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Lessons from the host defences of bats, a 
unique viral reservoir

Aaron T. Irving1,2,3,5 ✉, Matae Ahn1,5, Geraldine Goh1,5, Danielle E. Anderson1 & Lin-Fa Wang1,4 ✉

There have been several major outbreaks of emerging viral diseases, including 
Hendra, Nipah, Marburg and Ebola virus diseases, severe acute respiratory syndrome 
(SARS) and Middle East respiratory syndrome (MERS)—as well as the current 
pandemic of coronavirus disease 2019 (COVID-19). Notably, all of these outbreaks 
have been linked to suspected zoonotic transmission of bat-borne viruses. Bats—the 
only flying mammal—display several additional features that are unique among 
mammals, such as a long lifespan relative to body size, a low rate of tumorigenesis and 
an exceptional ability to host viruses without presenting clinical disease. Here we 
discuss the mechanisms that underpin the host defence system and immune 
tolerance of bats, and their ramifications for human health and disease. Recent 
studies suggest that 64 million years of adaptive evolution have shaped the host 
defence system of bats to balance defence and tolerance, which has resulted in a 
unique ability to act as an ideal reservoir host for viruses. Lessons from the effective 
host defence of bats would help us to better understand viral evolution and to better 
predict, prevent and control future viral spillovers. Studying the mechanisms of 
immune tolerance in bats could lead to new approaches to improving human health. 
We strongly believe that it is time to focus on bats in research for the benefit of both 
bats and humankind.

The current pandemic of COVID-19—caused by severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2)—has led to more than 
75,704,857 cases and caused 1,690,061 deaths (as of 21 December 
2020)1. Although the possibility of an intermediate host remains an 
open question, SARS-CoV-2 is believed to have an ancestral origin in 
bats2—with closest similarity to the bat coronavirus RaTG133. Con-
ceptually, an outbreak caused by an emerging zoonotic bat virus 
has not only been predicted, but expected4–6. Continued human 
interference with natural ecosystems has resulted in many out-
breaks in the past few decades6. Along with well-known bat-borne 
viruses such as rabies and Ebola virus7,8, there is a range of diverse 
coronaviruses in bats that have confirmed spillover potential for 
severe disease outbreaks—including severe acute respiratory syn-
drome coronavirus (SARS-CoV) (which emerged in 2003) and ongo-
ing outbreaks associated with Middle East respiratory syndrome 
coronavirus (MERS-CoV) (since 2012). The ability of bats to harbour 
many viruses—and zoonotic coronaviruses in particular—may result 
from their ability to efficiently regulate host responses to infection, 
although species richness may also have a role9. Through ecological 
factors, biological traits or their underlying unique immune systems, 
bats can prevent excessive immune pathology in response to most 
viral pathogens. Examining these processes will unlock key lessons 
for human health, from understanding ageing to combating cancer 
and infectious diseases.

