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In the 1970s, searches for the underlying mechanisms of 
fever led to the discovery of a class of molecules referred to 
initially as leukocytic pyrogens1. These secreted proteins 
gained notoriety for their potency in triggering inflamma-
tion, and were ultimately given the names IL-1α and IL-1β 
upon their purification and cloning in the 1980s2,3 (Fig. 1). 
Since that time, these two unique inflammatory mediators, 
both of which share a common IL-1 receptor (IL-1R1), 
became recognized as members of a much larger IL-1 
family of cytokines, including 11 pro-​inflammatory and 
anti-​inflammatory cytokines that share a common inactive 
precursor structure and 10 multi-​chain cytokine recep-
tors. The IL-1 family also includes two decoy receptors, an 
inhibitory binding protein and two receptor antagonists, 
the most well-​known of which is IL-1 receptor antago-
nist (IL-1RA), a natural inhibitor of IL-1R1 activation4. 
The presence of many proteins within this family, often 
with synergistic or opposing functions, suggests impor-
tant biological roles requiring tight regulation. Although 
the IL-1 family includes disease-​relevant cytokines 
IL-18, IL-33 and IL-36 (reviewed in Mantovani et al.5), 
for the purposes of this Review on autoinflammatory  
diseases, we focus on IL-1β, IL-1α and IL-1RA.

The most consistent clinical feature of autoinflam-
mation mediated by IL-1, besides fever, is episodic or 

chronic systemic and/or tissue inflammation. Common 
areas that are affected include the skin and musculo-
skeletal system, although certain inflammatory sites are 
unique to specific IL-1-​related disorders, such as serous 
membranes (pleura and peritoneum), the central nerv-
ous system (CNS) and conjunctiva. Patients also fre-
quently complain of fatigue or malaise, symptoms that 
are commonly associated with chronic inflammation. In 
general, laboratory evaluation of patients, either during 
symptoms and sometimes between episodes, reveals 
elevated acute phase markers and neutrophilia in blood 
and tissue. Chronic systemic inflammation can lead to 
anaemia of chronic disease and tissue damage, such as 
amyloid A amyloidosis.

The first autoinflammatory disorders described were 
monogenic hereditary fever disorders caused by muta-
tions in single genes encoding for inflammasome-​related 
proteins. This classification has since been expanded to 
include other monogenic autoinflammatory diseases 
that result in IL-1-​mediated inflammation and puta-
tive polygenic disorders that appear to be mediated by 
IL-1, as indicated by clinical response to IL-1-​targeted 
therapies. The monogenic disorders are generally rare, 
with a prevalence ranging from 1 in millions to 1 in 
tens of thousands, although some of these diseases, 
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particularly specific autosomal-​recessive conditions, 
may be observed more frequently in specific isolated 
populations (such as familial Mediterranean fever 
(FMF)), likely because of selective infectious pressures 
occurring centuries ago6. Founder mutations have been 
described as underpinning several of these disorders in 
different parts of the world; however, de novo mutations 
are often identified in many of the autosomal-​dominant 
diseases. In this Review, we describe the molecular biol-
ogy underlying IL-1-​mediated inflammation and its role 
in autoinflammatory disorders. We highlight pertinent 
clinical features relevant to the practising rheumatolo-
gist, diagnostic and management considerations, and 
ongoing challenges faced by physicians and patients.

The complex biology of IL-1
IL-1β, often referred to as IL-1, is expressed primar-
ily in myeloid cells (such as monocytes, macrophages 
and neutrophils) in a highly controlled fashion involv-
ing numerous regulatory mechanisms7,8 (Fig. 2). IL-1β  
is expressed as an inactive precursor (pro-​IL-1β) that is 
cleaved to its active form by several proteases, including 
caspase 1 and neutrophil- and microorganism-​derived 
proteases9. Caspase 1-​dependent cleavage is driven pri-
marily by activation of large intracellular multi-​protein 
complexes known as inflammasomes, which consist 
of a sensor protein (such as NLRP3 or pyrin) and an 
adaptor protein ASC that oligomerize to form poly
meric caspase 1 cleavage platforms. In addition to 
cleaving pro-​IL-1β, caspase 1 cleaves and thereby acti-
vates gasdermin D, which allows it to form membrane 
pores enabling the release of IL-1β from the cell and 
mediating pyroptosis, a pro-​inflammatory form of cell 
death10 (Fig. 2). IL-1β can also be released by a caspase 8  
and gasdermin E-​mediated lytic process11, by mixed 
lineage kinase domain-​like protein (MLKL)-​mediated 
necroptosis, and likely by other mechanisms that remain 
to be elucidated12. After IL-1β is released from the cell, 
the pro-​inflammatory effects are exerted through bind-
ing to IL-1R1 on the same cell or nearby cells, activating 
intracellular signalling pathways involving IRAK4, MK2 
and NF-​κB that ultimately lead to further expression of 
inflammatory cytokines and inflammasome proteins13. 
In this manner, IL-1β is a potent activator of its  
own expression and release, leading to an amplified, 
autoinflammatory response.

Though less frequently recognized, IL-1α is consti-
tutively expressed in all cells as an active pro-​form and 

is unique in that it localizes to the nucleus, cytoplasm 
and cell membrane, where it has site-​specific functions 
(Fig. 2). IL-1α shuttles between the nucleus and cytoplasm 
depending on cellular conditions, such as homeostasis 
or infection. In the nucleus, it binds to chromatin and 
functions as a transcription factor regulating cytokine 
expression downstream of NF-​κB and AP-1 including 
IL-6 and IL-8, whereas in the cytoplasm it binds to 
mitochondrial cardiolipin to regulate NLRP3 inflam-
masome function14. At the cell membrane, IL-1α can 
bind to and activate IL-1R1 on adjacent cells, or can be 
released in membrane-​bound apoptotic bodies, leading 
to further local and systemic inflammation5. Although 
IL-1α can be cleaved by several proteases, it does not 
require cleavage for biologic activity or for secretion. 
The major mechanism of IL-1α release appears to be 
through lytic cell death (pyroptosis or necroptosis); it is 
thus considered an alarmin that triggers sterile inflam-
mation locally, such as during ischaemia. Moreover, 
through binding to IL-1R1, IL-1α acts as a potent driver 
of neutrophil recruitment in several tissues including the 
skin and lungs15. Interestingly, IL-1β can bind to IL-1α 
and serve as a shuttle for its secretion16, suggesting an 
additional layer of complexity to the regulation of IL-1 
release.

A third important member of the IL-1 family, IL-1 
receptor antagonist (IL-1RA), appears to be a predomi-
nantly anti-​inflammatory cytokine. IL-1RA is expressed 
in all cells and tissues, and is induced by several inflam-
matory stimuli, as evidenced by high levels of IL-1RA 
in serum from patients with inflammatory diseases. It is 
a natural inhibitor of IL-1-​mediated inflammation, act-
ing by competitively binding to IL-1R1 and thereby pre-
venting the binding of both IL-1α and IL-1β. Although 
this function of IL-1RA is well established, it has more 
than one isoform that may have additional functions17. 
Moreover, IL-1RA has anti-​apoptotic effects via an intra-
cellular non-​receptor-​mediated mechanism18. Although 
a complete understanding of IL-1RA biology remains 
to be reached, its clinical importance became evident 
with the discovery of patients with deficiency of IL-1RA 
(DIRA), discussed below, and the widespread utility of 
recombinant IL-1RA (anakinra) as a therapeutic for 
IL-1-​driven autoinflammatory disease.

IL-1 and autoinflammation
Our appreciation of the complexity of IL-1 biology orig-
inally stemmed from attempts to understand the mecha
nisms of fever. As such, it is fitting that the rekindling 
of interest in IL-1-​related mechanisms at the turn of 
the century occurred with the discovery of the molec
ular pathways underlying the pathology of several  
rare hereditary fever disorders19–22. These conditions 
are all characterized by recurrent or chronic systemic 
and tissue inflammation combined with fever, rash and 
musculoskeletal symptoms. The identification of gene 
mutations responsible for these immunodysregulation 
diseases led to the introduction of an entirely new dis-
ease classification known as autoinflammation, which 
encompasses inflammatory disorders driven by innate 
immunity in the absence of high-​titre autoantibodies 
or antigen-​specific T lymphocytes22. Each discovered 

Key points

•	IL-1α, IL-1β and IL-1RA are highly regulated inflammatory mediators involved in 
damage- and pathogen-​associated molecular pattern (DAMPs and PAMPs), and cell 
death pathways.

