
0123456789();: 

In their timely Review, Váša and Mišić 
provide an insightful review of the range of 
null models available for hypothesis ​testing 
in network neuroscience (Váša, F. & Mišić, B.  
Null models in network neuroscience. 
Nat. Rev. Neurosci. 23, 493–504 (2022))1.  
A central part of their Review is dedicated 
to generative models, understood as models 
for the processes that lead (brain) networks 
to exhibit the organization that they do. Here, 
we wish to draw attention to a distinct but 

Kuramoto model was systematically varied, 
showing that a modular but not a random 
topology produces ‘events’ in the simulated 
time-​resolved functional connectivity, 
analogous to those observed in empirical 
functional MRI signals. From the perspective 
of null models, this result showed that such 
events are attributable neither to motion and 
physiological artefacts nor solely to cognitive 
operations, as the model incorporates neither. 
Rather, the topology of the structural network 
is sufficient to determine whether such events 
will be observed in the functional dynamics. 
This work exemplifies how dynamical models 
can be used to arbitrate between plausible 
causal mechanisms for a phenomenon 
of interest, by explicitly building such 
mechanisms into the model and assessing 
whether the phenomenon in question 
emerges.

Another  notable  s tudy enr iched 
connectome-​based mean-​field models with 
PET-​derived maps for the 5-​HT2A receptor, 

complementary kind of generative model 
that can be used to embody and then test 
null hypotheses in network neuroscience: 
namely, dynamical models of mechanisms. 
In these models, brain network structure 
(and, increasingly, additional aspects such 
as regional heterogeneity) gives rise to the 
ebb and flow of brain activity and functional 
connectivity that unfold over time2–4 (Fig. 1).

In a notable recent example5, the topology 
of the structural connectome underlying a 
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Fig. 1 | Use of whole-​brain dynamical models to test null hypotheses 
about the relationship among brain network structure, regional hetero
geneity and brain activity. Dynamical whole-​brain models simulate the 
emergence of brain activity and functional connectivity in silico, combining 
a model of local dynamics (red), with varying degrees of biological realism, 
and global connectivity (yellow), typically obtained from diffusion MRI trac-
tography in humans or tract-​tracing in animals. The role of regionally 
heterogeneous features of neurobiology in shaping brain function can  
be evaluated by modulating local dynamics according to empirical maps, 

such as T1w:T2w ratio, receptor density from PET or transcriptomics, the 
principal component of gene expression (PC1), or excitation:inhibition ratio 
(among others). The heterogeneous model’s goodness-​of-​fit to empirical 
functional data is then compared against a distribution of models enriched 
with null maps. The contribution of specific features of structural network 
topology to brain function can be evaluated by comparing the model’s 
goodness-​of-​fit to empirical data against a distribution of null models, 
rewired to remove the network feature, or features, of interest. Figure 
adapted with permission from ref.7, Elife; ref.8, Elsevier; and ref.9, AAAS.
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recapitulating blood oxygen level-​dependent 
dynamics under the effects of the serotonergic 
psychedelic lysergic acid diethylamide (LSD)6. 
Null models enriched with alternative 5-​HT 
receptors, or with uniform or scrambled 
5-​HT2A maps, allowed the authors to embody 
and then reject alternative hypotheses whereby 
the spatial distribution of the 5-​HT2A receptor 
does not contribute to the dynamics of LSD. 
A subsequent transcriptomics-​enriched 
model evaluated non-5-​HT receptors and the 
role of spatial autocorrelation7, highlighting 
the synergy between different facets of null 
hypothesis testing in network neuroscience. 
Increasingly, dynamical models are being 
enriched with other aspects of neurobiology, 
such as T1w:T2w ratio8, excitatory:inhibitory 
ratio9, the principal component of gene 
expression9, or feedback versus feedforward 
connectivity10 (to name just a few in a fast-​ 
growing literature), representing additional 
avenues with which to embody and test 
hypotheses about annotated brain networks.

Overall, generative models of brain 
dynamics represent a powerful recent addition 
to the hypothesis-​testing toolset of network 
neuroscientists. They provide an avenue to 
embody and assess mechanistic hypotheses, 
not only of how the organization of structural 
brain networks came to be, but also of how 
in turn it interacts with regional dynamics 
to shape the temporal unfolding of brain 
activity. We hope that explicit recognition of 
this flexible framework for testing mechanistic 
hypotheses will facilitate the emerging research 
on the interrelationships of brain network 
structure, dynamics and neuromodulation, 
bringing additional aspects of neurobiology 
into consideration for the study of both 
structural and functional brain networks.
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	Fig. 1 Use of whole-​brain dynamical models to test null hypotheses about the relationship among brain network structure, regional hetero­geneity and brain activity.