Basic biology of bats
Across mammalian orders, Chiroptera (bats) is a species-rich taxon that 
stands out as it is uniquely capable of powered flight; bats represent 
1,423 of the more than 6,400 known species of mammal10,11 (Table 1). 
This diversity is matched by their wide geographical distribution, which 
spares only the polar regions, extreme desert climates and a few oce-
anic islands12. Bats are keystone species upon which other fauna and 
flora are highly dependent for fertilization, pollination, seed dispersal 
and control of insect populations13,14. Bats roost in foliage, rock crev-
ices and caves, and hollowed trees, as well as human-made structures 
such as barns, houses and bridges15. Different species may be homo- or 
heterothermic, using hibernation or shorter, daily episodic torpor to 
conserve energy16. Bats are prone to low fecundity and use reproductive 
strategies such as the storage of sperm or prolonged pregnancies, with 
either seasonal or aseasonal reproductive cycles15. Furthermore, they 
consume a wide range of diets—including nectar, fruit, pollen, insects, 
fish and blood (as in the common vampire bat (Desmodus rotundus)). 
Ever intriguing to humankind, bats possess the sensing powers of echo-
location and magnetoreception (the ability to differentiate polar south 
from north), both of which are used primarily by microbats17–19. Differ-
ences in ecology, biology and physiology are important factors that 
must be considered in species-specific responses within bats and in 
the conduction of experimental studies.
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Despite the advantages and efficiency of aerial transport, flight is 
a metabolically costly mode of locomotion20: the metabolic rates of 
bats in flight can reach up to 2.5–3× those of similar-sized exercising 
terrestrial mammals21. This enormous energy demand results in the 
depletion of up to 50% of their stored energy in a day—nectarivorous 
bats catabolize their high-energy diet of simple sugars as rapidly as 
8 min after consumption, and flying bats consume about 1,200 calories 
of energy per hour22–24. Bats possess several metabolic adaptations and 
optimized airflow patterns to circumvent high-energy expenditures 
that could otherwise lead to starvation and death25. A key adaptation 
is the marked alteration of heart rate, which increases by 4–5× during 
flight to a maximum of 1,066 beats per minute24. To compensate for 
high levels of cardiac stress, cyclic bradycardia is induced for 5–7 min 
several times per hour during rest, which may conserve up to 10% of 
available energy. Despite their high metabolic rates and small statures, 
bats live substantially longer than non-flying mammals of similar body 
mass26,27. When adjusted for body size, only 19 species of mammals are 
longer-lived than humans: 18 of these species are bats (the other is the 
naked mole-rat)28. On average, the maximum recorded lifespan of bats 
is 3.5× that of a non-flying placental mammal of a similar size29. As a 
mammalian model of antiageing, bats may offer vital clues in human 
attempts to delay mortality and enhance longevity.

Status of bats as a unique viral reservoir
Bats have been associated with infectious diseases for centuries. Their 
role in the transmission of rabies virus led Metchnikov to investigate 
fruit bat macrophages and their immune responses in 190930. More 
recently, several new or re-emerging viral outbreaks associated with 
spillover from bat reservoirs have been documented, and a number of 
reports have highlighted the risk of future spillover events into human 
populations. Enveloped, positive-sense single-stranded RNA corona-
viruses are widespread in animals (54% of those known are associated 
with bats), and cause mild-to-severe respiratory or enteric disease in 

humans31. The association between coronaviruses and bats began to  
be recognized with the discovery of SARS-related coronaviruses in 
bats32–35. Since then, bats have been identified as the richest source 
of genetically diverse coronaviruses36, including the MERS-CoV-like 
viruses37 and a range of bat coronaviruses38–40. Several genome 
sequences of bat coronaviruses have recently been reported that show 
a high genetic similarity to SARS-CoV-23,41. The increasing number of 
spillover events of bat viruses—and of coronaviruses in particular—is 
believed to stem from the disruption of the natural ecosystems that 
host bats through climate change, increased urbanization pressure 
from humans, wildlife trade and animal markets34,42,43 (Fig. 1). Some 
large global initiatives have been funded to examine the risk factors for 
potential spillover events, but the funding of this area of research has 
been reduced in recent years44,45. Although an event such as COVID-19 
has increasingly been anticipated, few scientists would have expected 
the magnitude and speed of spread of this current pandemic.

It should also be emphasized that bat-borne viruses cause devastat-
ing outbreaks not only in humans, but also in animals such as pigs and 
horses46–49. During a large-scale outbreak (as with the current COVID-19 
pandemic), there is a risk of spillback or ‘reverse’ zoonotic (anthropozo-
onotic) transmission from human to animals, as has been demonstrated 
by COVID-19 outbreaks in minks on two farms in the Netherlands, fol-
lowed by animal-to-human transmission of the SARS-CoV-2 virus50. 
Anthropozoonotic infections of SARS-CoV-2 have also been observed 
from pet owners to domestic cats and dogs51,52, and to tigers and lions 
housed in zoos53. There is a predicted risk of the spread of SARS-CoV-2 
to other free-ranging mammalian wildlife, including the great apes54 
and bats in different geographical locations55, and this perceived threat 
has affected the wildlife tourism industry in many countries. Although 
intermediate hosts such as civets and pangolins have been implicated 
in SARS-CoV and SARS-CoV-2 outbreaks (respectively), these animals 
exhibited pulmonary oedema and inflammation in response to infec-
tion with SARS-CoV-2-related coronaviruses56–58, which suggests that 
they are not true reservoirs for these coronaviruses. By contrast, bats 