•	Patients with evidence of systemic inflammation without persistent infection or 
autoantibodies should raise suspicion of an IL-1-​mediated autoinflammatory disorder.

•	Rare monogenic and common polygenic diseases with neutrophilia and inflammation 
might respond to targeting the IL-1 pathway.

•	Genetic testing confirms IL-1-driven autoinflammatory disorders, yet new disease 
phenotype–genotype correlations continue to be identified.

•	IL-1-targeted therapies are highly effective and safe; new therapeutics focus on targets 
independent of IL-1 receptor binding, including NLRP3, caspases, IRAK4 and MK2.

Pyroptosis
Inflammatory form of cell 
death mediated by caspase 1 
and gasdermin D.

Necroptosis
Inflammatory form of necrotic 
cell death that is caspase 
independent.

NAtuRe RevIews | RhEuMaTOLOGy

R e v i e w s

	  volume 18 | August 2022 | 449



0123456789();: 

autoinflammatory disease revealed new mechanisms 
of dysregulated IL-1 biology, such as intrinsic unreg-
ulated inflammasome function, extrinsic mechanisms 
of inflammasome activation, and ineffective or absent 
IL-1 regulatory pathways. All of these mechanisms have 
broader implications for our understanding of innate 
immune regulation.

The innate immune system requires highly regulated 
mechanisms to prevent constitutive or uncontrolled 
responses that could harm the host, while allowing 
for rapid inflammatory responses that are selective for 
pathogen- and damage-​associated molecular patterns 
(PAMPs and DAMPs) (Fig. 2). Inflammasome pro-
teins are generally inactive under normal conditions 
but are activated by specific triggers, such as path-
ogen toxins23. Uniquely, the NLRP3 inflammasome 

is activated by numerous triggers including ATP and 
several crystals24. Gain-​of-​function mutations in MEFV 
and NLRP3, which encode pyrin and cryopyrin, respec-
tively, result in intrinsic constitutive activation of the 
inflammasome, or a reduced threshold for its activa-
tion. This mechanism is responsible for the inflam-
matory phenotype observed in patients with FMF or 
cryopyrin-​associated periodic syndromes (CAPS)19–21. 
Other hereditary fever disorders, such as mevalonate 
kinase deficiency (MKD)25,26, TNF-​associated periodic 
syndrome (TRAPS)22, and pyogenic arthritis, pyo-
derma gangrenosum and acne (PAPA) syndrome27, 
are caused by mutations in genes that encode proteins 
with extrinsic effects on inflammasome activation, such 
as MVK, TNFRSF1A and PSTPIP1, rather than the 
inflammasome-​encoding genes themselves. Although 

1984 Cloning of IL-1α and IL-1β 1997 MEFV for FMF 2015 Role of GSDMD in IL-1 release

2009 IL1RN for DIRA

2001 Anakinra  approved  for RA (FDA)

2008 Rilonacept approved  for FCAS, MWS (FDA)

2013 Anakinra approved for NOMID (FDA), CAPS (EMA)

2016 Canakinumab approved for AOSD (EMA)

2016 Canakinumab approved for FMF, MKD, TRAPS (FDA, EMA)

2013 Canakinumab approved for sJIA (FDA, EMA)

2009 Canakinumab approved for FCAS, MWS (FDA), CAPS (EMA)

2018 Anakinra approved for sJIA, AOSD (EMA)

2018 Anakinra approved for Schnitzler’s Syn (UK)

2020 Anakinra and rilonacept approved for DIRA (FDA)

2021 Rilonacept approved for recurrent pericarditis (FDA, EMA)

1990 Identification of IL-1Ra

1992 Identification of caspase 1

1993 Identification of IL-1R2

2002 First description of the inflammasome1995 Identification of IL-1R3

2021 Anakinra approved for COVID-19 pneumonia (EMA)

1989 Identification of IL-1R1

2002 PSTPIP1 for PAPA

1999 TNFRSF1A for TRAPS

1999 MVK for MKD/HIDS

2001 NLRP3 for CAPS

2005 LPIN2 for Majeed syndrome

20101980 1990 20202000

Fig. 1 | Timeline of key events leading to current understanding and 
treatment of IL-1-mediated autoinflammatory diseases. First described 
as pyrexin in 1943, and subsequently termed lymphocyte-​activating factor 
and leukocytic pyrogen in the 1970s1, the introduction of interleukin 
nomenclature united these secreted macrophage products as IL-1. The 
timeline shows scientific advances in yellow, the first identification of a 
specific gene as the cause of a given autoinflammatory syndrome in grey, 
and the initial approval for IL-1-​targeted therapies (with agency) in red. 
AOSD, adult-​onset Still disease; CAPS, cryopyrin-​associated periodic 

syndromes; DIRA, deficiency of IL1 receptor antagonist; FCAS, familial cold 
autoinflammatory syndrome; FMF, familial Mediterranean fever; GSDMD, 
gasdermin D; HIDS, hyper IgD syndrome; MKD, mevalonate kinase 
deficiency; MWS, Muckle–Wells syndrome; NOMID, neonatal-​onset 
multisystem inflammatory disease; PAPA, pyogenic arthritis, pyoderma 
gangrenosum and acne syndrome; RA, rheumatoid arthritis; sJIA, systemic 
juvenile idiopathic arthritis; Syn, syndrome; TRAPS, tumour necrosis factor 
receptor-​associated periodic syndrome; UK, Medicines and Healthcare 
Products Regulatory Agency of the United Kingdom.
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the mechanisms of autoinflammation extend beyond 
IL-1 to other cytokines and immune pathways28, the 
study of IL-1-​mediated autoinflammatory diseases 
remains an exciting field that is highly relevant to the 
practicing rheumatologist.

Aetiology of autoinflammatory diseases
The description and characterization of autoinflam-
matory diseases has long been linked to the identifi-
cation of the underlying genetic and molecular basis 
for inflammation. Although phenotypically distinct 
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consequences of IL-1β and IL-1α are intertwined and highly regulated at multiple levels. Many upstream mechanisms, 
which can be grouped into damage- and pathogen-​associated molecular patterns (DAMPs and PAMPs), trigger the 
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lineage kinase domain-​like pseudokinase (MLKL)-​mediated necroptosis. IL-1β and IL-1α can then bind and activate IL-1R 
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inflammatory cells. The three approved IL-1-​targeted biologic therapies prevent IL-1R activation (represented by T-​ended 
arrows). Numerous other drugs, at various stages of development, target inflammasome components and upstream and 
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patients are typically characterized first in the literature, 
the description of additional patients with shared geno-
types has resulted in a much broader disease spectrum 
than was initially appreciated. Currently, more than 30 
genetically defined autoinflammatory diseases, many 
with direct and indirect links to the IL-1 pathway, have 
been described and listed in the registry of hereditary 
autoinflammatory disorder mutations29–32.

Monogenic autoinflammatory disorders are caused 
by mutations in single genes related to control of inflam-
mation (Table 1). Despite the rarity of these syndromes, 
their shared features of fever, arthralgias and rashes sug-
gest that many will present to the rheumatology clinic. 
Mechanistically, monogenic autoinflammatory dis
orders lead to persistent activation of the NLPR3 or pyrin 
inflammasomes and subsequent activation of caspase 1, 
resulting in IL-1 release and autoinflammation. Other 
monogenic disorders, including those caused by muta-
tions in TNFRSF1A, MVK, PSTPIP1 and CDC42, lead 
to IL-1 activation through pathways other than direct 
inflammasome activation, such as by the accumulation 
of intracellular stress triggers, enhanced binding to known 
intracellular sensors, or by affecting immune signalling 
pathways33–39. Autoinflammatory diseases caused by other 
members of the IL-1 cytokine family (Supplementary 
Table 1) are beyond the scope of this review.

IL-1-​driven autoinflammatory diseases
NLRP3 spectrum disease. CAPS, also known as cry-
opyrinopathies, represent a disease continuum caused 
by gain-​of-​function mutations in NLRP3. These 

heterozygous mutations were first described in fam-
ilies with familial cold autoinflammatory syndrome 
and Muckle–Wells syndrome20, and then subsequently 
identified in patients with neonatal-​onset multisystem 
inflammatory disease (NOMID; also known as chronic 
infantile neurological, cutaneous and articular syndrome 
(CINCA))40. Across the spectrum of severity, patients 
with CAPS share symptoms of recurrent fever, urticaria-​
like rash with neutrophilic infiltration, headaches, joint 
pain and conjunctivitis, as well as serological evidence 
of systemic inflammation. However, unique clinical fea-
tures exist and a fairly consistent genotype–phenotype 
correlation can be used to define where patients fall 
on the CAPS disease spectrum41. Emphasis on the full 
spectrum is now reinforced by a newly proposed tax-
onomy that classifies these disorders as mild, moderate 
and severe NLRP3-​associated autoinflammatory disease 
(NLRP3-​AID)42. For historical context, and consistency 
with international drug approvals, this Review uses both 
the old and the new taxonomy.

