Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Affinity-matured HLA class II dimers for robust staining of antigen-specific CD4+ T cells

Abstract

Peptide–major histocompatibility complex (pMHC) multimers enable the detection of antigen-specific T cells in studies ranging from vaccine efficacy to cancer immunotherapy. However, this technology is unreliable when applied to pMHC class II for the detection of CD4+ T cells. Here, using a combination of molecular biological and immunological techniques, we cloned sequences encoding human leukocyte antigen (HLA)-DP, HLA-DQ and HLA-DR molecules with enhanced CD4 binding affinity (with a Kd of 8.9 ± 1.1 µM between CD4 and affinity-matured HLA-DP4) and produced affinity-matured class II dimers that stain antigen-specific T cells better than conventional multimers in both in vitro and ex vivo analyses. Using a comprehensive library of dimers for HLA-DP4, which is the most frequent HLA allele in many ancestry groups, we mapped 103 HLA-DP4-restricted epitopes derived from diverse tumor-associated antigens and cloned the cognate T-cell antigen receptor (TCR) genes from in vitro-stimulated CD4+ T cells. The availability of affinity-matured class II dimers across HLA-DP, HLA-DQ and HLA-DR alleles will aid in the investigation of human CD4+ T-cell responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Affinity-matured DP4L112W/V141M molecules exhibit enhanced CD4 binding ability.
Fig. 2: DP4L112W/V141M dimers stain cognate TCRs expressed in human primary CD4+ T cells.
Fig. 3: Comprehensive screening using DP4L112W/V141M dimers identified an array of DP4-restricted tumor-associated antigens.
Fig. 4: Isolation of DQ molecules with enhanced CD4 binding ability.
Fig. 5: Cloning of DR molecules with enhanced CD4 binding capability.
Fig. 6: DQ5L114W/V143M+4reps, DQ6L114W/V143M+3reps and DRL114W/V143M+2reps dimers detect cognate TCRs expressed in human primary CD4+ T cells.

Similar content being viewed by others

Data availability

The main data of this study are available within the article and its Supplementary Figures. Source data are provided with this paper. All other data are available from the corresponding author upon reasonable request.