Table 1 | Natural history and physiological traits of bats

Bat traits

Natural history Evolutionary age 64 million years149

Number of species 1,42211

Geographical distribution Every continent except the polar regions and several oceanic islands12

Roosting habitats Foliage, hollowed trees, rock crevices, caves and human structures15

Ecological roles Pollination, seed dispersal and insect control15

Largest known colony size 20 million bats (Mexican free-tailed bat (Tadarida brasiliensis), Bracken Cave (Texas))150

Diet Fruit, nectar, pollen, insects, rodents, amphibians, fish and blood13

Reproductive patterns Bimodal, seasonal or aseasonal breeding151

Thermoregulation Homeothermy, heterothermy, torpor and hibernation16,152

Mode of orientation to space Visual, echolocation and magnetoreception17–19

Lifespan record ≥41 years (a Brandt’s bat (Myotis brandtii), from Siberia)29

Body size (wingspan) 29 mm to 1.7 m153

Weight range 2 g to 1.6 kg153

Hibernating body temperature ≤5.8 °C154

Hibernating heart rate 10–16 beats per minute16,155

Flight and migration Migratory distances Up to 2,000 km156

In-flight body temperature ≥41 °C157

In-flight heart rate ≤1,066 beats per minute24

Energetic demands Up to 1,200 calories per hour22

Physiological adaptations Comparative metabolic rates 2.5–3× higher than similar-sized exercising mammals21

In-flight increase in metabolic rate Up to 34× basal metabolic rate21

Oxidative phosphorylation Positive selection in 23.08% mitochondrial, 4.90% nuclear-encoded OXPHOS genes83,111
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lack clinical signs of disease when infected with the majority of viruses, 
although there are some rare exceptions. High-titre infection with 
Tacaribe virus59 or infection with species-divergent strains of lyssavi-
rus60 can cause severe symptoms and death. The filovirus Lloviu virus 
is associated with the death of bats in Spain61 and the fungal white-nose 
syndrome kills bats by affecting energy needs as bats awake from hiber-
nation or torpor62.

The unique status of bats as a viral reservoir is further confirmed 
by the fact that bats host more zoonotic pathogens than any other 
known mammalian species63–65. Previous reviews have discussed the 
biological traits of these flying mammals and how these traits may 
empower bats to act as exceptional reservoirs4,6,66–68. Some putative 
explanations for reservoir potential propose that immune variation 
during hibernation69 or the higher temperatures that bats experi-
ence during flight (in the ‘fever’ hypothesis70) decrease viral loads and 
therefore maintain their status as a viral reservoir. However, studies on 
bat cells grown at high temperatures do not show a decrease in viral 
titres compared to cells grown at 37 °C71. In addition, these hypotheses 
have lost traction recently as more studies indicate a tolerance of virus 
infection rather than an active reduction of viral load. Recent work 
on bat metabolism, mitochondrial dynamics, innate and adaptive 
immunity and links between metabolic and immune systems have 
provided insights into the potential dynamic responses in bats. What 
makes bats special might not be their antiviral ability, but rather their 
antidisease features72–74. Here we hypothesize that the unique balance 
between host defence and immune tolerance in bats may be responsi-
ble for the special relationship between bats and viruses (particularly 
coronaviruses).

A balanced host defence–tolerance system
Homeostasis is the ultimate state of health for any living system, from 
cells to human bodies, and obtaining homeostasis requires the constant 
adjustment of biochemical and physiological pathways. For exam-
ple, the maintenance of a constant blood pressure results from fine 

adjustments to and balancing of many coordinated functions that 
include hormonal, neuromuscular and cardiovascular systems. This 
is also true of an effective host defence system. Although an appro-
priate level of defence is required to combat pathogens and diseases, 
excessive or dysregulated responses lead to cellular damage and tissue 
pathology. Many emerging bat-borne viruses—including SARS-CoV and 
Ebola virus—are highly pathogenic in humans, which correlates with 
an aberrant innate immune activation with prolonged and/or stronger 
immune responses75–78. By contrast, infected bats show no or minimal 
signs of disease even when high viral titres are detected in tissues or 
sera, which suggests that they are tolerant of viral diseases79–82. Recent 
studies have provided insights into the mechanisms used by bats to 
fine-tune a balance between protective versus pathological responses, 
which may contribute to their extraordinarily long lifespans and low 
incidence of cancer (Fig. 2).

