Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

All-perovskite tandem solar cells with improved grain surface passivation

Abstract

All-perovskite tandem solar cells hold the promise of surpassing the efficiency limits of single-junction solar cells1,2,3; however, until now, the best-performing all-perovskite tandem solar cells have exhibited lower certified efficiency than have single-junction perovskite solar cells4,5. A thick mixed Pb–Sn narrow-bandgap subcell is needed to achieve high photocurrent density in tandem solar cells6, yet this is challenging owing to the short carrier diffusion length within Pb–Sn perovskites. Here we develop ammonium-cation-passivated Pb–Sn perovskites with long diffusion lengths, enabling subcells that have an absorber thickness of approximately 1.2 μm. Molecular dynamics simulations indicate that widely used phenethylammonium cations are only partially adsorbed on the surface defective sites at perovskite crystallization temperatures. The passivator adsorption is predicted to be enhanced using 4-trifluoromethyl-phenylammonium (CF3-PA), which exhibits a stronger perovskite surface-passivator interaction than does phenethylammonium. By adding a small amount of CF3-PA into the precursor solution, we increase the carrier diffusion length within Pb–Sn perovskites twofold, to over 5 μm, and increase the efficiency of Pb–Sn perovskite solar cells to over 22%. We report a certified efficiency of 26.4% in all-perovskite tandem solar cells, which exceeds that of the best-performing single-junction perovskite solar cells. Encapsulated tandem devices retain more than 90% of their initial performance after 600 h of operation at the maximum power point under 1 Sun illumination in ambient conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interaction between passivator and Pb–Sn perovskite surface.
Fig. 2: PV performance of Pb–Sn perovskite solar cells.
Fig. 3: Characterization of mixed Pb–Sn perovskite films with passivating agents.
Fig. 4: PV performance and stability of all-perovskite tandem solar cells with CF3-PA additive.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.

References

  1. Albrecht, S. & Rech, B. Perovskite solar cells: on top of commercial photovoltaics. Nat. Energy 2, 16196 (2017).

    Article  ADS  Google Scholar 

  2. Wang, R. et al. Prospects for metal halide perovskite-based tandem solar cells. Nat. Photonics 15, 411–425 (2021).

    Article  CAS  ADS  Google Scholar 

  3. Jošt, M., Kegelmann, L., Korte, L. & Albrecht, S. Monolithic perovskite tandem solar cells: a review of the present status and advanced characterization methods toward 30% efficiency. Adv. Energy Mater. 10, 1904102 (2020).

    Article  Google Scholar 

  4. Lin, R. et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nat. Energy 4, 864–873 (2019).

    Article  CAS  ADS  Google Scholar 

  5. Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Yang, Z. et al. Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells. Nat. Commun. 10, 4498 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  7. Eperon, G. E. et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 354, 861–865 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Li, Z. et al. Cost analysis of perovskite tandem photovoltaics. Joule 2, 1559–1572 (2018).

    Article  CAS  Google Scholar 

  9. Green, M. A. et al. Solar cell efficiency tables (version 58). Prog. Photovoltaics Res. Appl. 29, 657–667 (2021).

    Article  Google Scholar 

  10. Xiao, K. et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 5, 870–880 (2020).

    Article  ADS  Google Scholar 

  11. Tong, J. et al. Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 364, 475–479 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Yu, Z. et al. Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells. Nat. Energy 5, 657–665 (2020).

    Article  CAS  ADS  Google Scholar 

  13. Li, C. et al. Low-bandgap mixed tin–lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability. Nat. Energy 5, 768–776 (2020).

    Article  CAS  ADS  Google Scholar 

  14. Liu, H. et al. Modulated crystallization and reduced voc deficit of mixed lead–tin perovskite solar cells with antioxidant caffeic acid. ACS Energy Lett. 6, 2907–2916 (2021).

    Article  CAS  Google Scholar 

  15. Kapil, G. et al. Tin-lead perovskite fabricated via ethylenediamine interlayer guides to the solar cell efficiency of 21.74%. Adv. Energy Mater. 11, 2101069 (2021).

    Article  CAS  ADS  Google Scholar 

  16. Kirchartz, T. & Rau, U. What makes a good solar cell? Adv. Energy Mater. 8, 1703385 (2018).

    Article  Google Scholar 

  17. Kirchartz, T., Bisquert, J., Mora-Sero, I. & Garcia-Belmonte, G. Classification of solar cells according to mechanisms of charge separation and charge collection. Phys. Chem. Chem. Phys. 17, 4007–4014 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Aydin, E., Bastiani, M. & Wolf, S. Defect and contact passivation for perovskite solar cells. Adv. Mater. 31, 1900428 (2019).