At the mild end of the CAPS spectrum, patients 
with familial cold autoinflammatory syndrome (mild 
NLRP3-​AID) experience brief flares, often less than 24 h 
in duration, induced by exposure to cold temperatures20. 
More severe clinical features on the CAPS spectrum 
include longer duration of episodes and stronger neuro
logical symptoms due to CNS inflammation. In the 
moderate NLRP3-​AID phenotype, Muckle–Wells syn-
drome, patients experience longer episodes of 2–3 days 
and often develop a progressive sensorineural hear-
ing loss beginning in the first or second decade of life.  

Table 1 | Monogenic autoinflammatory diseases driven by IL-1

Disease Gene Presentation Therapeutic 
target

FCAS NLRP3 Cold urticaria, chills, conjunctivitis, myalgia/arthralgia, fever IL-1

MWS NLRP3 Sensorineural hearing loss, urticarial rash, conjunctivitis, myalgia/
arthralgia, fever

IL-1

NOMID NLRP3 CNS inflammation (chronic aseptic meningitis, vision loss, hearing 
loss), knee arthropathy, urticarial rash, fever

IL-1

FMF MEFV Serosal pain (abdominal, chest), arthralgia, erysipeloid rash, fever IL-1

PAAND MEFV Sterile skin abscesses, myalgia, myositis, rash, fever IL-1, TNF

HIDS MVK Triggered by vaccination, abdominal pain, vomiting, rash, myalgia/
arthralgia, aphthous ulcers, fever

IL-1, TNF

MA MVK Developmental delay, FTT, dysmorphic features, recurrent fever IL-1, TNF

TRAPS TNFRSF1A Painful centrifugal rash, periorbital oedema, prolonged fever, 
abdominal pain, headache, conjunctivitis, myalgia/arthralgia

IL-1, TNF

DIRA IL1RN Pustular rash, sterile osteomyelitis, periostitis, hepatosplenomegaly, 
fever

IL-1

PAPA PSTPIP1 Pyoderma gangrenosum, arthritis, acne IL-1, TNF

Hz/Hc PSTPIP1 Rash, FTT, hepatosplenomegaly, neutropenia IL-1, TNF

CDC42/NOCARH CDC42 Pancytopenia, neurodevelopmental defects, facial dysmorphism, 
recurrent infection, rash, MAS/HLH, fever

IL-1

Majeed syndrome LPIN2 Osteomyelitis, dyserythropoietic anaemia, rash, fever IL-1

CNS, central nervous system; DIRA, deficiency of IL1 receptor antagonist; FCAS, familial cold autoinflammatory syndrome;  
FMF, familial Mediterranean fever; FTT, failure to thrive; HIDS, hyper IgD syndrome; Hz/Hc, hyperzincaemia/hypercalprotectinaemia; 
HLH, haemophagocytic lymphohistiocytosis; MA, mevalonic aciduria; MAS, macrophage activation syndrome; MKD, mevalonate 
kinase deficiency; MWS, Muckle–Wells syndrome; NOCARH, neonatal-​onset cytopenia with dyshaematopoiesis, autoinflammation, 
rash, and HLH; NOMID, neonatal-​onset multisystem inflammatory disease; PAAND, pyrin-​associated autoinflammation with 
neutrophilic dermatosis; PAPA, pyogenic arthritis, pyoderma gangrenosum and acne; TNF, tumour necrosis factor; TRAPS, tumour 
necrosis factor receptor-​associated periodic syndrome.
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The most severe NLRP3-​AID phenotype, NOMID, is 
characterized by nearly persistent systemic inflammation 
with additional neurological symptoms including chronic 
aseptic meningitis and cognitive impairment43,44. In these 
patients, increased intracranial pressure may lead to pap-
illary oedema and optic disc atrophy45. Moreover, skeletal 
abnormalities, including frontal bossing and a distinctive 
distal femur overgrowth, are also typically observed46,47.

The constellation of symptoms, combined with fre-
quent genetic testing, has also resulted in the identifica-
tion of NLRP3 variants in other related syndromes. For 
example, somatic variants in NLRP3 have been described 
in some patients with Schnitzler syndrome48. CAPS-​like 
phenotypes have also been observed in patients with 
variants in other autoinflammatory genes including 
NLRP12 (ref.49), NLRC4 (ref.50) and F12 (Factor XII)51. 
Thus, the phenotypic spectrum and genotypic aetiol-
ogy of inflammasome-​mediated diseases remain active  
areas of clinical and translational research.

MEFV spectrum disease. Mutations in MEFV, which 
encodes pyrin, underlie two distinct autoinflamma-
tory syndromes: pyrin-​associated autoinflammatory 
diseases-​FMF and pyrin-​associated autoinflammation 
with neutrophilic dermatosis (PAAND). FMF, likely the 
most well-​known of the autoinflammatory syndromes, 
is characterized by discrete episodes of fever with seros-
itis, synovitis and rash21. The most frequently reported 
symptom is abdominal pain, which can resemble an acute 
abdomen in presentation and on physical examination52. 
Although the disease phenotype is classically described 
as inherited in an autosomal-​recessive fashion, there are 
increasing reports of patients with only one identifiable 
heterozygous MEFV mutation, with clear autosomal-​
dominant inheritance53,54. Murine studies have confirmed 
that MEFV mutations observed in patients are gain-​of-​
function, consistent with inflammatory phenotypes in 
patients with a single identified heterozygous variant55. 
The most concerning consequence of uncontrolled 
inflammation in FMF is the development of systemic 
amyloid A (SAA) amyloidosis. Owing to the prevalence 
of MEFV mutations in certain parts of the world, it is also 
evident that specific variants may carry a greater risk of 
SAA amyloidosis dependent on the underlying genetic 
background. For example, patients with homozygo-
sity for the M694V missense mutation may experience 
particularly severe disease with increased frequency of 
attacks, associated co-​morbidities and reduced response 
to therapy56,57. The goal of therapy for any patient with 
FMF is reduction of inflammation and ultimately  
prevention of amyloidosis.

More recently, PAAND has been described as a 
distinct, autosomal-​dominant syndrome caused by 
mutations in MEFV58,59. Affected patients experience 
recurrent inflammatory episodes with fever, neutrophilic 
dermatosis, arthralgia, myalgia and myositis beginning 
in early childhood. Elevation in serum acute-​phase 
reactants is observed during inflammatory episodes. To 
date, two families with PAAND have been identified, 
exhibiting decreased 14-3-3 binding to pyrin, result-
ing in inflammasome activation and IL-1β and IL-18  
secretion, as well as pyroptotic cell death58,59.

Deficiency of the IL-1 receptor antagonist. Autosomal-​
recessive missense mutations and large deletions in 
IL1RN were more recently described in patients with 
deficiency of the IL-1 receptor antagonist (IL-1RA), 
and are primarily due to founder effects60–63. In the 
case of deletion mutations, the size of the deletion may 
affect the phenotype, as has been observed in Puerto 
Rican patients with DIRA, where a 175-​kb genomic 
deletion eliminates not only IL1RN, but also five IL-1-​
related genes60,62,64. In all cases, the result is an absent 
or truncated IL-1RA protein that is not secreted, and 
ultimately unable to inhibit IL-1α and IL-1β inflam-
matory responses. Uniquely, patients with DIRA have 
systemic inflammation with neutrophilia and elevations 
in serum inflammatory markers, although fever may be 
absent. Patients present near birth with a neutrophilic 
pustular rash that can be triggered by mechanical stress. 
Skin biopsy samples show neutrophilic infiltration of 
the dermis and epidermis, superficial folliculitis with 
pustule formation along hair follicles, acanthosis and 
hyperkeratosis60,62. Osteopenia with sterile lytic bone 
lesions, epiphyseal ballooning of the long bones and wid-
ening of the anterior rib ends, periosteal reaction, joint 
swelling and fusion of the cervical vertebrae have also 
been described in the majority of patients60–63,65. Infants 
frequently demonstrate hypoxaemia and dyspnoea due 
to interstitial pneumonia, localized ground-​glass opac-
ities and areas of atelectasis or gastrointestinal reflux. 
Thrombosis has also been described.