Enhanced host defence responses
The unique status of bats as a viral reservoir has triggered increasing 
interest and efforts to characterize the immune system of bats. Earlier 
efforts focused on genomic73,83 and transcriptomic analysis84–86, and 
particularly on interferon and antiviral activities87–90. Humans express 
minimal baseline levels of type I interferons (IFNs), and they are highly 
inducible upon stimulation91. By comparison, the black flying fox (Ptero-
pus alecto) constitutively expresses some baseline IFNα, and many 
species of bats express several IFN-stimulated genes before stimula-
tion84,89,92,93. This may be regulated by IFN regulatory factors (IRFs), as 
differential expression patterns of IRF794 and enhanced IRF3-mediated 
antiviral responses95 are observed in bats. The restricted induction of 
type I IFNs would minimize production of inflammatory cytokines93. The 
kinetics of the IFN response in bats also differs from those of other mam-
mals, with a faster decline phase for some bat interferon-stimulated 
genes88. In addition, several antiviral genes—such as RNASEL88,90—are 
IFN-induced in bats but not in other mammals84,93 or have undergone 
selection pressure to potentially alter function, such as those encoding 
Mx proteins96 and APOBEC397. Antiviral immune activation in bats has 
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Fig. 1 | The potential zoonotic transmission cycle for coronaviruses. 
Coronaviruses may transmit naturally (black arrows) among humans, bats and 
other wildlife (such as racoon dogs, hedgehogs, pangolins, palm civets, camels 
(as is known for MERS-CoV) and mink)158. Human interventions may amplify the 
spread (red arrow). Transmission cycles may be amplified in urban areas that 
are normally at a minimal risk of exposure, increasing transmission to humans 
and accelerating an outbreak scenario. (1) Natural zoonotic infection cycles 
from domestic animals or wildlife (including bats) to humans and vice versa; 
human populations at risk include bat guano farmers, or individuals living and 
working in areas that overlap with bat habitats. (2) Natural enzootic cycle 

between different species of wildlife (including bats), and domestic animals 
and wildlife. (3) Amplification and spread between overlapping bat 
populations—as, for example, seen among species in the Rhinolophidae and 
Hipposideridae for SARS-related coronaviruses159. (4) Amplified zoonotic 
infections and spread to urban areas via human interventions, including 
wildlife trade and increased urbanization. (5) Anthropozoonotic infections 
from humans back to domestic animals or wildlife (for example, as in mink 
farming50). (6) Human migration patterns facilitate spread to urban areas (for 
example, during holiday seasons160). (7) Amplified viral spread among humans 
or animals and humans in dense urban settings.
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also previously been reviewed98,99. Just as IFN signalling varies across 
mammals100, there is likewise variation in the IFN response across bat 
species. For instance, P. alecto shows a contraction of an IFN locus89, 
whereas the Egyptian fruit bat (Rousettus aegyptiacus) exhibits no 
constitutive IFN but has one markedly expanded IFN locus—especially 
for IFNω73. Several species suggest a restricted induction profile of IFNα 
and IFNβ compared to human or mouse84,92,93. Dysregulation of the IFN 
response has previously been implicated in autoimmune diseases101 
and the pathogenesis of several bat-borne viruses, including Ebola 
virus76, SARS-CoV75–77 and SARS-CoV-2102,103. Together, these bat-specific 
changes in baseline expression, kinetics, induction or functions of 
antiviral genes in IFN signalling could help bats to efficiently control 
the numerous viruses that they host.

In addition to the innate immune responses, recent studies have shed 
light on other mechanisms of bat host defence. Enhanced autophagy 
has a key role in the increased clearance of lyssavirus from bat cells104, 
and is known to regulate immunity and mediate pathogen clearance105. 
Bats express very high levels of heat-shock proteins, which confers upon 
bat cells the ability to survive at high temperature and high oxidative 
stress in vitro. Heat-shock proteins contribute to the rapid acceleration 
of viral evolution by chaperoning viral proteins and tolerating some 
viral mutations106. They also act as a viral receptor107, regulate inflam-
mation108, block apoptosis109 and affect ageing110.

Common to all bats yet examined, mitochondrial and nuclear oxida-
tive phosphorylation genes show evidence of specific adaptive evolu-
tionary changes that support the large metabolic demands associated 
with flight99,111. Bats also have a concentration of positively selected 
genes in the DNA-damage checkpoint pathways that are important 
for cell death, cancer and ageing, in addition to the innate immune 
pathways83. A recent study has demonstrated that efficient drug efflux 
through the ABCB1 transporter in bats blocked DNA damage induced 
by the chemotherapeutic drugs doxorubicin and etoposide, conferring 
resistance to genotoxic compounds, regulating cellular homeostasis 
and possibly lowering the incidence of cancer112. Bats have a reduced 
production of reactive oxygen species compared to similar-sized 
non-flying mammals, but retain intact activity of the important antioxi-
dant superoxide dismutase113,114. These findings suggest either a more 
effective scavenging of reactive oxygen species or a lower production 
of reactive oxygen species by bat mitochondria: a recent study has 
confirmed decreased generation of reactive oxygen species in bats, 
without the age-dependent decline of antireactive oxygen species 
defence seen in mice115.

Mechanisms of immune tolerance
Both naturally infected and experimentally infected bats indicate tol-
erance of viral infection, even during a transient phase of high viral 
titres79–82. For instance, the infection of bats with high doses of Ebola 
virus79 and MERS-CoV81 caused minimal or no clinical disease, although 

titres can reach as high as 107 fluorescent focus-forming units per millili-
tre of sera for Ebola virus and 107 median tissue-culture infectious dose 
(50% reduction) equivalents per gram of lung tissues for MERS-CoV. 
This supports an immunological tolerance to RNA viruses in bats, par-
ticularly during the acute response. These observations have triggered 
increasing efforts to study how bats limit excessive or aberrant innate 
immunue responses. From the initial characterization of two divergent 
bat genomes83 and through more recent genome additions73,116,117, a 
consistent trend for the evolution of immune-related genes—including 
those encoding the pattern recognition receptors—has been revealed. 
Pattern recognition receptors sense endogenous molecules from dam-
aged cells and structurally conserved microbial structures, known as 
damage and pathogen-associated molecular patterns, respectively118. 
The recognition of viral invasion by these pattern recognition recep-
tors and their downstream signalling are key first-line defences119. The 
first mechanistic study of immune tolerance in bats showed that the 
STING-dependent type I IFN response was dampened in several bat spe-
cies, and that this results from a point mutation of a highly conserved 
residue of STING87. STING is an important pattern recognition receptor 
that mediates cytosolic-DNA-induced signalling and has a key role in 
infection, inflammation and cancer120. This mutation might be driven 
evolutionarily to tolerate the overactivation of STING by host DNA 
damage that is induced by flight. However, the effect of dampened 
STING on responses to infection with bat-borne RNA viruses—which 
might activate STING by inducing host DNA damage121—is yet to be 
understood.