    Article  Google Scholar 

  19. Ni, Z., Xu, S. & Huang, J. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 371, 1352–1358 (2021).

    Article  Google Scholar 

  20. Yang, Y. et al. Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films. Nat. Energy 2, 16207 (2017).

    Article  CAS  ADS  Google Scholar 

  21. Ricciarelli, D., Meggiolaro, D., Ambrosio, F. & De Angelis, F. instability of tin iodide perovskites: bulk p-doping versus surface tin oxidation. ACS Energy Lett. 5, 2787–2795 (2020).

    Article  CAS  Google Scholar 

  22. Savill, K. J., Ulatowski, A. M. & Herz, L. M. Optoelectronic properties of tin–lead halide perovskites. ACS Energy Lett. 6, 2413–2426 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zong, Y., Zhou, Z., Chen, M., Padture, N. P. & Zhou, Y. Lewis‐adduct mediated grain‐boundary functionalization for efficient ideal‐bandgap perovskite solar cells with superior stability. Adv. Energy Mater. 8, 1800997 (2018).

    Article  Google Scholar 

  24. Luo, D., Su, R., Zhang, W., Gong, Q. & Zhu, R. Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5, 44–60 (2020).

    Article  CAS  ADS  Google Scholar 

  25. Gao, F., Zhao, Y., Zhang, X. & You, J. Recent progresses on defect passivation toward efficient perovskite solar cells. Adv. Energy Mater. 10, 1902650 (2019).

    Article  Google Scholar 

  26. Chen, J. & Park, N.-G. Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS Energy Lett. 5, 2742–2786 (2020).

    Article  CAS  Google Scholar 

  27. Li, C. et al. Vertically aligned 2D/3D Pb–Sn perovskites with enhanced charge extraction and suppressed phase segregation for efficient printable solar cells. ACS Energy Lett. 5, 1386–1395 (2020).

    Article  CAS  Google Scholar 

  28. Park, S. M., Abtahi, A., Boehm, A. M. & Graham, K. R. Surface ligands for methylammonium lead iodide films: surface coverage, energetics, and photovoltaic performance. ACS Energy Lett. 5, 799–806 (2020).

    Article  CAS  Google Scholar 

  29. Wang, R. et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 366, 1509–1513 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Wei, M. et al. Combining efficiency and stability in mixed tin–lead perovskite solar cells by capping grains with an ultrathin 2D layer. Adv. Mater. 32, 1907058 (2020).

    Article  CAS  Google Scholar 

  31. Chen, B., Rudd, P. N., Yang, S., Yuan, Y. & Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019).

    Article  CAS  ADS  Google Scholar 

  33. Abate, A. et al. Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells. Nano Lett. 14, 3247–3254 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Walsh, A., Scanlon, D. O., Chen, S., Gong, X. G. & Wei, S. Self‐regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chemie 127, 1811–1814 (2015).

    Article  ADS  Google Scholar 

  35. Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J. & Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Hempel, H., Hages, C. J., Eichberger, R., Repins, I. & Unold, T. Minority and majority charge carrier mobility in Cu2ZnSnSe4 revealed by terahertz spectroscopy. Sci. Rep. 8, 14476 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  37. Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Palmstrom, A. F. et al. Enabling flexible all-perovskite tandem solar cells. Joule 3, 2193–2204 (2019).

    Article  CAS  Google Scholar 

  39. Gao, H. et al. Thermally stable all‐perovskite tandem solar cells fully using metal oxide charge transport layers and tunnel junction. Sol. RRL 5, 2100814 (2021).

    Article  CAS  Google Scholar 

  40. Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package -Quickstep: Efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

    Article  PubMed  ADS  Google Scholar 

  41. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  ADS  Google Scholar 

  42. VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    Article  PubMed  ADS  Google Scholar 

  43. Goedecker, S. & Teter, M. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    Article  CAS  ADS  Google Scholar 

  44. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  ADS  Google Scholar 

  45. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  ADS  Google Scholar 

  46. Lee, K., Murray, É. D., Kong, L., Lundqvist, B. I. & Langreth, D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B 82, 3–6 (2010).

    Google Scholar 

  47. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  PubMed  Google Scholar 

  48. Han, Q. et al. Low-temperature processed inorganic hole transport layer for efficient and stable mixed Pb-Sn low-bandgap perovskite solar cells. Sci. Bull. 64, 1399–1401 (2019).

    Article  Google Scholar 

  49. Santbergen, R. et al. GenPro4 optical model for solar cell simulation and its application to multijunction solar cells. IEEE J. Photovolt. 7, 919–926 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (grant no. 2018YFB1500102), the National Natural Science Foundation of China (grant nos. 61974063 and 61921005), the Natural Science Foundation of Jiangsu Province (grant nos. BK20202008 and BK20190315), the Technology Innovation Fund of Nanjing University, Fundamental Research Funds for the Central Universities (grant nos. 0213/14380206 and 0205/14380252), the Frontiers Science Center for Critical Earth Material Cycling Fund (grant no. DLTD2109), the Program A for Outstanding PhD Candidate of Nanjing University, and the Program for Innovative Talents and Entrepreneur in Jiangsu. The work at the University of Toronto was supported by the US Department of the Navy, Office of Naval Research (grant no. N00014-20-1-2572). SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada. K.R.G., S.M.P. and H.R.A. acknowledge the US Department of Energy, Office of Basic Energy Sciences under grant no. DE-SC0018208 for supporting the photoelectron spectroscopy measurements.