IL-1-​associated autoinflammatory diseases
TNF-​associated periodic syndrome. TRAPS is an 
autosomal-​dominant disease caused by mutations in 
the TNFRSF1A gene. Symptoms of TRAPS include long 
episodes of fever (>7 days), a tender centripetal migra-
tory skin rash and abdominal pain. Periorbital oedema 
and musculoskeletal symptoms, especially myalgia of the 
lower extremities, have also been documented. The high 
severity of symptoms has resulted in the misdiagnosis 
of acute abdomen and unnecessary surgical interven-
tion in some patients66. As in the cryopyrinopathies, the 
TRAPS phenotype severity spectrum is determined to 
some degree by the type of TNFRSF1A mutations67.

The mechanisms underlying the extended febrile epi-
sodes in TRAPS have long been subject to investigation. 
Initial studies suggested that mutations affecting amino 
acid residues critical for protein folding lead to a fail-
ure of TNF receptor shedding68,69, a cellular process that 
desensitizes cells to TNF action. However, more recent 
data support a role for NLRP3 inflammasome activation 
through a number of potential mechanisms, including 
intracellular accumulation of misfolded mutant TNF 
receptor protein, leading to elevated generation of 
reactive oxygen species, induced cell death or impaired 
autophagy37,70. This proposed mechanism is supported 
by the successful treatment of patients with TRAPS with 
IL-1-​targeted therapy71,72.

MVK spectrum disease. MKD results from autosomal-​
recessive, loss-​of-​function mutations in the MVK gene 
encoding mevalonate kinase25,26. It is a disease spectrum, 
comprising hyperimmunoglobulinaemia D and periodic 

Neutrophilic dermatosis
Inflammatory skin disorder 
characterized by predominant 
neutrophilic infiltrate.
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fever syndrome (HIDS) at the mild end, and mevalonic 
aciduria at the severe end73. Patients with the milder 
phenotype are characterized by early onset episodes 
of fever, rash (macular–papular, urticarial, nodular or 
petechial), abdominal pain, oral ulcers and adenopathy, 
lasting nearly a week on average. Those with the more 
severe mevalonic aciduria phenotype also have recur-
rent febrile episodes, but additionally present with severe 
developmental disabilities. Inflammatory flares in MKD 
may be triggered by routine immunization, infection or 
physical stress74.

MVK mutations result in reduced or absent enzy-
matic activity of mevalonate kinase, the first enzyme in 
the 3-​hydroxy-3-​methylglutaryl (HMG)-​CoA reduc-
tase pathway required for cholesterol and isoprenoid 
synthesis75. Lack of mevalonate kinase function results 
in a shortage of isoprenoid lipid precursors34, which are 
required to diminish the inflammatory response, even 
in response to mild stimuli. Consistently, in vitro studies 
of cells from patients with HIDS demonstrate a reduced 
ability to clear antioxidant stress, as well as mitochon-
drial dysfunction and deficiency in autophagy, all of 
which are implicated in inflammasome activation35. 
More recent evidence in human and murine models sug-
gests that the post-​translational modification and subse-
quent attachment of isoprenoids to GTPases, including 
the Rho, Rac and Rap families of GTPases, are signifi-
cantly affected by reduced mevalonate kinase activity76, 
ultimately leading to increased IL-1β secretion from 
monocytes, likely in a pyrin inflammasome-​dependent 
fashion36,77. The successful use of IL-1-​targeted therapy 
in HIDS is evidence that supports these pathogenic 
mechanisms71.

PSTPIP1 spectrum disease. PAPA syndrome is an 
autosomal-​dominant disorder resulting from gain-​of-​
function mutations in PSTPIP1, which encodes proline– 
serine–threonine phosphatase-​interacting protein 1  
(PSTPIP1). Mechanistically, disease-​associated vari-
ants result in hyperphosphorylation of PSTPIP1 and 
enhanced assembly of the pyrin inflammasome, with 
subsequent uncontrolled IL-1β release78. Symptom onset 
is prior to 10 years of age, typically with the appearance 
of sterile pyogenic arthritis first, followed by derma-
tological features including pyoderma gangrenosum  
and acne.

Similar to the MEFV spectrum, mutations in PSTPIP1 
result in a spectrum of disease beyond PAPA syndrome. 
Hyperzincaemia and hypercalprotectinaemia (also known 
as PSTPIP1-​associated myeloid-​related proteinemia 
inflammatory syndrome) is characterized by severe sys-
temic and cutaneous inflammation, hepatosplenomegaly, 
arthritis, pancytopenia and failure to thrive owing to the 
accumulation of zinc79. Dermatological symptoms share 
clinical and histopathological similarities to pyoderma 
gangrenosum and include vasculitis, furuncle-​like ulcers, 
and eczematous and necrotic lesions that typically affect 
the lower limbs symmetrically, although eyelids may 
also be involved80. In contrast to PAPA, the hyperzincae-
mia and hypercalprotectinaemia/PSTPIP1-associated 
myeloid-​related proteinemia inflammatory phenotype 
has only been associated with a single amino acid change 

in PSTPIP1, altering the electrostatic potential and 
enhancing binding to pyrin79.

CDC42-​associated autoinflammatory disease. Recently, 
patients with NOMID-​like disease have been reported 
in small cohorts, underpinned by mutations in CDC42 
(ref.38), a small Rho-​family GTPase that regulates intercel-
lular adhesion, cytoskeleton formation, cell cycle and cell 
proliferation81. Patients present near birth with growth 
restriction, recurrent febrile episodes, urticaria-​like 
rashes, multiple cytopenias and hepatosplenomegaly38. 
The presence of aseptic meningitis, papilloedema and 
facial dysmorphisms, including mild frontal bossing, is 
reminiscent of NOMID presentation. Consistently, skin 
biopsy samples demonstrate perivascular lymphocytic 
and neutrophilic infiltration without vasculitis38.

Although the first patients described with 
CDC42-​associated autoinflammatory disease had a 
remarkable response to IL-1 blockade38, more recent 
reports have noted that treatment with high dose IL-1 
inhibition may not be sufficient to completely resolve 
symptoms, especially in the face of infection-​driven 
macrophage activation syndrome39. In contrast to other 
autoinflammatory diseases, patients described to date 
have elevations in IL-18, suggesting a role for either the 
pyrin82–84 or NLRC4 inflammasome in CDC42-​mediated 
disease. Even though fewer than 10 cases have been 
described to date, the severity of disease phenotypes 
highlights the importance of an accurate diagnosis, and 
the name neonatal-​onset cytopenia with dyshaemato-
poiesis, autoinflammation, rash and haemophagocytic 
lymphohistiocytosis syndrome has been proposed for 
CDC42-​associated autoinflammatory diseases39.

NLRP1 spectrum disease. Although NLRP1 was the 
first NOD-​like receptor (NLR) reported to form an 
inflammasome23, its genetic variation and relationship 
to disease remains unclear85. Recently, patients carry-
ing gain-​of-​function mutations in NLRP1 have been 
described, with some variability in phenotype depending 
on the mutated domain. Mutations in the PYRIN domain 
have been described in two families with autosomal-​
dominant corneal dyskeratosis86,87. By contrast, more 
distal mutations have been associated with systemic skin 
and mucosal symptoms (including respiratory or laryn-
geal papillomatosis, warts, exfoliation and plaque devel-
opment), as well as inflammatory arthritis88–90. Studies of 
patient serum, peripheral blood mononuclear cells and 
primary keratinocytes have demonstrated increased lev-
els of IL-1β and IL-18, consistent with autoinflammatory 
inflammasome activation86,87,89. At least two patients with 
NLRP1 spectrum disease have demonstrated some ben-
efit to IL-1 blockade86,89, although the response was not 
as uniform as for other disorders, perhaps suggesting a 
role for IL-18 in disease pathogenesis.

Of note, polymorphisms in NLRP1 have been linked 
to increased risk of several autoimmune disorders, 
including rheumatoid arthritis, psoriasis, vitiligo and 
type 1 diabetes (reviewed in Yu et al.91). Further study 
is needed to determine the functional consequences of 
these genetic variants and whether IL-1-​targeted therapy 
is appropriate.
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Polygenic autoinflammatory disorders
The prominent features of fever, neutrophilia and ele-
vated inflammatory markers observed in the monogenic 
autoinflammatory disorders, have fuelled a search for 
the genetic aetiologies behind related inflammatory 
disorders seen frequently by rheumatologists. Unlike 
monogenic diseases, many have multiple genetic aetiolo-
gies identified by case–control studies and genome-​wide 
association studies of IL-1-​related pathways, although it 
is often other shared clinical signs and symptoms and a 
lack of autoantibodies that suggest a mechanism related 
to IL-1-​mediated disease pathways. This apparent IL-1 
clinical signature suggests that targeted therapy may be 
effective in some patients with polygenic autoinflamma-
tory disorders (Table 2), as shown in small cohorts and 
case reports92. Equally evident is the recognition of par-
tial responses to IL-1 blockade, consistent with the com-
plex aetiology underlying these disorders. Nonetheless, 
the potential for pathway-​specific therapy has been 

observed in some polygenic rheumatological disorders, 
further discussed below. Using a case-​by-​case approach, 
IL-1 blockade may be considered in these conditions.

Chronic recurrent multifocal osteomyelitis. Chronic 
recurrent multifocal osteomyelitis (CRMO) is charac-
terized by chronic, relapsing sterile bone inflammation. 
The most commonly affected areas are the knee, ankle or 
wrist, although the vertebrae, pelvis and clavicle may also 
be affected. Several genes have been linked to CRMO, 
including FGR and FBLIM1 (refs93,94). The recent iden-
tification of IL1RN variants in patients with CRMO-​
like presentations could have implications for treatment 
strategies, such as the use of anakinra, although this 
needs further exploration95. The association of CRMO 
with congenital dyserythropoietic anaemia, known as 
Majeed syndrome, is caused by autosomal-​recessive 
mutations in LPIN2. This rare syndrome has been 
reported in only three families to date96.

Table 2 | Summary of polygenic autoinflammatory diseases with a role for IL-1

Disease Genetic associations linked 
with phenotype

Presentation Therapeutic 
targets

sJIA/AOSD Class II HLA locus, HDAC9 (ref.172), 
LACC1/FAMIN173

Fever, arthritis, arthralgia, evanescent rash IL-1, IL-6, TNF, 
IL-18, IFN-​γ

Schnitzler 
syndrome

NLRP3 (ref.48) Chronic urticaria, fever, arthralgia, 
lymphadenopathy, bone pain, skeletal 
hyperostosis

IL-1, TNF

Gout ADRB3, MTHFR, SLC22A11, 
SLC22A12, SLC2A9, SLC2A12, 
ABCG2, SLC17A1, SLC17A3, 
ALC16A9, GCKR, LRRC16A, PDZK1, 
R3HDMZ, RREB1, ALDH16A1 
(ref.174), MAF175, URAT1 (ref.176)

Recurrent flares of inflammatory arthritis, 
chronic arthropathy, tophaceous deposits, 
uric acid nephrolithiasis

IL-1

Recurrent 
pericarditis

MEFV177, HLA B14, DRB1*01, 
DQB1*0202 (ref.178)

Pleuritic chest pain, pericardial rub, ECG 
changes, pericardial effusion

IL-1

CRMO IL1RN95 Recurrent fever, arthritis, multifocal bone 
inflammation

IL-1, TNF

Hidradenitis 
suppurativa

PSENEN, NCSTN, PSEN1 (ref.179) Inflammatory nodules, sinus tracts and open 
comedones in intertriginous areas

TNF, IL-1

PASH MEFV, NOD2, NLRP3, IL1RN, 
PSTPIP1, PSMB8 (ref.180), NCSTN181

HS lesions, pyoderma gangrenosum, acne IL-1, IL-18

PAPASH PSTPIP1 (ref.182) HS lesions, pyogenic sterile arthritis, 
pyoderma gangrenosum, acne

IL-1, TNF, 
IL-17A, IL-18

PASS Unknown HS lesions, pyoderma gangrenosum, acne 
vulgaris, ankylosing spondylitis

IL-1, IL-18

AHLE CFI183 Fever, neurological dysfunction, seizures, 
CSF pleocytosis

IL-1

PFAPA IL12A, STAT4, IL10, CCR1–CCR3 
(ref.109), CARD8 (ref.184), ALPK1 
(ref.185)

Recurrent fever with regular periodicity, 
aphthous stomatitis, exudative pharyngitis, 
cervical adenitis

IL-1

Kawasaki disease FCGR2A, BLK, CD40 (refs186,187), 
ITPKC, CASP3 (ref.188)

Fever, conjunctivitis, mucositis, rash, 
cervical lymphadenopathy, coronary artery 
dilatation

TNF, IL-1

Behçet disease IL12A, IL10, STAT4, CCR1–CCR3, 
IL23R–IL12RB2, FUT2 (refs109,189), 
HLAB51/B5 (ref.190)

Recurrent genital aphthae, uveitis or retinal 
vasculitis, nodular or papulopustular skin 
lesions, positive pathergy

IL-1, TNF

AHLE, acute haemorrhagic leukoencephalitis; AOSD, adult onset Still disease; CNS, central nervous system; CRMO, chronic 
recurrent multifocal osteomyelitis; CSF, cerebrospinal fluid; ECG, electrocardiogram; HS, hidradenitis suppurativa; PAPASH, 
pyogenic arthritis, acne, pyoderma gangrenosum, and suppurative hidradenitis; PASH, pyoderma gangrenosum, acne, suppurative 
hidradenitis; PASS, pyoderma gangrenosum, acne and suppurative hidradenitis; PFAPA, periodic fever, aphthous stomatitis, 
pharyngitis, adenitis; sJIA, systemic juvenile idiopathic arthritis; TNF, tumour necrosis factor.
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Hidradenitis suppurativa spectrum. Hidradenitis sup-
purativa is a chronic inflammatory disease affecting the 
epithelium of the hair follicles, whereby recurrent sup-
purative lesions lead to tissue destruction and fibrosis, 
specifically in the intertriginous areas. The pathogene-
sis of hidradenitis suppurativa is thought to be due to 
a combination of genetic and environmental factors, 
although a positive family history is present in nearly 
30% of patients, suggesting an autosomal-​dominant 
inheritance97. More recently, hidradenitis suppurativa 
has been linked to a spectrum of autoinflammatory syn-
dromes including pyoderma gangrenosum, acne, suppu-
rative hidradenitis and ankylosing spondylitis (PASS)98; 
pyoderma gangrenosum, acne, and suppurative hidrad-
enitis (PASH); pyogenic arthritis, pyoderma gangreno-
sum, acne and suppurative hidradenitis (PAPASH); and 
psoriatic arthritis, pyoderma gangrenosum, acne, sup-
purative hidradenitis (PsAPASH)99. Although all of these 
syndromes share the sterile neutrophilic inflammatory 
lesions of hidradenitis suppurativa, the varied joint  
manifestations are consistent with a complex aetiology.

Other rheumatological diseases. More common rheuma
tological disorders with autoinflammatory features and 
IL-1 signatures include systemic juvenile idiopathic 
arthritis, adult-​onset Still disease, recurrent pericarditis  
and microcrystalline arthropathies, such as gout and cal-
cium pyrophosphate deposition disease. Despite com-
plex genetics, the cardinal features of systemic juvenile 
idiopathic arthritis and adult-​onset Still disease of fever, 
arthritis, rash and systemic inflammation are commonly 
also observed in the monogenic autoinflammatory dis-
eases, and it is therefore not surprising that IL-1-​targeted 
therapies are effective in these diseases100–102. Recurrent 
pericarditis is a clinical feature observed in some patients 
with monogenic autoinflammatory disorders and may 
be the initial presentation (FMF with pericarditis). IL-1 
pathway-​targeted therapies, including colchicine and 
some IL-1 biologics, are currently approved for use in 
patients with pericarditis, with or without mutations  
in MEFV103. Similarly, gout is characterized by recurrent 
attacks of fever and joint involvement that self-​resolve. 
Given the role of the NLRP3 inflammasome in the recog
nition and perpetuation of monosodium urate- and cal-
cium pyrophosphate-​mediated inflammation24 (Fig. 2), 
it is unsurprising that IL-1-​targeted therapies have been 
used successfully in gout104 and in calcium pyrophos-
phate deposition disease105. For other rheumatological 
diseases, including the seronegative spondyloarthro
pathies such as ankylosing spondylitis and psoriatic 
arthritis, IL-1 blockade has modest benefit in some 
patients106–108, but may be considered in patients with 
refractory disease. Together, these disorders indicate 
that much remains to be learned regarding the genetic 
and environmental drivers of IL-1-​mediated inflamma-
tion. Nonetheless, the availability of targeted therapies  
provides symptomatic relief for appropriate patients.