A more recent study has revealed a key mechanism by which bats 
naturally dampen host inflammation in response to ‘sterile’ dan-
ger signals and infections with three types of RNA virus (including 
MERS-CoV)72. NLR-family pyrin domain containing 3 (NLRP3), a key 
inflammasome sensor that recognizes various cellular stresses and 
pathogen invasions, is dampened at both the transcription and protein 
level in bats. Importantly, reduced NLRP3-mediated inflammatory 
responses to RNA viruses have no, or minimal, effect on viral loads. 
This supports an enhanced innate immune tolerance in bats, which 
is consistent with their unique status as an asymptomatic viral res-
ervoir. As NLRP3 is increasingly recognized as sensing a broad range 
of emerging viruses122 (including MERS-CoV72 and SARS-CoV123,124), 
this mechanism may have a wide application in the great variety of 
bat-borne viruses (including SARS-CoV-2)125,126. In addition to NLRP3, an 
earlier study reported the unique loss of the entire PYHIN gene family 
at the genomic level in bats127. The members of the PYHIN gene family 
(also known as AIM2-like receptors) including AIM2 and IFI16 are recog-
nized as the only inflammasome sensors for intracellular DNA, of both 
self and microbial origins128. Both NLRP3 and AIM2 converge on their 
downstream effector caspase-1, which is responsible for cleavage of the 
inflammatory cytokines IL-1β and IL-18, and simultaneously unleashes 
inflammatory cell death (pyroptosis) through GSDMD129,130. Recent data 
reveal additional mechanisms of dampening at the level of downstream 
caspase-1 and IL-1β131, demonstrating a unique targeting of the inflam-
masome pathway for inhibition in bats. The high metabolic demands of 
flight could—in theory—lead to the release of metabolic by-products, 
including reactive oxygen species, ATP, damaged DNA and other danger 
signals that are known to trigger inflammasome activation. There-
fore, adaptions to flight could have driven the different mechanisms 
of dampening in bats, which in turn limits excessive virus-induced or 
age-related inflammation: this could subsequently contribute to the 
tolerance of viral infection and increased lifespan of bats.

Other studies have provided more insight into the immune tolerance 
of bats, although these lack functional validation or examination across 
several bat species. Treatment with polyinosinic:polycytidylic acid—a 
double-stranded RNA ligand—in cells of the big brown bat (Eptesicus 
fuscus) did not elicit a robust TNF induction, owing to a c-Rel motif in 
the promoter region132. However, this might be a species-specific and/
or ligand-specific observation, as this motif is not detected in the TNF 
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Fig. 2 | The unique balance between host defence and immune tolerance in 
bats. Bats show an excellent balance between enhanced host defence 
responses and immune tolerance through several mechanisms. Examples of 
enhanced host defences include constitutive expression of IFNs and 
interferon-stimulated genes (ISGs), increased expression of heat-shock 
proteins (HSPs), a higher base level expression of the efflux pump ABCB1 and 
enhanced autophagy. On the other hand, dampened STING and suppressed 
inflammasome pathways—such as dampened NLRP3, loss of PYHIN and 
downstream IL-1β—contribute to immune tolerance in bats.
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promoter region of P. alecto and TNF production was observed with 
other ligands72. An inhibitory immune state of natural killer cells has 
been inferred from genome analysis of natural killer cell receptors, 
providing support for enhanced immune tolerance73. In a bat–mouse 
chimaera model, an immunodeficient mouse reconstituted with a bat 
immune system appeared to be less prone to graft-versus-host disease 
than were other chimeric mouse systems reconstituted with immune 
cells from human and other mammalian animal donors133. Although 
the detailed immune-tolerance mechanism(s) is yet to be elucidated, 
the observation is consistent with other discoveries relating to bats 
having a defence–tolerance system that is more balanced than is typi-
cal among mammals.

In summary, the overall enhanced host-defence responses—coupled 
with immune tolerance or dampening—seem to provide a tight balance 
in how bats respond to stresses, which is elegantly demonstrated in 
their responses to viral infections. In addition, evolutionary studies 
have revealed several genes or pathways that are under strong posi-
tive selection in bats, which require further functional investigation. 
These include the nucleic-acid-sensing Toll-like receptors (another 
group of pattern recognition receptors), which might reflect altered 
sensing of pathogens134. There is evidence for adaptive evolution in bat 
cGAS–STING and OAS–RNase L pathways, which potentially alter the 
ability of bats to activate IFN in response to cellular nucleic acids87,135. 
Pteropus alecto MHC-I molecules exhibit a unique isoform with a 
three-amino-acid insertion within their peptide-binding groove that 
leads to distinct peptide binding motifs with a preference for proline at 
the PΩ site136. This unique peptide-binding preference is not responsible 
for the ability of P. alecto MHC-I to accommodate N-terminally extended 
peptides of up to 15-mers137. Other bat species show a similar three- or 
five-amino-acid insertion, a feature that is not shared by most other 

mammals and that may confer advantageous T cell immunity136,138,139. 
Although the genomic characterization and evolutionary studies of 
bat MHC-II genes have previously been described, further laboratory 
investigation is required to evaluate any functional differences from 
those of other mammals140,141.

Learning from bats
Research in bats and viruses of the past few decades has strengthened 
the notion that bats are indeed ‘special’ as reservoir hosts for emerg-
ing viruses. The next important question revolves around discerning 
what makes bats special. The unique balance of enhanced host-defence 
responses and immune tolerance through several mechanisms might 
be the key to this question. Deeper understanding will provide insights 
and strategies not only to aid in the prediction, prevention or control 
of zoonotic virus spillover from bats to humans, but also to potentially 
combat ageing and cancer in humans. Furthermore, the effect of altered 
bat immunity on viral evolution may cause enhanced virulence after 
spillover into hosts with divergent immune systems142. One of the key 
findings that has previously been highlighted is the dampened acti-
vation of the inflammasome complex in bats. Previous studies have 
demonstrated altered inflammasome activation in bats, including 
the loss of the PYHIN gene family127, dampened NLRP372 and reduced 
function of caspase-1 and/or IL-1β131 (Fig. 3). Importantly, the breadth of 
inflammasome-driven diseases in humans is notable, and often involves 
excessive activation of this pathway. These diseases include—but are 
not limited to—autoimmune and autoinflammatory diseases, infectious 
diseases and several age-related diseases (such as metabolic diseases 
and neurodegenerative diseases)143. Mechanistic studies of immune tol-
erance may reveal key regulatory factors for the development of targets 
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Fig. 3 | Schematic of the multilevel mechanisms of dampened 
inflammasome activation in bats. a, In human or mouse, pattern recognition 
receptor (PRR) priming and subsequent activation by RNA viruses, danger 
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and strategies to limit harmful inflammatory responses in humans. A 
genome-wide comparison of immune-related genes reveals that the 
phylogenetic relationship between bats and humans is closer than that 
between humans and rodents144. This greater similarity consolidates 
bats as potentially representing powerful model species for the study 
of viral diseases, ageing and cancer, promoting the translation of find-
ings in bats into clinically relevant treatments.

One of the major challenges for studying bat biology and immunol-
ogy is that—as they are not yet model species—there are limited tools 
and reagents for bats. Recent efforts to characterize the bat immune 
system have led to developments of more bat-specific research tools, 
including antibodies for immune-cell markers144,145 and protocols for 
the differentiation of primary immune cells146. In addition, newly devel-
oped in vivo animal models include a bat–mouse chimaera model133 and 
transgenic or knock-in mouse models that contain a bat gene. Several 
research groups now also have captive bat colonies. These are invalu-
able in investigating the mechanisms of host defence or tolerance and 
facilitating the translation of lessons from bats. With the establish-
ment of further reagents and tools for bats, we are confident that a 
deeper understanding of what makes bats special will provide insights 
and strategies to combat infection, ageing and other inflammatory  
diseases in humans.

Conclusions
A few decades ago, no one would have predicted that bat research would 
gain the momentum it has now. In addition to flight, various biological 
traits make bats unique among mammals. Endeavours such as those 
of the Bat1K consortium147, and technologies such as single-cell RNA 
sequencing, will allow unbiased and deeper characterization of bats, 
bat immune-cell populations and their specific functions and pathways. 
The host defence–immune tolerance balance of bats confers excep-
tional health. The identification of the key regulators and machinery 
that are involved in maintaining this homeostatic balance would pro-
vide valuable lessons for controlling and combating viruses, cancer, 
ageing and numerous inflammatory diseases in humans. Viruses do 
not recognize borders—and neither do bats. An increased awareness 
of bat research in alignment with translational outcomes for humans 
and international solidarity in laboratory and field-based research 
efforts is needed. By understanding the source of emerging viruses 
and harnessing knowledge from nature, we can develop approaches 
to improving the global One Health status148.
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