References

  1. Seder, R. A. & Ahmed, R. Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat. Immunol. 4, 835–842 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Jonsson, P. et al. Remarkably low affinity of CD4/peptide–major histocompatibility complex class II protein interactions. Proc. Natl Acad. Sci. USA 113, 5682–5687 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xiong, Y., Kern, P., Chang, H. & Reinherz, E. T cell receptor binding to a pMHCII ligand is kinetically distinct from and independent of CD4. J. Biol. Chem. 276, 5659–5667 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Davis, S. J. et al. The nature of molecular recognition by T cells. Nat. Immunol. 4, 217–224 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Garcia, K. C. et al. CD8 enhances formation of stable T-cell receptor/MHC class I molecule complexes. Nature 384, 577–581 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Wyer, J. R. et al. T cell receptor and coreceptor CD8α bind peptide–MHC independently and with distinct kinetics. Immunity 10, 219–225 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Altman, J. D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Meyer, A. L. et al. Direct enumeration of Borrelia-reactive CD4 T cells ex vivo by using MHC class II tetramers. Proc. Natl Acad. Sci. USA 97, 11433–11438 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vollers, S. S. & Stern, L. J. Class II major histocompatibility complex tetramer staining: progress, problems, and prospects. Immunology 123, 305–313 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nepom, G. T. MHC class II tetramers. J. Immunol. 188, 2477–2482 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Wooldridge, L. et al. Tricks with tetramers: how to get the most from multimeric peptide–MHC. Immunology 126, 147–164 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao, W. & Sher, X. Systematically benchmarking peptide–MHC binding predictors: from synthetic to naturally processed epitopes. PLoS Comput. Biol. 14, e1006457 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wang, X. X. et al. Affinity maturation of human CD4 by yeast surface display and crystal structure of a CD4–HLA-DR1 complex. Proc. Natl Acad. Sci. USA 108, 15960–15965 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Konig, R., Huang, L. Y. & Germain, R. N. MHC class II interaction with CD4 mediated by a region analogous to the MHC class I binding site for CD8. Nature 356, 796–798 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Konig, R. Interactions between MHC molecules and co-receptors of the TCR. Curr. Opin. Immunol. 14, 75–83 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Artyomov, M. N., Lis, M., Devadas, S., Davis, M. M. & Chakraborty, A. K. CD4 and CD8 binding to MHC molecules primarily acts to enhance Lck delivery. Proc. Natl Acad. Sci. USA 107, 16916–16921 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Solberg, O. D. et al. Balancing selection and heterogeneity across the classical human leukocyte antigen loci: a meta-analytic review of 497 population studies. Hum. Immunol. 69, 443–464 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yamashita, Y. et al. HLA-DP84Gly constitutively presents endogenous peptides generated by the class I antigen processing pathway. Nat. Commun. 8, 15244 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Anczurowski, M. et al. Mechanisms underlying the lack of endogenous processing and CLIP-mediated binding of the invariant chain by HLA-DP84Gly. Sci. Rep. 8, 4804 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Pinto, E. M. et al. Prognostic significance of major histocompatibility complex class II expression in pediatric adrenocortical tumors: a St. Jude and Children’s Oncology Group study. Clin. Cancer Res. 22, 6247–6255 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yao, X. et al. Isolation and characterization of an HLA-DPB1*04:01-restricted MAGE-A3 T-cell receptor for cancer immunotherapy. J. Immunother. 39, 191–201 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu, Y. C. et al. Treatment of patients with metastatic cancer using a major histocompatibility complex class II-restricted T-cell receptor targeting the cancer germline antigen MAGE-A3. J. Clin. Oncol. 35, 3322–3329 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Merkel, P. A. et al. Identification of functional and expression polymorphisms associated with risk for antineutrophil cytoplasmic autoantibody-associated vasculitis. Arthritis Rheumatol. 69, 1054–1066 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lamprecht, P. et al. Pathogenetic and clinical aspects of anti-neutrophil cytoplasmic autoantibody-associated vasculitides. Front. Immunol. 9, 680 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hilhorst, M. et al. HLA-DPB1 as a risk factor for relapse in antineutrophil cytoplasmic antibody-associated vasculitis: a cohort study. Arthritis Rheumatol. 68, 1721–1730 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Williams, T. M. Human leukocyte antigen gene polymorphism and the histocompatibility laboratory. J. Mol. Diagn. 3, 98–104 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Melenhorst, J. J. et al. Detection of low avidity CD8+ T cell populations with coreceptor-enhanced peptide–major histocompatibility complex class I tetramers. J. Immunol. Methods 338, 31–39 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wooldridge, L. et al. Interaction between the CD8 coreceptor and major histocompatibility complex class I stabilizes T cell receptor–antigen complexes at the cell surface. J. Biol. Chem. 280, 27491–27501 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Wooldridge, L. et al. MHC class I molecules with superenhanced CD8 binding properties bypass the requirement for cognate TCR recognition and nonspecifically activate CTLs. J. Immunol. 184, 3357–3366 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Butler, M. O. et al. Ex vivo expansion of human CD8+ T cells using autologous CD4+ T cell help. PLoS ONE 7, e30229 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Heemskerk, M. H. et al. Redirection of antileukemic reactivity of peripheral T lymphocytes using gene transfer of minor histocompatibility antigen HA-2-specific T-cell receptor complexes expressing a conserved alpha joining region. Blood 102, 3530–3540 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Straetemans, T. et al. TCR gene transfer: MAGE-C2/HLA-A2 and MAGE-A3/HLA-DP4 epitopes as melanoma-specific immune targets. Clin. Dev. Immunol. 2012, 586314 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Lin, Y. et al. HLA-DPB1*05:01-restricted WT1332-specific TCR-transduced CD4+ T lymphocytes display a helper activity for WT1-specific CTL induction and a cytotoxicity against leukemia cells. J. Immunother. 36, 159–170 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Odunsi, K. et al. Vaccination with an NY-ESO-1 peptide of HLA class I/II specificities induces integrated humoral and T cell responses in ovarian cancer. Proc. Natl Acad. Sci. USA 104, 12837–12842 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Laurin, D. et al. Minor histocompatibility antigen DDX3Y induces HLA-DQ5-restricted T cell responses with limited TCR-Vβ usage both in vivo and in vitro. Biol. Blood Marrow Transplant 12, 1114–1124 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Jones, C. M., Lake, R. A., Lamb, J. R. & Faith, A. Degeneracy of T cell receptor recognition of an influenza virus hemagglutinin epitope restricted by HLA-DQ and -DR class II molecules. Eur. J. Immunol. 24, 1137–1142 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Hennecke, J., Carfi, A. & Wiley, D. C. Structure of a covalently stabilized complex of a human αβ T-cell receptor, influenza HA peptide and MHC class II molecule, HLA-DR1. EMBO J. 19, 5611–5624 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsuji, T. et al. Heat shock protein 90-mediated peptide-selective presentation of cytosolic tumor antigen for direct recognition of tumors by CD4+ T cells. J. Immunol. 188, 3851–3858 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Neunkirchner, A. et al. Human TCR transgenic Bet v 1-specific Th1 cells suppress the effector function of Bet v 1-specific Th2 cells. J. Immunol. 187, 4077–4087 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Benati, D. et al. Public T cell receptors confer high-avidity CD4 responses to HIV controllers. J. Clin. Invest. 126, 2093–2108 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nakatsugawa, M. et al. CD4+ and CD8+ TCRβ repertoires possess different potentials to generate extraordinarily high-avidity T cells. Sci. Rep. 6, 23821 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nakatsugawa, M. et al. Specific roles of each TCR hemichain in generating functional chain-centric TCR. J. Immunol. 194, 3487–3500 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Ochi, T. et al. Optimization of T-cell reactivity by exploiting TCR chain centricity for the purpose of safe and effective antitumor TCR gene therapy. Cancer Immunol. Res. 3, 1070–1081 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hirano, N. et al. Engagement of CD83 ligand induces prolonged expansion of CD8+ T cells and preferential enrichment for antigen specificity. Blood 107, 1528–1536 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Butler, M. O. et al. Long-lived antitumor CD8+ lymphocytes for adoptive therapy generated using an artificial antigen-presenting cell. Clin. Cancer Res. 13, 1857–1867 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Hirano, N. et al. Efficient presentation of naturally processed HLA class I peptides by artificial antigen-presenting cells for the generation of effective antitumor responses. Clin. Cancer Res. 12, 2967–2975 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Wooldridge, L. et al. Anti-coreceptor antibodies profoundly affect staining with peptide–MHC class I and class II tetramers. Eur. J. Immunol. 36, 1847–1855 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Hirano, N. et al. Identification of an immunogenic CD8+ T-cell epitope derived from γ-globin, a putative tumor-associated antigen for juvenile myelomonocytic leukemia. Blood 108, 2662–2668 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Imataki, O. et al. IL-21 can supplement suboptimal Lck-independent MAPK activation in a STAT-3-dependent manner in human CD8+ T cells. J. Immunol. 188, 1609–1619 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Su, L. F., Kidd, B. A., Han, A., Kotzin, J. J. & Davis, M. M. Virus-specific CD4+ memory-phenotype T cells are abundant in unexposed adults. Immunity 38, 373–383 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bienert, S. et al. The SWISS-MODEL Repository—new features and functionality. Nucleic Acids Res. 45, D313–D319 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Bertoni, M., Kiefer, F., Biasini, M., Bordoli, L. & Schwede, T. Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Sci. Rep. 7, 10480 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ontario Institute for Cancer Research Clinical Investigator Award IA-039 (N.H.), the Princess Margaret Cancer Centre Innovation Accelerator Fund (N.H.), the Ira Schneider Memorial Cancer Research Foundation (N.H.), the Princess Margaret Cancer Foundation (N.H. and M.O.B.), the Uehara Memorial Foundation Research Fellowship Program (K. Sugata), the Mitacs Internship (K.M.), the Japan Society for the Promotion of Science Postdoctoral Fellowship for Overseas Researchers and the Guglietti fellowship (Y.K.), the Province of Ontario (T.G. and M.A.), the Natural Sciences and Engineering Research Council of Canada Postgraduate Scholarship (T.G.) and the Frederick Banting and Charles Best Canada Graduate Scholarship (C.-H.W.).