In paediatric patients, clinical presentations of fever 
and varied mucosal signs of inflammation have a broad 
differential diagnosis and can be seen in Kawasaki disease, 
periodic fever, aphthous stomatitis, pharyngitis, adenitis 
(PFAPA) syndrome and Behçet disease, and the latter 

two disorders are now postulated to exist on a genetic 
susceptibility spectrum109 (Table 2). PFAPA syndrome 
is characterized by recurrent episodes of fever, with set 
periodicity associated with non-​infectious exudative 
pharyngitis, aphthous ulcers and cervical lymphadenopa-
thy. Given the similarities with recurrent febrile episodes 
and mucosal inflammation, together with some shared 
genetic association, PFAPA has been proposed to be in a 
disease continuum with Behçet disease that is uniquely 
characterized by genitourinary ulcers and uveitis109. 
Colchicine and IL-1 inhibitors have been used success-
fully in some patients on this syndromic spectrum110, but 
incomplete responses suggest that mechanisms beyond 
IL-1 might play a role in disease pathogenesis. The 
self-​limited Kawasaki disease shares several clinical 
features with other autoinflammatory diseases, includ-
ing fever, inflammation of the skin, conjunctiva and 
joints, as well as pronounced neutrophilic inflammation. 
Interestingly, Kawasaki presentations might be the ini-
tial sign of autoinflammatory disorders111. Although the 
aetiology of Kawasaki disease remains a source of active 
investigation, gene expression data and recent therapeutic 
success with IL-1 blockers support a major role for the 
IL-1 pathway in disease pathophysiology112,113. Recent 
studies support a complex genetic aetiology underlying 
these disorders, but ongoing research offers opportunities 
for pharmaceutical intervention.

Management of autoinflammatory diseases
Diagnostic approach
Given the rarity of autoinflammatory diseases, many 
patients experience delays in diagnosis that could result 
in the development of complications due to uncontrolled 
inflammation. Failure to achieve a timely diagnosis may 
take a toll physically and socially on patients, further 
reducing quality of life. Lack of timely diagnosis is often 
due to poor awareness by physicians of autoinflamma-
tory diseases; this is therefore an area in which rheuma-
tologists can provide a patient-​centred, comprehensive, 
team-​based clinical experience and fill an unmet need.

Recognition of systemic signs, symptoms and flare 
patterns remains the cornerstone of autoinflammatory 
disease diagnosis. For many disorders, the differential 
diagnosis includes other autoinflammatory diseases, as 
well as systemic inflammatory disorders in the rheuma-
tology realm (Fig. 3). In general, non-​specific inflamma-
tory markers are elevated in autoinflammatory diseases, 
but there are few specific tests to define the diagnosis 
other than molecular genetic evaluations. Consequently, 
advances in sequencing techniques over the past few 
decades, including the availability of next generation 
approaches and commercialization of gene panels for 
disease classes, have improved the rate of diagnosis and 
dramatically increased the identification of variants in 
autoinflammatory disorder genes. However, although 
heralded as the gold standard, genetic testing is not with-
out challenges. Increasing recognition of low penetrance 
variants114, oligogenic or digenic presentations115, somatic 
mosaicism116–119 and ‘mutation-​negative’ patients, 
continues to be clinically challenging with regard to 
both disease diagnosis and long-​term therapeutic  
management.
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Treat-​to-​target approaches
As many autoinflammatory diseases present in early 
childhood, increased emphasis is placed on the 
long-​term management and quality of life, including 
other determinants of health, growth and development, 
school or work attendance and social activities120. The 
ultimate goal of therapy is to obtain clinical control of 
symptoms with normalization of laboratory biomarkers 
of systemic inflammation, such as C-​reactive protein and 
SAA, by using a treat-​to-​target approach, individualized 
for any given patient121,122. This approach is aimed at min-
imizing or preventing the development of organ damage 
in patients, including hearing123 and vision loss, CNS 
inflammation124 and amyloidosis125. It further under-
scores the need for ongoing evaluations, in order to make 
dose adjustments for weight gain and growth, changes 
in metabolism and the need for a multidisciplinary  
team to improve patient overall wellbeing126.

Vaccination
Immunizations are an important component of ongo-
ing health care. For most patients with autoinflam-
matory disorders, normal vaccination schedules are 
recommended; however, some may have exaggerated 
inflammatory responses to vaccines. This fact is clearly 
the case in patients with MKD, who characteristically 
(and often diagnostically) have disease flares triggered 
by vaccinations74. In addition, patients with CAPS have 
been reported to have large local or systemic reac-
tions to pneumococcal vaccinations, particularly the 
polysaccharide-​conjugated form127. It is customarily  
recommended for patients receiving most forms 
of immunosuppressive therapy, including the IL-1 

inhibitors, to avoid live viral vaccines, although there is 
little evidence supporting this practice. There is also a 
theoretical risk of decreased vaccine effectiveness when 
patients are receiving some anti-​inflammatory therapies, 
as it could affect the normal host immune response to 
vaccines. Optimization of vaccinations is therefore rec-
ommended prior to starting treatment when possible. 
Specifically, pneumococcal vaccines are particularly 
important for patients who will be on IL-1 inhibitors,  
as there is an increased risk of streptococcal disease.

With the exception of MKD, in which immuniza-
tion is a known trigger for flares74, most patients with 
IL-1-​mediated autoinflammatory diseases tolerate rou-
tine vaccination, with no or mild symptoms128. With 
specific regard to SARS-​CoV-2 immunization, patients 
with autoinflammatory disorders studied to date have 
tolerated the SARS-​CoV-2 vaccines well, with symptoms 
similar to those observed in large cohorts of healthy indi-
viduals, such as local arm pain, myalgia and headache. It 
is noteworthy, however, that although no flaring of their 
disease requiring hospitalization has been observed, two 
patients with NOMID receiving SARS-​CoV-2 vaccines 
reported worsening of headache, leading to a temporary 
increase in the dose of their anti-​IL-1 therapy129. Clearly, 
longer follow-​up and additional studies are needed to 
determine how to best balance SARS-​CoV-2 vaccination 
and therapeutic dosing in this population.

Treatment of autoinflammatory diseases
Current therapies
The earliest and most widely utilized therapy for 
IL-1-​mediated autoinflammatory disorders is col-
chicine, a plant-​based medicine that was discovered 

NLRP3 spectrum
• Cold urticaria
• PLAID syndrome
• DIRA
• sJIA/AOSD

TRAPS
• MKD
• IBD
• sJIA/AOSD
• Systemic lupus
    erythematosus
• Vasculitides

PSTIP1 spectrum
• Hidradenitis suppurativa
• PASH
• PASS
• PAPASH
• Septic arthritis
• Crystal-induced arthritis

CDC42/NOCARH
• NOMID
• NLRC4-related disease
• Familial HLH

MKD spectrum
• FMF
• TRAPS
• PFAPA syndrome
• CAPS
• Behçet disease
• HA20

MEFV spectrum
• DIRA
• sJIA/AOSD
• Behçet disease
• Inflammatory bowel disease
• Vasculitides
• Malignancy

DIRA
• NOMID
• CRMO/Majeed
• SAPHO syndrome
• DITRA/GPP
• CARD14-mediated psoriasis
• PAAND

Fig. 3 | Differential diagnostic considerations for monogenic disorders. Certain clinical features are shared among 
autoinflammatory disorders and may be considered in the differential diagnosis of monogenic disorders directly driven by 
IL-1 (blue) or associated with IL-1 (orange). The lists shown here are not exhaustive and other disorders may be considered 
based on individual patient clinical presentations. For an overview of CARD14-​mediated psoriasis, see ref.191. AOSD, adult 
onset Still disease; CAPS, cryopyrin-​associated periodic syndromes; CARD14-​mediated psoriasis191; CRMO, chronic 
recurrent multifocal osteomyelitis; DIRA, deficiency of IL-1 receptor antagonist; DITRA, deficiency of IL-36 receptor 
antagonist192,193; FMF, familial Mediterranean fever; GPP, generalized pustular psoriasis; HA20, haploinsufficiency of A20 
(ref.194); HLH, hemophagocytic lymphohistiocytosis; MKD, mevalonate kinase deficiency; NLRC4, NLR family CARD 
domain containing 4 (ref.195); NOCARH, neonatal-​onset cytopenia with dyshaematopoiesis, autoinflammation, rash,  
and HLH; NOMID, neonatal-​onset multisystem inflammatory disease; PAAND, pyrin-​associated autoinflammation with 
neutrophilic dermatosis; PAPASH, pyogenic arthritis, acne, pyoderma gangrenosum, and suppurative hidradenitis;  
PASH, pyoderma gangrenosum, acne, suppurative hidradenitis; PASS, pyoderma gangrenosum, acne and suppurative 
hidradenitis; PFAPA, periodic fever, aphthous stomatitis, pharyngitis, adenitis; PLAID, PLCγ2-​associated antibody 
deficiency and immune dysregulation196,197; SAPHO, synovitis, acne, pustulosis, hyperostosis, osteitis; sJIA, systemic 
juvenile idiopathic arthritis; TRAPS, tumour necrosis factor receptor-​associated periodic syndrome.
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serendipitously in the 1970s as a successful prophylac-
tic treatment for patients with FMF. Colchicine seems 
to work by disrupting microtubules130, which mediate 
intracellular organelle and vesicle movement, cytokine 
secretion, cell division and migration, and regulation 
of gene expression131,132. The identification of the pyrin 
inflammasome more than 20 years later, and the demon-
stration that colchicine blocks pyrin inflammasome 
activation133, might explain why it is not as effective in 
the non-​pyrin-​mediated monogenic autoinflammatory 
disorders. However, there are some patients with FMF 
that do not respond to colchicine and others who cannot 
tolerate the gastrointestinal side effects or adhere ade-
quately to a daily maintenance therapy134. These patients 
usually respond to IL-1-​targeted biologics, although the 
prevention of amyloidosis has not been as well estab-
lished as it has with colchicine135. It was the pharmaco-
logical development of the IL-1R antagonist, anakinra, 
initially for the treatment of sepsis, that enabled a direct 
means of evaluating the role of IL-1 in human diseases. 
This was a major advance, given that IL-1β levels are 
low, and IL-1α is typically below the level of detection, 
in the serum of patients with even the most severe 
autoinflammatory disease136. Although the sepsis trials 
failed, FDA approval for anakinra in rheumatoid arthri-
tis in 2001 enabled investigators to test this antagonist 
in patients137. Since then, two additional IL-1-​targeted 
therapies have been developed and approved, includ-
ing rilonacept, a recombinant IL-1R that binds to and 
inhibits IL-1α, IL-1β and IL-1RA, and canakinumab, a 
human monoclonal antibody that binds specifically to 
IL-1β92,136. The different mechanisms of action of these 
three compounds should enable the unique functions 
of specific IL-1 family members in human disease to 
be understood, although the actual clinical experience 
has not necessarily been that clear, likely because of 
complex intra IL-1 family member regulatory mecha-
nisms. The clinical success of IL-1 blockade (targeting 
IL-1α or IL-1β, or both) provides the most convincing 
evidence of a role for IL-1 in autoinflammatory disease 
pathogenesis136. To that end, empiric trials of anti-​IL-1 

therapies might be useful in treating patients with either 
genetically undefined autoinflammatory symptoms or 
with prominent non-​infectious neutrophilia and ele-
vated C-​reactive protein or SAA138. All three approved 
IL-1-​targeting therapies (Supplementary Table 2) have 
similar safety profiles, with the primary adverse effect 
being increased risk of non-​opportunistic infections, 
which tend to be mild and can often be treated without 
withdrawing therapy139. There are limited head-​to-​head 
trials of the different direct IL-1 inhibitors140,141, and 
the general consensus among treating experts is that 
these biologic therapies have equivalent efficacy if 
used at appropriate doses with sufficient adherence. 
Nonetheless, there are clear pharmacodynamic differ-
ences between direct IL-1 inhibitors, as evidenced by the 
different dosing frequencies required41. There is likely an 
advantage of anakinra and rilonacept over canakinumab 
in treating DIRA given that they block IL-1α and IL-1β, 
rather than IL-1β alone95. This fact might also be the case 
with recurrent pericarditis and hidradenitis suppurativa. 
Diseases with CNS inflammation might respond better 
to anakinra because of its smaller molecular size and 
resulting potential to penetrate the blood–brain barrier 
more efficiently than rilonacept and canakinumab142. 
There are some patient groups that require higher or 
more frequent dosing, including patients with more 
severe autoinflammatory symptoms (such as NOMID 
and MKD), younger patients, and patients with atypi-
cal presentations or low penetrance mutations. Therapy 
during pregnancy remains an understudied cohort143. 
Even for DIRA, which may be the most obvious exam-
ple of links between genetics, disease and pathogenesis, 
patient-​to-​patient variability in therapeutic response 
still exists60. Similarly, there is increasing recognition of 
a role for inflammasome-​driven IL-18 in some diseases, 
such as PAPA syndrome84, which may explain a lack of 
uniform responses to IL-1 blockade. Despite the gen-
eral success in treating autoinflammation, the targeting 
of such a key mediator of inflammation, as well as the 
injectable nature of these therapeutics, has resulted in a 
search for additional therapies.

New therapies targeting the IL-1 pathway
The rapid approval of rilonacept and canakinumab for 
CAPS144,145 caught the attention of the pharmaceutical 
industry. However, it was the CANTOS trial146 that con-
firmed that targeting the IL-1 pathway can have broader 
implications in more common diseases not traditionally 
considered as autoinflammatory, such as cardiovascu-
lar disease (Box 1). Although the initial focus has been 
on targeting single proteins in the IL-1 pathway (IL-1β,  
IL-1R and IL-1α) with predicted pharmacokinetic 
advantages, the current trend is to either combine pro-
tein targets (such as IL-1β and IL-18) or to develop small 
molecule inhibitors aimed at various steps in the IL-1 
pathway (Table 3).

The most prevalent small molecule target for treating 
autoinflammatory diseases has been NLRP3, beginning 
with the early development of CRID3 (now known as 
MCC950)147; furthermore, multiple companies are 
currently developing, acquiring or studying their own 
NLRP3 inhibitors for various diseases, including some 

Box 1 | Expanded spectrum of diseases under investigation for anti-​IL-1 therapy

Musculoskeletal
Osteoarthritis, anterior cruciate ligament injuries, rheumatoid arthritis, polymyositis, 
dermatomyositis, inclusion body myositis, subacromial bursitis

Neurological
Multiple sclerosis, chronic fatigue syndrome, autoimmune neurosensory hearing loss, 
autoimmune inner ear disease

Inflammatory
Scleroderma, pustular psoriasis, palmoplantar pustulosis, urticarial vasculitis, pyoderma 
gangrenosum, sarcoidosis (cardiac and pulmonary)

Renal/metabolic
End-​stage renal disease, chronic kidney disease, type 2 diabetes mellitus

Cardiovascular
Giant cell arteritis, acute myocarditis, heart failure, atherosclerosis

Ophthalmological
Blepharokeratoconjunctivitis, uveitis

These diseases were identified based on the search terms anakinra, rilonacept, canakinumab and 
IL-1 at clinicaltrials.gov.
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monogenic autoinflammatory disorders148. Directly 
inhibiting a protein that is altered in a monogenic dis-
ease is theoretically a more targeted approach than use 
of the currently available biologics against downstream 
cytokines. Small molecules could also be designed to 
have better blood–brain barrier penetration, which 
would have implications for diseases with marked CNS 
inflammation. One study found that blocking NLRP3 
decreased the risk of specific infections associated with 
broader IL-1 inhibitors149. However, it is also conceivable 
that small molecules designed to bind to wild-​type pro-
tein might have less avidity for mutant protein, thereby 
reducing clinical efficacy in patients150.

Small molecule inhibitors with targets upstream and 
downstream of the inflammasome pathway are sim-
ilarly under investigation. Two of the earliest pathway 
component inhibitors to be developed were compounds 
targeting P2X7, the receptor for ATP responsible for the 
potassium flux that activates NLRP3, and caspase 1,  
the common effector enzyme for inflammasomes (Fig. 2). 
In addition to non-​IL-1 pathway functions, P2X7 inhib-
itors might not affect intrinsically dysregulated inflam-
masomes that could be activated independently of P2X7. 
Specific caspase 1 inhibitors were developed and stud-
ied in several diseases, including autoinflammatory dis-
eases, but pharmacodynamic issues and unexpected side 

effects resulted in their discontinuation. Finally, there 
are other drugs in development that block downstream 
IL-1R signalling, including IRAK4 and MK2. Inhibiting 
these targets could be very effective at blocking the 
effects of IL-1 in addition to other cytokine receptors, 
which could have advantages and disadvantages in terms 
of applicability to other diseases, and as yet unknown 
adverse effects.

Ongoing challenges and future perspectives
The identification of variants of unknown significance, 
which have neither been previously identified in disease 
cohorts nor rigorously studied, has introduced further 
challenges to our understanding of the complex genetic 
underpinnings of autoinflammatory diseases. The same 
is true for low penetrance variants, defined as likely 
benign variants that might be present at low frequency 
in the general population, but which may nonetheless 
contribute to IL-1-​driven inflammation. Importantly, 
patients carrying these variants might present with clin-
ical manifestations different from typical disease, and 
consequently might respond differently to therapeutics.

The most well-​known IL-1-​associated low pen-
etrance variants are found in NLRP3, MEFV and 
TNFRSF1A. Patients with low penetrance variants in 
NLRP3 (including V198M, R488K and Q703K) have a 

Table 3 | Drugs in development over the past decade targeting the IL-1 pathway

Drug Target Mechanism Clinical Trial

CE-224535 P2X7 Selective P2X(7) receptor antagonist NCT00628095

AZD9056 P2X7 Selective P2X(7) receptor antagonist NCT00520572

BMS-986299 NLRP3 Agonist NCT03444753

Dapansutrile NLRP3 Small molecular inhibitor NCT03595371

IZD334 NLRP3 Small molecule inhibitor NCT04086602

ZYIL1 NLRP3 Small molecule inhibitor NCT04731324

IZD174 NLRP3 Small molecule inhibitor, CNS penetrant NCT04338997

AC-201 NLRP3 Small molecule inhibitor NCT02287818

VX-765 Caspase 1 Small molecule inhibitor NCT00205465

Emricasan Caspase 1 Pan caspase inhibitor NCT04803227

Disulfiram GSDMD Gasdermin D inhibitor NCT04485130

Bermekimab IL-1α Anti-​IL-1α monoclonal antibody NCT03512275

Gevokizumab IL-1β Anti-​IL-1β monoclonal antibody NCT01211977

LY2189102 IL-1β Anti-​IL-1β humanized monoclonal immunoglobulin G4 NCT00380744

CYT013-​IL1bQb IL-1β Vaccine to IL-1β NCT00924105

Lutikizumab IL-1α/IL-1β Dual affinity monoclonal antibody to IL-1α/IL-1β NCT01668511

MAS825 IL-1β/IL-18 Bispecific IL-1β and IL-18 monoclonal antibody NCT04641442

sc-​rAAV2.5IL-1Ra IL-1R1 Self-​complementing, recombinant AAV carrying IL-1RA cDNA NCT02790723

EBI-005 IL-1R1 IL-1β and IL-1 receptor antagonist fusion protein NCT04121442

HL2351 IL-1R1 Human IL-1Ra-​hyFc NCT02853084

MEDI8968 IL-1R1 Anti-​IL-1R1 human monoclonal antibody NCT01838499

AMG108 IL-1R1 Anti-​IL-1R1 monoclonal antibody NCT00110942

EBI-005 IL-1R1 Chimeric IL-1RA- IL-1β NCT02082899

KT-474 IRAK4 Oral heterobifunctional small molecule IRAK4 degrader NCT04772885

ATI-450 MK2 Oral small molecule MAPKAPK2 (MK2) inhibitor NCT04524858

Identified based on search terms IL-1, inflammasome, NLRP3, at clinicaltrials.gov and Dinarello et al.92.
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spectrum of disease ranging from asymptomatic, clas-
sic CAPS-​associated features, or atypical presentation 
including gastrointestinal symptoms114 or more severe 
neurological symptoms151. In vitro studies suggest 
an intermediate phenotype with increased caspase 1 
activity and IL-1β secretion compared with wild-​type 
versions of these proteins, but with markedly less secre-
tion than classic disease-​causing mutations114. Patients 
respond at least partially to IL-1 blockade, suggesting 
that other mechanisms beyond IL-1 may contrib-
ute to disease pathogenesis. Nonetheless, in the small 
cohorts described to date, nearly half of patients experi-
enced complete disease remission, suggesting that IL-1  
inhibitors should be trialled in this unique population114.

In TRAPS, the most highly contested variant is tradi-
tionally known as R92Q (also known as R121Q), with a 
population frequency greater than 1%. Similar to the low 
penetrance variants in NLRP3, many R92Q carriers pres-
ent with mild TRAPS symptoms with febrile episodes 
lasting approximately 1 week and in vitro studies demon-
strating intermediate function, with reduced cytokine 
release from transfected cells, compared with cysteine 
mutations that have a more severe clinical phenotype152. 
Therapeutic responses to corticosteroids and colchi-
cine have been described, as well as IL-1 blockade, with 
improvement in inflammatory episodes152,153.

The high prevalence of MEFV variants in cer-
tain populations adds to the challenges of variants of 
unknown significance and low penetrance mutations 
and their relationship to FMF6. Variants such as E148Q 
have been described in up to 50% of different Jewish 
ethnic groups154. Although population frequencies of 
some pathogenic MEFV variants (such as V726A and 
M694V) are likely due to positive selection in Eastern 
Mediterranean populations, by conferring resistance to 
Yersinia pestis infection155, there might be an unknown 
heterozygote advantage to the high frequency of 
carriers156,157. However, the presence of low-​penetrance 
heterozygous variants has led to complex clinical pheno
types including PFAPA syndrome presentations158, 
Behçet disease159 and risk of amyloidosis160. These varied 
clinical presentations further demonstrate the need to 
address patients on an individual basis.

Treating patients with autoinflammatory phenotypes 
with no identifiable disease-​causing mutation is also 
challenging. Moreover, a subset of patients might have 
somatic mutations in an autoinflammatory gene that are 
restricted to a small (4%) proportion of a specific cell 
population. Such patients might have mild, delayed118,119 
or atypical presentations116 or complete disease161. 
However, a growing number of patients have no clear 
genetic aetiology. Frequently referred to as syndrome of 
undifferentiated recurrent fever138,162 or undifferentiated 

systemic autoinflammatory disease163, choosing therapy 
for these patients is challenging. Fortunately, for patients 
with features of IL-1 presentations, treatment with IL-1 
blockade and colchicine are successful in a significant 
proportion of patients138,163.

For patients with a poor response to IL-1 blockade 
due to complex genetics or lack of access to biologic 
therapeutics, haematopoietic stem cell transplantations 
have been attempted164. Although theoretically curative 
by replacing the haematopoietic cells that drive disease, 
the identification of patients with gain-​of-​function 
somatic mutations is instructive that only a small popu-
lation of cells can drive disease phenotypes. The optimal 
treatment for these patients remains an active area of 
discussion.

Finally, the COVID-19 pandemic has brought sys-
temic inflammatory disease into mainstream attention, 
with a variety of attempts to quell the cytokine storm 
and reduce morbidity and mortality. In the paediatric 
population, a multi-​organ hyperinflammatory response 
to SARS-​CoV-2 infection was described to occur weeks 
after infection, and is now known as multisystem inflam-
matory syndrome associated with coronavirus disease 
2019 or paediatric multi-​inflammatory syndrome tem-
porally associated with COVID-19 (refs165–167). Initially 
thought to be an atypical form of Kawasaki disease, it 
was quickly recognized that affected children were more 
likely to have signs of shock, gastrointestinal symptoms 
and coagulopathy165–167. Immunomodulatory therapy 
with intravenous immunoglobulin and glucocorticoids 
appears to be the most effective therapy to date, with a 
role for IL-1 blockade in refractory cases168–170.

The investigation of autoinflammatory disease and 
the inflammasome has involved the confluence of pheno
typed patients and scientific studies at the bench. Over 
the past 30 years, such clinic–laboratory cooperation 
has been instrumental to the development of novel, 
targeted therapies for such patients171. The elucidation 
of inflammasome-​mediated molecular pathways drove 
our understanding of basic innate immune mechanisms, 
solved several questions regarding the mechanisms  
of IL-1β release and led to successful therapy of many of 
the monogenic autoinflammatory diseases with biolog-
ics directed at the IL-1 pathway. A better understanding 
of the genetic and molecular mechanisms of autoinflam-
mation and novel targeted therapies, such as biologics 
blocking more than IL-1 cytokine or small molecule 
inhibitors targeting upstream or downstream pathway 
elements, could lead to more effective personalized man-
agement of patients with this fascinating and sometimes 
frustrating family of immune dysregulation disorders.
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