Author information

Authors and Affiliations

Authors

Contributions

H.T. conceived and directed the overall project. R.L. and Y.W. fabricated all the devices and conducted the characterization. Jian X. carried out the DFT simulation. M.W. performed Tof-SIMS, PL and PL-decay characterization. Z.Q. and C.Z. performed the terahertz measurements and analysis. Z.L. and G.C. carried out the grazing-incidence wide-angle X-ray scattering measurements. J.W., Z.L., K.X., B.C., Jun X., J.Z. and L.L. carried out device fabrication and materials characterization. S.M.P., H.R.A. and K.R.G. performed angle-dependent XPS characterization and analysis. E.H.S. and H.T. supervised the project and assisted in data analysis. R.L., M.W., Jian X., E.H.S. and H.T. wrote the manuscript. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Edward H. Sargent or Hairen Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Optical simulation of all-perovskite tandem solar cells.

The implied photocurrent density (Jsc) of tandems was calculated as function of wide-bandgap and narrow-bandgap perovskite layer thicknesses.

Extended Data Fig. 2 PCEs of mixed Pb-Sn perovskite solar cells with various concentrations of passivating agents.

a, PEA; b, PA; c, CF3-PA. The absorber layer thickness is ~1,200 nm.

Extended Data Fig. 3 Performance of control and CF3-PA mixed Pb-Sn perovskite solar cells with various absorber thicknesses.

For regular thinner Pb-Sn perovskite solar cells (thicknesses of 750 and 900 nm), the diffusion lengths are sufficiently long to ensure charge transport within devices. This agrees with the finding that no obvious improvement was observed in regular thinner devices after we added the CF3-PA passivating agent. The abrupt drop in performance at the thickness of 1.45 μm comes because the precursor solution fails to form high-quality films, a result of finite solubility of metal halides in DMF/DMSO solvent.

Extended Data Fig. 4 Performance of champion mixed Pb-Sn perovskite solar cells.

a, EQE spectra of champion control and CF3-PA mixed Pb-Sn solar cells. The EQE values of CF3-PA device are substantially higher than those of previous works at wavelengths above 800 nm, mainly due to the use of thicker absorber while maintaining sufficient carrier transport. It is noted that such a high Jsc value is obtained herein together with high Voc and FF even when using a 1,200 nm absorber. b, Reverse and forward J-V curves of the champion CF3-PA mixed Pb-Sn solar cell. c, The steady-state PCE of the champion CF3-PA device.

Extended Data Fig. 5 Characterization of control and CF3-PA mixed Pb-Sn perovskite films.

a–b, Cross-sectional SEM images of 1200-nm-thick (a) control and (b) CF3-PA mixed Pb-Sn perovskite solar cells. c, The F 1s XPS spectra of the control and CF3-PA perovskite films. d, TOF-SIMS spectra of mixed Pb-Sn perovskite film with CF3-PA additive. The additive is accumulated on the top perovskite surface and at the perovskite/HTL interface.

Extended Data Fig. 6 Schematic of angle-dependent XPS measurements.

a, Schematic of angle-dependent XPS measurements with dashed yellow lines indicating the relative photoelectron probing depth. Angles were defined as normal of the sample to detector. b–c, Angle-dependent XPS spectra of the Sn 3d at detector take-off angle θ = 0, 45, and 75° for (b) control and (c) CF3-PA perovskite films. Red peaks are fitted to Sn2+ and the blue peaks are fitted to Sn4+.

Extended Data Fig. 7 Photovoltaic performance of wide-bandgap perovskite solar cells.

a, Statistics of PV parameters among 34 devices. b, c, J-V and EQE curves of the best-performing device.

Extended Data Fig. 8 Photovoltaic performance of all-perovskite tandem solar cells.

a, The PCE histogram of all-perovskite tandem solar cells (96 devices) with 1,200-nm-thick NBG subcell. The devices were measured with a mask having aperture area of 0.049 cm2. b, Steady-state output of the champion all-perovskite tandem solar over 600 s. The device exhibited a stabilized PCE of 26.6%.

Extended Data Fig. 9 Photovoltaic performance of large-area all-perovskite tandem solar cells.

a, EQE spectra of large-area tandem solar cell. b, PCE distribution of 21 large-area tandem devices.

Extended Data Table 1 Photovoltaic parameters of champion WBG subcell, NBG subcell and all-perovskite tandem solar cell

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Figs. 1–21, Tables 1–5 and References.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, R., Xu, J., Wei, M. et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78 (2022). https://doi.org/10.1038/s41586-021-04372-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-04372-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing