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The online competition between pro- and 
anti-vaccination views

Neil F. Johnson1,2 ✉, Nicolas Velásquez2, Nicholas Johnson Restrepo2, Rhys Leahy2,  
Nicholas Gabriel1, Sara El Oud1, Minzhang Zheng3, Pedro Manrique4, Stefan Wuchty5 & 
Yonatan Lupu6

Distrust in scientific expertise1–14 is dangerous. Opposition to vaccination with a future 
vaccine against SARS-CoV-2, the causal agent of COVID-19, for example, could amplify 
outbreaks2–4, as happened for measles in 20195,6. Homemade remedies7,8 and 
falsehoods are being shared widely on the Internet, as well as dismissals of expert 
advice9–11. There is a lack of understanding about how this distrust evolves at the 
system level13,14. Here we provide a map of the contention surrounding vaccines that 
has emerged from the global pool of around three billion Facebook users. Its core 
reveals a multi-sided landscape of unprecedented intricacy that involves nearly 
100 million individuals partitioned into highly dynamic, interconnected clusters 
across cities, countries, continents and languages. Although smaller in overall size, 
anti-vaccination clusters manage to become highly entangled with undecided 
clusters in the main online network, whereas pro-vaccination clusters are more 
peripheral. Our theoretical framework reproduces the recent explosive growth in 
anti-vaccination views, and predicts that these views will dominate in a decade. 
Insights provided by this framework can inform new policies and approaches to 
interrupt this shift to negative views. Our results challenge the conventional thinking 
about undecided individuals in issues of contention surrounding health, shed light on 
other issues of contention such as climate change11, and highlight the key role of 
network cluster dynamics in multi-species ecologies15.

Social media companies are struggling to control online health dis- 
and misinformation, for example, during the COVID-19 pandemic in 
20208. Online narratives tend to be nurtured in in-built community 
spaces that are a specific feature of platforms such as Facebook (for 
example, fan pages) but not Twitter3,16–18. Previous studies have pointed 
out that what is missing is a system-level understanding at the level of 
millions of people13, whereas another study14 has highlighted the need 
to understand the role of algorithms and bots in the amplification of 
risk among unwitting crowds.

Here we provide a system-level analysis of the multi-sided ecology 
of nearly 100 million individuals expressing views regarding vaccina-
tion, which are emerging from the approximately 3 billion users of 
Facebook from across countries, continents and languages (Figs. 1, 
2). The segregation in Fig. 1a arises spontaneously. Individuals come 
together into interlinked clusters. Each cluster is a Facebook page and 
its members (that is, fans) who subscribe to, share and interact with the 
content and narratives of that Facebook page. A link from cluster A to 
B exists when A recommends B to all its members at the page level, as 
opposed to a page member simply mentioning a cluster. Each red node 
is a cluster of fans of a page with anti-vaccination content. Cluster size 
is given by the number of fans, for example, the page ‘RAGE Against the 
Vaccines’ has a size of approximately 40,000 members. Blue nodes are 

clusters that support vaccinations, for example, the page ‘The Gates 
Foundation’ has a size (that is, number of fans) of more than 1 million. 
Each green node is a page focused around vaccines or another topic—
for example, a school parent association—that has become linked to 
the vaccine debate but for which the stance is still undecided. Support 
and potential recruitment of these green clusters (crowds) is akin to 
a battle for the ‘hearts and minds’ of individuals in insurgent warfare.

Seven unexpected features of this cluster network (Fig. 1) and its 
evolution (Fig. 2) together explain why negative views have become so 
robust and resilient, despite a considerable number of news stories that 
supported vaccination and were against anti-vaccination views during 
the measles outbreak of 2019 and recent efforts against anti-vaccination 
views from pro-vaccination clusters and Facebook.

First, although anti-vaccination clusters are smaller numerically 
(that is, have a minority total size, Fig. 1d) and have ideologically fringe 
opinions, anti-vaccination clusters have become central in terms of 
the positioning within the network (Fig. 1a). Specifically, whereas 
pro-vaccination clusters are confined to the smallest two of the three 
network patches (Fig. 2a), anti-vaccination clusters dominate the main 
network patch in which they are heavily entangled with a very large 
presence of undecided clusters (more than 50 million undecided indi-
viduals). This means that the pro-vaccination clusters in the smaller 
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network patches may remain ignorant of the main conflict and have 
the wrong impression that they are winning.

Second, instead of the undecided population being passively per-
suaded by the anti- or pro-vaccination populations, undecided individu-
als are highly active: the undecided clusters have the highest growth of 
new out-links (Fig. 1a), followed by anti-vaccination clusters. Moreover, 
it is the undecided clusters who are entangled with the anti-vaccination 
clusters in the main network patch that tend to show this high out-link 
growth. These findings challenge our current thinking that undecided 
individuals are a passive background population in the battle for ‘hearts 
and minds’.

Third, anti-vaccination individuals form more than twice as many 
clusters compared with pro-vaccination individuals by having a much 
smaller average cluster size. This means that the anti-vaccination pop-
ulation provides a larger number of sites for engagement than the 
pro-vaccination population. This enables anti-vaccination clusters 
to entangle themselves in the network in a way that pro-vaccination 
clusters cannot. As a result, many anti-vaccination clusters manage to 
increase their network centrality (Fig. 2b) more than pro-vaccination 
clusters despite the media ambience that was against anti-vaccination 
views during 2019, and manage to reach better across the entire net-
work (Fig. 2a).

Fourth, our qualitative analysis of cluster content shows that 
anti-vaccination clusters offer a wide range of potentially attractive 
narratives that blend topics such as safety concerns, conspiracy theo-
ries and alternative health and medicine, and also now the cause and 
cure of the COVID-19 virus. This diversity in the anti-vaccination nar-
ratives is consistent with other reports in the literature4. By contrast, 
pro-vaccination views are far more monothematic. Using aggregation 
mathematics and a multi-agent model, we have reproduced the ability 

of anti-vaccination support to form into an array of many smaller-sized 
clusters, each with its own nuanced opinion, from a population of 
individuals with diverse characteristics (Fig. 3b and Supplementary 
Information).

Fifth, anti-vaccination clusters show the highest growth during the 
measles outbreak of 2019, whereas pro-vaccination clusters show the 
lowest growth (Fig. 1c). Some anti-vaccination clusters grow by more 
than 300%, whereas no pro-vaccination cluster grows by more than 
100% and most clusters grow by less than 50%. This is again consistent 
with the anti-vaccination population being able to attract more unde-
cided individuals by offering many different types of cluster, each with 
its own type of negative narrative regarding vaccines.

Sixth, medium-sized anti-vaccination clusters grow most. 
Whereas larger anti-vaccination clusters take up the attention of the 
pro-vaccination population, these smaller clusters can expand without 
being noticed. This finding challenges a broader theoretical notion of 
population dynamics that claims that groups grow though preferential 
attachment (that is, a larger size attracts more recruits). Therefore, a 
different theory is needed that generalizes the notion of size-dependent 
growth to include heterogeneity (Fig. 3b).

Seventh, geography (Fig.  1b) is a favourable factor for the 
anti-vaccination population. Anti-vaccination clusters either self-locate 
within cities, states or countries, or remain global. Figure 1b shows a 
small sample of the connectivity between localized and global clus-
ters. Any two local clusters (for example, two US states) are typically 
interconnected through an ether of global clusters and so feel part of 
both a local and global campaign.

The complex cluster dynamics between undecided, 
anti-vaccination and pro-vaccination individuals (Figs. 1, 2) mean 
that traditional mass-action modelling19 cannot be used reliably for 
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Fig. 1 | Online ecology of vaccine views. a, Snapshot from 15 October 2019 of 
the connected component in the complex ecology of undecided (green), 
anti-vaccination (red) and pro-vaccination (blue) views comprising nearly 
100 million individuals in clusters (pages) associated with the vaccine topic on 
Facebook. The colour segregation is an emergent effect (that is, not imposed). 
Cluster sizes are determined by the number of members of the Facebook page. 
Black rings show clusters with more than 50% out-link growth. Each link 

between nodes has the colour of the source node. b, Global spread of Fig. 1a for 
a small number of clusters. The ‘global ether’ represents clusters that remain 
global (grey). c, Anti-vaccination clusters have a stronger growth in cluster  
size. Each coloured dot is a node; data are from February–October 2019.  
d, Anti-vaccination individuals are an overall numerical minority compared 
with pro-vaccination individuals; however, anti-vaccination individuals form 
more separate clusters.
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predictions or policies. Mass-action models suggest that given the large 
pro-vaccination majority (Fig. 1d), the anti-vaccination clusters should 
shrink relative to pro-vaccination clusters under attrition, which is the 
opposite of what happened in 2019. Figure 3a shows the importance of 
these missing cluster dynamics using a simple computer simulation 
with mass-action interactions only between clusters, not populations. 
The simulation reproduces the increase in anti-vaccination support in 
2019, and predicts that anti-vaccination views will dominate in approx-
imately 10 years (Fig. 3a). These findings suggest a new theoretical 
framework to describe this ecology, and inform new policies that allow 
pro-vaccination entities, or the platform itself, to choose their preferred 
scale at which to intervene.

If the preferred intervention scale is at the scale of individual clus-
ters (Fig. 3b), then Fig. 1a can identify and target the most central and 
potentially influential anti-vaccination clusters. Our clustering theory 
(see Supplementary Information) predicts that the growth rate of an 
influential anti-vaccination cluster can be reduced, and the onset time 
for future anti-vaccination (or connected undecided) clusters delayed, 
by increasing the heterogeneity within the cluster. This reduces param-
eter F of our theory, which captures the similarity of pairs of engaged 
individuals N in a particular narrative. The anti-vaccination (or con-
nected undecided) cluster size C(t) is reduced to C(t) =N(1 − W([−2Ft/N]
exp[−2Ft/N])/[−2Ft/N]) where W is the Lambert function20, and the 

delayed onset time for a future nascent anti-vaccination (or connected 
undecided) cluster is tonset = N/2F. If instead the preferred intervention 
scale is at the scale of network patches (single or connected; Fig. 3b), 
our theoretical framework predicts that the pro-vaccination population 
(B) can beat the anti-vaccination population or persuade the undecided 
population (X) within a given network patch S over time T by using 
Fig. 1a to identify and then proactively engage with the other clusters 
in S, irrespective of whether they are linked or not:
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where dB and dX are rates at which the activity of an average cluster 
becomes inactive (for example, no more posts in the cluster), and B and 
X are the current total sizes of the respective populations21. If instead 
the preferred intervention scale is the entire global ecology (Fig. 1a), 
this framework predicts the condition rlinkp/rinactiveq < 1 to prevent the 
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Fig. 2 | Temporal evolution of online ecology. a, Link growth during 
February–October 2019 for anti-vaccination (red; left) and pro-vaccination 
(blue; right) clusters. Anti-vaccination clusters successfully added many new 
links within the largest network patch and between network patches, despite 
the media ambience against anti-vaccination views during the measles 
outbreak in 2019. The underlying clusters are identical to Fig. 1a, that is, each 
network patch is a clustered region of clusters from Fig. 1a. b, Anti-vaccination 
clusters have a stronger growth in node eigencentrality—which indicates the 
influence of a node in a network—than pro-vaccination clusters. Data are from 
February–October 2019.
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Fig. 3 | Predictions and interventions. a, Theoretical prediction for the future 
total size of anti-vaccination and pro-vaccination support without new 
interventions (coloured lines with 2σ bands from the simulation). Under the 
present conditions, it predicts that total anti-vaccination support reaches 
dominance in around 10 years. b, Top left, our theoretical model predicts that, 
as observed empirically, many smaller-sized anti-vaccination clusters form, 
with each cluster having its own nuanced type of narrative (for example, X, Y, Z) 
that surrounds a general topic (vaccines in this case). Bottom left, the predicted 
growth profile of individual clusters can be manipulated by altering the 
heterogeneity to delay the onset and decrease the growth. Bottom middle, 
pro-vaccination population B is predicted to overcome the anti-vaccination 
population, or persuade the undecided population, X, within a given network 
patch in time T by using Fig. 1a to identify and then engage with all the clusters. 
Bottom right, the link dynamics can be manipulated to prevent the spread of 
negative narratives. See Supplementary Information for all mathematical 
details.
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spreading of negative narratives22 (Fig. 3b), where rlink and rinactive are 
the rates at which links are formed and become inactive between sets 
of clusters; p is the average rate at which a cluster shares material with 
another cluster and q is the average rate at which a cluster becomes inac-
tive. Conversely, rlinkp/rinactiveq > 1 predicts the condition for system-wide 
spreading of intentional counter-messaging. As p and q are proper-
ties related to a single average cluster and are probably more difficult 
to manipulate, the best intervention at this system-wide scale is to 
manipulate the rate at which links are created (rlink) and/or the rate at 
which links become inactive (rinactive).

Finally, we note that our analysis is incomplete and that other chan-
nels of influence should be explored. However, similar behaviours 
should arise in any online setting in which clusters can form. Our mathe-
matical formulae are approximations. We could define links differently, 
for example, as numbers of members that clusters have in common. 
However, such information is not publicly available on Facebook. Fur-
thermore, our previous study of a Facebook-like platform for which 
such information was available showed that the absence or presence 
of such a link between pages acts as a proxy for low or high numbers 
of common members. How people react to intervention is ultimately 
an empirical question23,24. One may also wonder about external agents 
or entities—however, clusters tend to police themselves for bot-like or 
troll behaviour. The crudely power law-like distribution of the cluster 
sizes of anti-vaccination clusters suggests that any top-down presence 
is not dominant.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-020-2281-1.
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Methods

We used clusters (Facebook pages) as the unit for our analysis17,18. Our 
cluster approach does not require any private information of individu-
als. The ForceAtlas2 layout of Gephi (Fig. 1a) simulates a physical system 
in which nodes (clusters) repel each other while links act as springs. It 
is colour-agnostic, that is, the colour segregation in Fig. 1a emerges 
spontaneously and is not in-built. Nodes that appear closer to each 
other have local environments that are more highly interconnected, 
whereas nodes that are far apart do not. Our data collection uses the 
same cluster snowballing methodology as described previously17,18, that 
is, a combination of automated processes and human subject-matter 
analysis. Each cluster (Facebook page) directly receives the feed of 
narratives and other material from that page and all members (fans) 
can engage in the discussions and posting activity. Figure 1b uses the 
declared location of each cluster. Derivations of the equations are 
provided in the Supplementary Information; they build on published 
results20–22 and our approach complements other studies25–33. Equa-
tion (1) is easily generalizable, but for simplicity we assume here a 
minimal model in which each pro-vaccination cluster has a narrative 
that persuades on average xc members of each cluster X in each engage-
ment, and the pro-vaccination cluster B picks a cluster X randomly 
within S. Equation (1) also applies to the full anti-vaccination–unde-
cided ecology if we take the X-related quantities in equation (1) as 
weighted anti-vaccination–undecided values from Fig. 1a. The formula 
rlinkp/rinactiveq < 1, to prevent spreading, accounts for the key feature of 
cluster interconnections that change over time and can be applied 
to spreading between anti-vaccination clusters, between undecided 
clusters, or between both anti-vaccination and undecided clusters 
using weighted values. For the model in Fig. 3a, rates of cluster inter-
action are given to the first order by the relative number of links of 
each type with Y-undecided interactions that yield more recruits for 
Y when Y is anti-vaccination than when Y is pro-vaccination (see Sup-
plementary Information). The fidelity of these predictions is affected 
by the approximations of the model. For Fig. 3b, all parameters can 
be extracted from data or estimated from simulations. In the top left 
graph of Fig. 3b, two dimensions are shown for simplicity, for example, 
the degree of belief in government conspiracy and the degree of belief 
in alternative health, but similar plots emerge for other numbers of 
dimensions. In the bottom middle graph of Fig. 3b, the total initial size B 
(pro-vaccination population) plus size X (for example, anti-vaccination 
population) is kept constant. Although this leaves open the details of 
the conversion process for each X cluster, a previous study30 has shown 
that such conversion within an online cluster occurs and can be rapid. 
T for mass-action theory would tend to decrease monotonically as B 

increases; however, our theory in equation (1) shows a counterintui-
tive dependence because smaller but finite numbers of X clusters take 
the pro-vaccination clusters longer to find. Only functional forms are 
shown (that is, no numbers) as the underlying formulae and models 
are not restricted by specific numerical choices of parameter values.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The dataset used to generate this paper is provided in the Supplemen-
tary Information.

Code availability
The computer code written by the authors is provided in the Supple-
mentary Information. The open-source software packages Gephi and 
R were used to produce the figures.
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