Author information

Authors and Affiliations

Authors

Contributions

K. Sugata, Y.M., Y.Y., M.N. and N.H. designed the project. K. Sugata, Y.M., Y.Y., M.N., T.G., L.H., K. Saso, M.A.R., M.A., C.-H.W., K.M., H.S., Y.K., Y.O., D.L. and B.D.B. performed the experiments. M.O.B. provided critical human samples. T.W.M. provided critical resources. N.H. administered and supervised the project. K. Sugata and N.H. analyzed the results and wrote the manuscript.

Corresponding author

Correspondence to Naoto Hirano.

Ethics declarations

Competing interests

M.O.B. has served on advisory boards for Merck, BMS, Novartis, GSK, Immunocore, Immunovaccine, Sanofi and EMD Serono and received research funding for investigator-initiated clinical trials from Merck and Takara Bio. N.H. has received research funding from Takara Bio and served as a consultant for Takara Bio. The University Health Network has filed a patent application related to this study on which N.H., K. Sugata, Y.Y., M.N., K. Saso, M.A.R. and T.G. are named as inventors. T.W.M. and N.H. are cofounders and have equity in TCRyption to which the technologies used in this study have been licensed.

Additional information

Peer review information Nature Biotechnology thanks Kari C. Nadeau and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–38.

Reporting Summary

Supplementary Data

Supplementary Tables 1–3, statistical source data for the Supplementary Figures and structural models for Supplementary Figs. 3 and 31.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugata, K., Matsunaga, Y., Yamashita, Y. et al. Affinity-matured HLA class II dimers for robust staining of antigen-specific CD4+ T cells. Nat Biotechnol 39, 958–967 (2021). https://doi.org/10.1038/s41587-021-00836-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-021-00836-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer