellular senescence as a DNA-damage response. Nat. Rev. Cancer 8, 512–522 (2008).

    Article  PubMed  CAS  Google Scholar 

  73. Burma, S., Chen, B. P., Murphy, M., Kurimasa, A. & Chen, D. J. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J. Biol. Chem. 276, 42462–42467 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Lou, Z., Minter-Dykhouse, K., Wu, X. & Chen, J. MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways. Nature 421, 957–961 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Stucki, M. et al. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123, 1213–1226 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Huyen, Y. et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432, 406–411 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Buscemi, G. et al. Activation of ATM and Chk2 kinases in relation to the amount of DNA strand breaks. Oncogene 23, 7691–7700 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Smits, V. A. J., Reaper, P. M. & Jackson, S. P. Rapid PIKK-dependent release of Chk1 from chromatin promotes the DNA-damage checkpoint response. Curr. Biol. 16, 150–159 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Martínez-Zamudio, R. I., Robinson, L., Roux, P.-F. & Bischof, O. SnapShot: cellular senescence pathways. Cell 170, 816–816.e1 (2017).

    Article  PubMed  CAS  Google Scholar 

  80. Herranz, N. & Gil, J. Mechanisms and functions of cellular senescence. J. Clin. Invest. 128, 1238–1246 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bracken, A. P. et al. The Polycomb group proteins bind throughout the INK4A–ARF locus and are disassociated in senescent cells. Genes. Dev. 21, 525–530 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gil, J. & Peters, G. Regulation of the INK4b–ARF–INK4a tumour suppressor locus: all for one or one for all. Nat. Rev. Mol. Cell Biol. 7, 667–677 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Lee, S. & Schmitt, C. A. The dynamic nature of senescence in cancer. Nat. Cell Biol. 21, 94–101 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Krishnamurthy, J. et al. Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 114, 1299–1307 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu, J.-Y. et al. Cells exhibiting strong p16INK4a promoter activation in vivo display features of senescence. Proc. Natl Acad. Sci. USA 116, 2603–2611 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chkhotua, A. B. et al. Increased expression of p16INK4a and p27Kip1 cyclin-dependent kinase inhibitor genes in aging human kidney and chronic allograft nephropathy. Am. J. Kidney Dis. 41, 1303–1313 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Kajstura, J. et al. Telomere shortening is an in vivo marker of myocyte replication and aging. Am. J. Pathol. 156, 813–819 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hsu, C.-H., Altschuler, S. J. & Wu, L. F. Patterns of early p21 dynamics determine proliferation–senescence cell fate after chemotherapy. Cell 178, 361–373.e12 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Childs, B. G., Durik, M., Baker, D. J. & van Deursen, J. M. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat. Med. 21, 1424–1435 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 92, 9363–9367 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–990 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. da Silva, P. F. L. et al. The bystander effect contributes to the accumulation of senescent cells in vivo. Aging Cell 18, e12848 (2019).

    Article  PubMed  CAS  Google Scholar 

  93. Biran, A. et al. Senescent cells communicate via intercellular protein transfer. Genes Dev. 29, 791–802 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nelson, G. et al. A senescent cell bystander effect: senescence-induced senescence. Aging Cell 11, 345–349 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Faget, D. V., Ren, Q. & Stewart, S. A. Unmasking senescence: context-dependent effects of SASP in cancer. Nat. Rev. Cancer 19, 439–453 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Sanada, F. et al. Source of chronic inflammation in aging. Front. Cardiovasc. Med. 5, 12 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Franceschi, C. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 908, 244–254 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. McHugh, D. & Gil, J. Senescence and aging: causes, consequences, and therapeutic avenues. J. Cell Biol. 217, 65–77 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Weirich-Schwaiger, H., Weirich, H. G., Gruber, B., Schweiger, M. & Hirsch-Kauffman, M. Correlation between senescence and DNA repair in cells from young and old individuals and in premature aging syndromes. Mutat. Res. 316, 37–48 (1994).

    Article  CAS  PubMed  Google Scholar 

  100. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011). This paper shows that the conditional and selective elimination of senescent cells expressing p16INK4a delays the premature ageing phenotype in BubR1-insuficient mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hanks, S. et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat. Genet. 36, 1159–1161 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Kulukian, A., Han, J. S. & Cleveland, D. W. Unattached kinetochores catalyze production of an anaphase inhibitor that requires a Mad2 template to prime Cdc20 for BubR1 binding. Dev. Cell 16, 105–117 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Baker, D. J. et al. BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat. Genet. 36, 744–749 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016). This paper describes a senolytic compound named ABT263 (an inhibitor of the anti-apoptotic proteins BCL-2 and BCL-xL). The authors use ABT263 in a genotoxic stress-induced mouse model to pharmacologically eliminate senescent cells, which results in a delay in the emergence of the ageing phenotype.

    Article  CAS  PubMed  Google Scholar 

  105. Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Baker, D. J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016). This paper studies the physiological contribution of the natural accumulation of senescent cells to ageing-related phenotypes in aged mice. Interestingly, elimination of senescent cells improves aged-related cognitive decline in older mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Niccoli, T. & Partridge, L. Ageing as a risk factor for disease. Curr. Biol. 22, R741–R752 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. McShea, A., Harris, P. L., Webster, K. R., Wahl, A. F. & Smith, M. A. Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimer’s disease. Am. J. Pathol. 150, 1933–1939 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Bhat, R. et al. Astrocyte senescence as a component of Alzheimer’s disease. PLoS ONE 7, e45069 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Calignon, A. de et al. Tangle-bearing neurons survive despite disruption of membrane integrity in a mouse model of tauopathy. J. Neuropathol. Exp. Neurol. 68, 757–761 (2009).

    Article  PubMed  CAS  Google Scholar 

  111. Ramsden, M. Age-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L). J. Neurosci. 25, 10637–10647 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. SantaCruz, K. Tau suppression in a neurodegenerative mouse model improves memory function. Science 309, 476–481 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Arendt, T., Rödel, L., Gärtner, U. & Holzer, M. Expression of the cyclin-dependent kinase inhibitor p16 in Alzheimer’s disease. Neuroreport 7, 3047–3049 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. McShea, A., Wahl, A. F. & Smith, M. A. Re-entry into the cell cycle: a mechanism for neurodegeneration in Alzheimer disease. Med. Hypotheses 52, 525–527 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Alonso, A. D., Grundke-Iqbal, I., Barra, H. S. & Iqbal, K. Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc. Natl Acad. Sci. USA 94, 298–303 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Borchelt, D. R. et al. Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19, 939–945 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. Laurent, C., Buée, L. & Blum, D. Tau and neuroinflammation: what impact for Alzheimer’s disease and tauopathies? Biomed. J. 41, 21–33 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Yoshiyama, Y. et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53, 337–351 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. ADAPT Research Group et al. Cognitive function over time in the Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT): results of a randomized, controlled trial of naproxen and celecoxib. Arch. Neurol. 65, 896–905 (2008).

    Article  Google Scholar 

  120. Meyer, P.-F. et al. INTREPAD: a randomized trial of naproxen to slow progress of presymptomatic Alzheimer disease. Neurology 92, e2070–e2080 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Streit, W. J. Microglial senescence: does the brain’s immune system have an expiration date? Trends Neurosci. 29, 506–510 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Streit, W. J., Braak, H., Xue, Q.-S. & Bechmann, I. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol. 118, 475–485 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Glass, C. K., Saijo, K., Winner, B., Marchetto, M. C. & Gage, F. H. Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918–934 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Loy, C. T., Schofield, P. R., Turner, A. M. & Kwok, J. B. J. Genetics of dementia. Lancet 383, 828–840 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 414–430 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Scheltens, P. et al. Alzheimer’s disease. Lancet 388, 505–517 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Folk, W. P. et al. Loss of the tumor suppressor BIN1 enables ATM Ser/Thr kinase activation by the nuclear protein E2F1 and renders cancer cells resistant to cisplatin. J. Biol. Chem. 294, 5700–5719 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zingoni, A. et al. Genotoxic stress induces senescence-associated ADAM10-dependent release of NKG2D MIC ligands in multiple myeloma cells. J. Immunol. 195, 736–748 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Vinatier, C., Domínguez, E., Guicheux, J. & Caramés, B. Role of the inflammation–autophagy–senescence integrative network in osteoarthritis. Front. Physiol. 9, 706 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Sierksma, A. et al. Novel Alzheimer risk genes determine the microglia response to amyloid-β but not to TAU pathology. EMBO Mol. Med. 12, e10606 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Soreq, L. et al. Major shifts in glial regional identity are a transcriptional hallmark of human brain aging. Cell Rep. 18, 557–570 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mi, S. et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat. Neurosci. 8, 745–751 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Bartzokis, G. Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiol. Aging 25, 5–18 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Ou-Yang, M.-H. & Van Nostrand, W. E. The absence of myelin basic protein promotes neuroinflammation and reduces amyloid β-protein accumulation in Tg-5xFAD mice. J. Neuroinflammation 10, 134 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Liao, M.-C., Ahmed, M., Smith, S. O. & Van Nostrand, W. E. Degradation of amyloid β protein by purified myelin basic protein. J. Biol. Chem. 284, 28917–28925 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Graeber, M. B. et al. Rediscovery of the case described by Alois Alzheimer in 1911: historical, histological and molecular genetic analysis. Neurogenetics 1, 73–80 (1997).

    Article  CAS  PubMed  Google Scholar 

  138. Dean, D. C. III et al. Association of amyloid pathology with myelin alteration in preclinical Alzheimer disease. JAMA Neurol. 74, 41–49 (2017). This study shows that asymptomatic individuals carrying genetic risk factors for AD present myelin abnormalities in the white matter, indicating that myelin disruption may represent an early feature of the disease process.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Strittmatter, W. J. & Roses, A. D. Apolipoprotein E and Alzheimer disease. Proc. Natl Acad. Sci. USA 92, 4725–4727 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bartzokis, G. et al. Apolipoprotein E affects both myelin breakdown and cognition: implications for age-related trajectories of decline into dementia. Biol. Psychiatry 62, 1380–1387 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Dean, D. C. III et al. Brain differences in infants at differential genetic risk for late-onset Alzheimer disease: a cross-sectional imaging study. JAMA Neurol. 71, 11–22 (2014). This paper shows that a reduction of the myelin water fraction is observable at an early developmental stage in infants carrying the APOE ε4 allele.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Franklin, R. J. M. & ffrench-Constant, C. Regenerating CNS myelin — from mechanisms to experimental medicines. Nat. Rev. Neurosci. 18, 753–769 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Lloyd, A. F. & Miron, V. E. The pro-remyelination properties of microglia in the central nervous system. Nat. Rev. Neurol. 15, 447–458 (2019).

    Article  PubMed  Google Scholar 

  144. Neumann, B. et al. Metformin restores CNS remyelination capacity by rejuvenating aged stem cells. Cell Stem Cell 25, 473–485.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Flanary, B. E., Sammons, N. W., Nguyen, C., Walker, D. & Streit, W. J. Evidence that aging and amyloid promote microglial cell senescence. Rejuvenation Res. 10, 61–74 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Gold, B. T., Johnson, N. F., Powell, D. K. & Smith, C. D. White matter integrity and vulnerability to Alzheimer’s disease: preliminary findings and future directions. Biochim. Biophys. Acta 1822, 416–422 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Carmona, S. et al. The role of TREM2 in Alzheimer’s disease and other neurodegenerative disorders. Lancet Neurol. 17, 721–730 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Poliani, P. L. et al. TREM2 sustains microglial expansion during aging and response to demyelination. J. Clin. Invest. 125, 2161–2170 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Hardy, J. & Higgins, G. Alzheimer’s disease: the amyloid cascade hypothesis. Science 256, 184–185 (1992).

    Article  CAS  PubMed  Google Scholar 

  150. Hardy, J. Alzheimer’s disease: the amyloid cascade hypothesis: an update and reappraisal. J. Alzheimer’s Dis. 9, 151–153 (2006).

    Article  Google Scholar 

  151. Krasemann, S. et al. The TREM2–APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581.e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Streit, W. J., Sammons, N. W., Kuhns, A. J. & Larry Sparks, D. Dystrophic microglia in the aging human brain. Glia 45, 208–212 (2004).

    Article  PubMed  Google Scholar 

  154. Hunter, S., Arendt, T. & Brayne, C. The senescence hypothesis of disease progression in Alzheimer disease: an integrated matrix of disease pathways for FAD and SAD. Mol. Neurobiol. 48, 556–570 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhu, Y. et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Wang, E. Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved. Cancer Res. 55, 2284–2292 (1995).

    CAS  PubMed  Google Scholar 

  158. Sasaki, M., Kumazaki, T., Takano, H., Nishiyama, M. & Mitsui, Y. Senescent cells are resistant to death despite low Bcl-2 level. Mech. Ageing Dev. 122, 1695–1706 (2001).

    Article  CAS  PubMed  Google Scholar 

  159. Ovadya, Y. & Krizhanovsky, V. Strategies targeting cellular senescence. J. Clin. Invest. 128, 1247–1254 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Yosef, R. et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat. Commun. 7, 11190 (2016). This research paper observes that upregulation of BCL-W and BCL-xL is responsible for the apoptosis resistance of senescent cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Sikora, E., Bielak-Zmijewska, A. & Mosieniak, G. Targeting normal and cancer senescent cells as a strategy of senotherapy. Ageing Res. Rev. 55, 100941 (2019).

    Article  CAS  PubMed  Google Scholar 

  162. Currais, A. et al. Fisetin reduces the impact of aging on behavior and physiology in the rapidly aging SAMP8 mouse. J. Gerontol. A Biol. Sci. Med. Sci. 73, 299–307 (2018).

    Article  CAS  PubMed  Google Scholar 

  163. Farr, J. N. et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 23, 1072–1079 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ogrodnik, M. et al. Cellular senescence drives age-dependent hepatic steatosis. Nat. Commun. 8, 15691 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hickson, L. J. et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine 47, 446–456 (2019). This paper presents the first clinical trial of the senolytic compounds dasatinib plus quercetin. The combination of the two reduces the levels of adipose tissue senescent cells and circulating SASP factors in individuals with diabetic kidney disease.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Kirkland, J. L. & Tchkonia, T. Cellular senescence: a translational perspective. EBioMedicine 21, 21–28 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Intramural Research Program of the NIH, National Institute on Ageing.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Eliezer Masliah.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

INK4–ARF locus

A locus containing two genes, CDKN2A and CDKN2B. CDKN2A encodes two proteins, p16INK4a and ARF (known as p14ARF in humans and p19ARF in mice). Both proteins are cell cycle regulators that act as tumour suppressors and play an essential role in the induction and maintenance of senescence. CDKN2B encodes p15INK4b, a cyclin-dependent kinase inhibitor.

Sterile inflammation

A pathogen-free inflammatory process that can be triggered by an acute stimulus, such as ischaemia reperfusion injury, trauma or toxin exposure, or a chronic stimulus, as occurs in chronic diseases and ageing. Damaged cells produce and release damage-associated molecular patterns that activate innate immune cells, which release cytokines and chemokines, further activating an adaptive immune response. Unresolved and prolonged sterile inflammation is detrimental and contributes to ageing.

Inflammaging

Chronic and low-grade inflammation that is associated with ageing and contributes to the pathology of age-related disease. Three main stimuli sustain inflammaging: cell debris accumulation, microbial products from human microbiota and cellular senescence.

Senolytic

A small molecule that selectively eliminates senescent cells. The majority of senolytic compounds aim to target the anti-apoptotic members of the B cell lymphoma 2 (BCL-2) protein family, as they have been shown to be upregulated in senescent cells. Other senolytic strategies have explored impeding p53 activation, by blocking either the interaction of the E3 ubiquitin ligase MDM2 with p53 or the interaction of p53 with forkhead box protein O4 (FOXO4). More recently, drugs have been designed that get converted into cytotoxic compounds in senescent cells, inducing apoptosis, through cleavage by lysosomal β-galactosidase.

Mitochondrial dysfunction-associated senescence

A particular type of senescence observed in vitro and in vivo that is triggered by mitochondrial DNA damage. It involves activation of AMPK and subsequent activation of p53. Senescent cells induced by mitochondrial dysfunction-associated senescence exhibit a senescence-associated secretory phenotype, although it lacks IL-1-dependent factors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saez-Atienzar, S., Masliah, E. Cellular senescence and Alzheimer disease: the egg and the chicken scenario. Nat Rev Neurosci 21, 433–444 (2020). https://doi.org/10.1038/s41583-020-0325-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-020-0325-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing