nature biotechnology

Article

https://doi.org/10.1038/s41587-023-01782-z

Comparative analysis of cell-cell
communication atsingle-cell resolution

Received: 28 March 2022

Accepted: 5 April 2023

Published online: 11 May 2023

Aaron J. Wilk®'*?
Catherine A. Blish®"*3"°"

, Alex K. Shalek ® **¢"8, Susan Holmes®" &

% Check for updates

Inference of cell-cell communication from single-cell RNA sequencing
datais apowerful technique to uncover intercellular communication

pathways, yet existing methods perform this analysis at the level of the cell
type or cluster, discarding single-cell-level information. Here we present
Scriabin, a flexible and scalable framework for comparative analysis of
cell-cell communication at single-cell resolution that is performed without
cellaggregation or downsampling. We use multiple published atlas-scale
datasets, genetic perturbation screens and direct experimental validation
to show that Scriabin accurately recovers expected cell-cell communication
edges and identifies communication networks that can be obscured by
agglomerative methods. Additionally, we use spatial transcriptomic data

to show that Scriabin can uncover spatial features of interaction from
dissociated data alone. Finally, we demonstrate applications to longitudinal
datasets to follow communication pathways operating between timepoints.
Our approach represents abroadly applicable strategy to reveal the full
structure of niche-phenotype relationships in health and disease.

Complex multicellular organisms rely on coordination within and
between their tissue niches to maintain homeostasis and appropri-
ately respond tointernal and external perturbations. This coordination
is achieved through cell-cell communication (CCC), whereby cells
send and receive biochemical and physical signals that influence cell
phenotype and function'?. A fundamental goal of systems biology is
to understand the communication pathways that enable tissues to
functionin a coordinated and flexible manner to maintain health and
fight disease™*.

The advent of single-cell RNA sequencing (scRNA-seq) has made
it possible to dissect complex multicellular niches by applying the
comprehensive nature of genomics at the ‘atomic’ resolution of the
single cell. Concurrently, the assembly of protein-protein interaction
databases’ and the rise of pooled genetic perturbation screening®’

have empowered the development of methods that infer putative
axes of cell-to-cell communication from scRNA-seq datasets® *. These
techniques generally function by aggregating ligand and receptor
expression values for groups of cells to infer which groups of cells
are likely to interact with one another' . However, biologically, CCC
does not operate at the level of the group; rather, such interactions
take place between individual cells. There exists a need for methods
of CCCinference thatanalyze interactions at the level of the single cell,
thatleverage the fullinformation content contained within scRNA-seq
data by looking at upstream and downstream cellular activity, that
enable comparative analysis between conditions and that are robust
to multiple experimental designs.

Here we introduce single-cell-resolved interaction analysis
through binning (Scriabin)—an adaptable and computationally
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efficient method for CCC analysis. Scriabin dissects complex com-
municative pathways at single-cell resolution by combining curated
ligand-receptor interaction databases''*'’, models of downstream
intracellular signaling®, anchor-based dataset integration* and gene
network analysis* to recover biologically meaningful CCC edges at
single-cell resolution.

Results

Aflexible framework for CCC analysis at single-cell resolution
Our goal is to develop a scalable and statistically robust method for
the comprehensive analysis of CCC from scRNA-seq data. Scriabin
implements three separate workflows depending on dataset size and
analytical goals (Fig. 1): (1) the cell-cell interaction matrix (CCIM)
workflow, optimal for smaller datasets, analyzes communication for
eachcell-cell pairinthe dataset; (2) the summarized interaction graph
workflow, designed for large comparative analyses, identifies cell-cell
pairs with different total communicative potential between samples;
and (3) the interaction program discovery workflow, suitable for any
dataset size, finds modules of co-expressed ligand-receptor pairs.

The fundamental unitof CCCis asender cell N;expressingligands
that are received by their cognate receptors expressed by a receiver
cell N Scriabin encodes this information in a CCIM M by calculating
the geometric mean of expression of each ligand-receptor pair by
each pair of cells in a dataset (Fig. 1a). Scriabin currently supports the
use of 15 different protein—protein interaction databases for defin-
ing potential ligand-receptor interactions and by default uses the
OmniPath database, as this database contains robust annotation of
gene category, mechanism and literature support for each potential
interaction'", Asligand-receptor interactions are directional, Scriabin
considers each cell separately as a‘sender’ (ligand expression) and as
a ‘receiver’ (receptor expression), thereby preserving the directed
nature of the CCC network. M can be treated analogously to a gene
expression matrix and used for dimensionality reduction, clustering
and differential analyses.

Next, Scriabinidentifies biologically meaningful edges, which we
define asligand-receptor pairs that are predicted to affect observed
gene expression profiles in the receiving cell (Fig. 1). This requires
defining a gene signature for each cell that reflects its relative gene
expression patterns and determining which ligands are most likely to
drive that observed signature. First, variable genes are identified to
immediately focus the analysis on features that distinguish samples of
relevance or salient dynamics. When analyzing a single dataset, this set
of genes could be the most highly variable genes (HVGs) in the dataset,
which would likely reflect cell-type-specific or state-specific modes
of gene expression. Alternatively, when analyzing multiple datasets,
the genes that are most variable between conditions (or timepoints)
could be used. To define the relationship between the selected vari-
able genes and each cell, the single cells and chosen variable genes
are placed into a shared low-dimensional space with multiple cor-
respondence analysis (MCA), a weighted generalization of principal
component analysis (PCA) that appliesto count data,implemented by
Cell-ID*. A cell's gene signature is defined as the set of genes in clos-
est proximity to the variable genes in the MCA embedding (Methods
and Supplementary Text). An implementation of NicheNet*’ is then
used tonominate the ligands that are most likely toresult ineach cell’s
observed gene signature. Ligand-receptor pairs that are recovered
from this process are used to weight the CCIM M proportionally to
their predicted activity, highlighting the most biologically important
interactions (Fig. 1).

Because one dimension of Mis N x N cells long, it is impractical
to construct M for samples with high cell numbers; this problem will
likely be exacerbated as scRNA-seq platforms continue to increase in
throughput. Conceptually, solutions to this probleminclude subsam-
pling and aggregation. Subsampling, however, is statistically inadmissi-
blebecauseitinvolves omission of available valid dataand introduction

of sampling noise”*; meanwhile, aggregation at any level raises the
possibility of obscuring important heterogeneity and/or specificity.

An alternate solution is to first intelligently identify cell-cell
pairs of interest and build M using only those sender and receiver
cells. We hypothesize that, in the context of a comparative analysis,
sender-receiver cell pairs that change substantially in their magni-
tude of interaction are the most biologically informative. To identify
these cells, Scriabin first constructs asummarized interactiongraph S,
characterized by an N x N matrix containing the sum of all cognate
ligand-receptor pair expression scores for each pair of cells. Sismuch
more computationally efficient to generate, store and analyze than a
full dataset M (for a1,000-cell dataset, Sis 1,000 x 1,000, whereas M
is 3,000 x1,000,000). Comparing summarized interaction graphs
from multiple samples requires that cells from different samples share
a set of labels or annotations of cells representing the same identity.
We use recent progress in dataset integration methodology”"* to
develop ahigh-resolution registrationand alignment process that we
call ‘binning’, where we assign each cell a bin identity that maximizes
the similarity of cells within each binand maximizes the representation
of all samples that we want to compare within each bin while simultane-
ously minimizing the degree of agglomeration required (Fig. 1and Sup-
plementary Text).Sender and receiver cells belonging to the bins with
the highest communicative variance can thenbe used to construct M.

Finally, Scriabin implements a workflow for single-cell-resolved
CCCanalysis thatis scalable to any dataset size, enabling discovery of
co-expressed ligand-receptorinteraction programs. This workflow is
motivated by the observation that transcriptionally similar sender-
receiver cell pairs will tend to communicate through similar sets of
ligand-receptor pairs. To achieve this, we adapted the well-established
weighted gene correlation network analysis (WGCNA) pipeline”—
designed to find modules of co-expressed genes—to uncover modules
of ligand-receptor pairs co-expressed by the same sets of sender-
receiver cell pairs, which we call ‘interaction programs’. Scriabin calcu-
lates sequences of Msubsets that are used to iteratively approximate a
topological overlap matrix (TOM), whichis then used to discover highly
connected interaction programs. Because the dimensionality of the
approximated TOM is consistent between datasets, this approach is
highly scalable. The connectivity of individual interaction programsis
then tested for statistical significance, which canreveal differencesin
co-expression patterns between samples. Single cells are then scored
for the expression of statistically significant interaction programs.
Comparative analyses include differential expression analyses on
identified interaction programs as well as comparisons of intramodular
connectivity between samples.

To illustrate the importance of performing CCC analyses at
single-cell resolution, we examined CCC of T cells in the tumor micro-
environment. Owing to their low RNA content, it is often difficult to
infer the functional states of T cells from their transcriptomes®, yet
T cells participate in communicative pathways that are important
to clinical and therapeutic outcomes?. Additionally, transcriptional
evidence suggests that helper T cells may exist on a phenotypic con-
tinuum rather than in traditional discrete functional archetypes®. In
a dataset of squamous cell carcinoma (SCC) and matched controls®,
we found a high degree of whole-transcriptome phenotypic overlap
betweenintratumoral T cells and those present in normal skin (Fig. 2a).
Furthermore, although there were exhausted T cells in this dataset,
they did not occupy a discrete cluster but were, rather, distributed
across multiple clusters (Fig. 2a and Extended Data Fig. 1), precluding
cluster-based CCC approaches from detecting communication modali-
ties unique to exhausted T cells without a priori knowledge. We tested
Scriabin’s utility in exposing the heterogeneity of the T cell communica-
tive phenotype by applying the CCIM workflow to pairs of T cells and
CDIC" dendriticcells (DCs), the most abundant antigen-presenting cell
(APC) in this dataset. This revealed both a clear distinction between
communication profiles between tumor and matched normal as well
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Fig.1|Schematic overview of cell-resolved communication analysis with
Scriabin. Scriabin consists of multiple analysis workflows depending on
dataset size and the user’s analysis goals. a, At the center of these workflows is
the calculation of the CCIM M, which represents all ligand-receptor expression
scores for each pair of cells. b, CCIM workflow. In small datasets, M can be
calculated directly, active CCC edges predicted using NicheNet*° and the
weighted cell-cell interaction matrix used for downstream analysis tasks, such as
dimensionality reduction. Mis a matrix of N x N cells by Pligand-receptor pairs,
where each unique cognate ligand-receptor combination constitutes a unique P.

interaction programs

¢, Summarized interaction graph workflow. Inlarge comparative analyses, a
summarized interaction graph S can be calculated in lieu of a full dataset M. After
high-resolution dataset alignment through binning, the most highly variable
bins in total communicative potential can be used to construct anintelligently
subsetted M. d, Interaction program (IP) discovery workflow. IPs of co-expressed
ligand-receptor pairs can be discovered through iterative approximation of the
ligand-receptor pair TOM. Single cells can be scored for the expression of each
IP, followed by differential expression and modularity analyses.
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Fig. 2| Benchmarking and robustness analysis of cell-resolved
communication analysis. a, UMAP projections of 1,624 intratumoral T cells
from the SCC dataset from Ji et al.”’, colored by cluster identity (top left), sample
of origin (tumor or matched normal; bottom left) and T cell exhaustion score
(middle) (Methods). The dot plot at right depicts the percent and average
expression of the T cell exhaustion score in each cluster. b, UMAP projections of
202,708 T cell-CD1C" DC cell-cell pairs from Scriabin’s CCIM workflow. Points
are colored by sample of origin (left) and the T cell exhaustion score of the T
cellin the cell-cell pair (right). ¢, Bar plot depicting differentially expressed
ligand-receptor pairsamong T cell-CDIC' DC cell-cell pairs between exhausted
and non-exhausted T cell senders. Individual bars are colored by the power from

Neighborhood size Cluster & Neighborhood size Cluster & Neighborhood size Cluster
resolution

@

'b
X e‘o
resolution bo >

resolution
Seurat’simplementation of a ROC-based differential expression (DE) test.

d, Schematic illustrating the workflow to evaluate the impact of technical noise
on the robustness of cell-cell communication analyses with Scriabin. e, Left: box
plotdepicting the ability of downsampled CCIMs to recapitulate the GT CCIM.
They axis depicts the proportion of GT cell-cell pairs that are recapitulated by a
query cell-cell pair (LISIscore >1), and points are colored by the mean LISI score
for GT cell-cell pairs. Each experimental condition was repeated on 12 different
random subsamples of 300 cells from three independent datasets. Right: bar plot
depicting the degree of downsampling required for each dataset to reach inDrop
coverage.

asdistinct populations of cell-cell pairs with exhausted T cells (Fig. 2b).
Comparedto their non-exhausted counterparts, exhausted T cells com-
municated with CDIC* DCs predominantly with exhaustion-associated
markers CTLA4 and TIGIT and lost communication pathwaysinvolving
pro-inflammatory chemokines, such as CCL4 and CCLS (Fig. 2¢)*°. This
illustrates the communicative heterogeneity that can be missed by
agglomerative techniques.

Scriabinis robust and efficient for single-cell CCC analysis

One potential concern of performing single-cell-resolution CCC analy-
sis is that scRNA-seq measurements are inherently sparse and noisy.
Aggregative techniques, although frequently obscuring biological
heterogeneity, do carry the advantage of using less sparse and, there-
fore, more robust expression values. Additionally, using single-cell
resolution versus aggregated pseudobulk measurements for CCC
analysis is not a binary option but, rather, the ends of an entire spec-
trum of resolution. Probabilistic denoising techniques for scRNA-seq
data®**use information from transcriptionally similar cells to smooth
noise created by putative technical zeroes and represent a mild form of
aggregation by smoothing measured expression values. Furthermore,
cluster-based agglomerative CCC techniques can operate at a wide
range of potential clustering resolutions. We sought to quantitatively
examine the impact of technical noise on single-cell-resolution CCC
analysis and identify if there is an optimal degree of aggregation that
avoids issues with data sparsity without agglomerating over distinct
communication phenotypes.

To do this, we simulated technical noise by randomly downsam-
pling a deeply sequenced scRNA-seq dataset (Fig. 2d). We used as
ground truth (GT) three datasets generated by the Fluidigm C1 or
Smart-Seq2 platforms®*?"**, which profile cells approximately one to
two orders of magnitude more deeply than droplet-based methods. We
thenrandomly downsampled these datasets to the sequencing depth
of inDrop, between two-fold and 270-fold depending on the sequenc-
ing depth of the original dataset (Fig. 2e, right)***. We performed
Scriabin’s CCIM workflow directly on the downsampled datasets, onthe
downsampled datasets denoised by adaptively thresholded low-rank
approximation (ALRA)*, on datasets created by aggregating cells over
similarity neighborhoods of nine different sizes or on pseudobulk
expression values from clustering at four different resolutions. Next,
weintegrated the CCIM generated from the GT datasets with the CCIMs
generated from the randomly downsampled datasets. To quantify
the degree to which the CCIMs from the downsampled datasets reca-
pitulated the GT CCIMs, we calculated the local inverse Simpson’s
index (LISI; Fig. 2d)*. This value defines the number of datasets in the
neighborhood of each GT cell-cell pair and ranges between 1, denot-
ing that only GT cell-cell pairs are present in the neighborhood, and
2, denoting an equal mixture of GT and downsampled cell-cell pairs.

We found that CCIMs generated either from raw downsampled
dataor from ALRA-denoised databest recapitulated GT data (Fig. 2e).
Downsampling introduced technical noise only for the most highly
downsampled dataset, but this technical noise was almost completely
rescued via data denoising. When defining each cell’s transcriptome as

Nature Biotechnology | Volume 42 | March 2024 | 470-483

473


http://www.nature.com/naturebiotechnology

Article

https://doi.org/10.1038/s41587-023-01782-z

themeantranscriptome of that cell and its k-nearest neighbors, increas-
ing k worsened the recapitulation of the GT dataset. ALRA-denoised
dataoutperformed all nine ktested. Furthermore, at all cluster resolu-
tions tested, at least 50% of GT CCC states are not captured by using
pseudobulk expression values. These dataindicate that agglomeration
at nearly any level results in loss of unique CCC states. Additionally,
in datasets from platforms with a high degree of sparsity, denoising
methods may represent an optimal degree of data smoothing that
decreases the impacts of technical noise while preserving data struc-
ture and heterogeneity.

We next explored Scriabin’s performance in comparisonto other
published CCC methods. Scriabin was faster than five agglomerative
CCC methods” """ in analyzing a single dataset at all the dataset
sizes tested (Extended Data Fig. 2a). Of these five agglomerative CCC
methods, only Connectome® supports a full comparative workflow
and was slower than Scriabin in a comparative CCC analysis of two
datasets (Extended Data Fig. 2b). We also compared the top CCC edges
predicted by these methods®® to a pseudobulk version of Scriabin.
Applying these methods to four scRNA-seq datasets, we found that
the top results returned by Scriabin overlapped with three of the five
published methods analyzed (Connectome, CellChat and NATMI;
Extended Data Fig. 2c). The remaining two methods (iTALK and SCA)
did not have overlapping results with each other or any of the other
tested methods for any of the datasets tested (Extended Data Fig. 2c).

Although the pseudobulk version of Scriabin’s results agreed
with several published methods, we also sought to demonstrate more
directly that these results were biologically correct. We hypothesized
that spatial transcriptomic datasets could be leveraged for this pur-
pose, as cells that Scriabin predicts to be highly interacting should
be, on average, in closer proximity. We ran Scriabin on 11 spatial tran-
scriptomic datasets, removing secreted ligand-receptor interactions
that could operate over adistance fromthe ligand-receptor database
(Fig.3a). Cellsthat Scriabin predicted were the most highly interacting
were in significantly closer proximity relative to randomly permuted
distances (Fig. 3b and Extended Data Fig. 2d,e), indicating that Scriabin
can detect spatial features from dissociated data alone.

We next hypothesized that we could leverage a single-cell-
resolution pooled genetic perturbation screen to validate Scriabin’s
ability to identify biologically relevant shifts in cellular communica-
tion phenotypes. In an analysis of a CRISPRa Perturb-seq screen of
activated human T cells that included guide RNAs (gRNAs) targeting
15 different cell surface ligands or receptors*’, we found that Scriabin
could accurately predict the gRNA with which a cell was transduced
by analyzing cellular CCC profiles (average area under the curve
(AUC): 0.93; Fig. 3c).

To provide direct experimental evidence of Scriabin’s ability to
detect changes in CCC, we devised an experiment where we trans-
fected isolated natural killer (NK) cells with mRNA encoding CD40L
and isolated B cells with mRNA encoding its cognate receptor CD40
(Supplementary Text and Fig. 3d). After co-culture of the transfected
cells, we performed scRNA-seq to assess how the forced expression of
exogenous CD40 or CD40L impacted CCC. AsNK cells do not normally
express CD40L, but B cells can express low levels of CD40 at base-
line (Extended Data Fig. 3), we hypothesized that we would observe
enhanced communication along the CD40L-CD40 edge only when
CD40LG was transfected and that this would be enhanced when both
CD40LG and CD40were transfected. Using Scriabin’s CCIM workflow,
we found that the CD40LG-CD40 communication edge was the only
ligand-receptor pair that was substantially changed in the transfected
conditions (Fig. 3e). This difference was enhanced by incorporating
ligand activity weighting into construction of the CCIM (Fig. 3e). In
line with our predictions, we also found that communication along
the CD40LG-CD40 axis was strongest when NK cells were trans-
fected with CD40LG and further increased by transfecting B cells with
CD40 (Fig. 3f).

Although the aggregative method Connectome®® returned
CD40LG-CD40 as adifferential communication edge, italso returned
25 other ligand-receptor pairs as statistically significant (Extended
Data Fig. 4). These additional unexpected differential results
appeared to be driven by small shifts in expression of very lowly
expressed ligands and receptors (Extended Data Fig. 4). We also used
NicheNet alone to identify differentially active ligands between the
transfected and untransfected conditions. Although CD40L was
returned among the top 20 predicted active ligands, NicheNet pre-
dicted that FASLG and PTPRC were more differentially active despite
there being little appreciable difference in the expression of these
ligands (Extended Data Fig. 4). This underlines the utility of using
information on both relative ligand and receptor expression as well
as downstream gene expression changes in performing comparative
CCCanalyses.

Finally, we used Scriabin’s summarized interaction graph workflow
to bin cells from the four transfection conditions and found a signifi-
cant correlation between the bin perturbation score and the degree
to which the cells in each bin were transfected (Fig. 3g), demonstrat-
ing the utility of this workflow in identifying single cells that have the
highest degree of communicative perturbation. This correlation was
completely abrogated whenbinning was performed ondatastructures
not related to transfection, such as proximity in a reference neighbor
graph (Fig. 3h). These data provide empirical evidence that Scriabin
accurately identifies meaningful changesin CCC.

Scriabinreveals known CCC concealed by aggregative methods
We further evaluated if Scriabin’s single-cell-resolution CCC results
returned communicating edges that are obscured by agglomerative
CCC methods. To this end, we analyzed a publicly available dataset
of awell-characterized tissue niche: the granulomatous response to
Mycobacterium leprae infection (Fig. 4a). Granulomas are histologi-
cally characterized by infected macrophages and other myeloid cells
surrounded by aring of Th1 T cells***. These T cells produce inter-
feron (IFN)-y that is sensed by myeloid cells; thiscommunication edge
between T cellsand myeloid cellsis widely regarded as the mostimpor-
tant interaction in controlling mycobacterial spread***°. Ma et al.*
performed scRNA-seq on skingranulomas from patientsinfected with
Mpycobacterium leprae, the causative agent of leprosy. This dataset
includes granulomas from five patients with disseminated lepromatous
leprosy (LL) and four patients undergoing a reversal reaction (RR) to
tuberculoid leprosy, which is characterized by more limited disease
and a lower pathogen burden (Fig. 4a). Analysis of CCC with Scriabin
revealed /FNG as the mostimportantligand sensed by myeloid cellsin
all analyzed granulomas, matching biological expectations (Fig. 4b).
Baseline NicheNet also returned /FNG as the most differentially active
ligand in RR granulomas, although with a lesser degree of specificity
than Scriabin (Extended Data Fig. 5).

To assess if Scriabin was capable of avoiding pitfalls associated
with agglomerative methods in comparative CCC analyses, we ana-
lyzed differential CCC pathways from T cells to myeloid cells between
LL and RR granulomas using an agglomerative method (Connectome,
whichimplements a full comparative workflow®®) and Scriabin. We first
assessed if it would be possible to analyze higher levels of granularity
by using author-provided subclustering annotations. However, as
Connectome performs differential CCC analyses by aggregating data
at the level of cell type or cluster, this requires that each subcluster
have representatives from the conditions being compared. In the
Maetal.” dataset, satisfying this condition meant decreasing cluster-
ing resolution from1to 0.1 so that all subclusters are present in all
profiled granulomas and comparing all aggregated LL granulomas to
allaggregated RR granulomas (Extended DataFig. 5). Thisrequirement
moves analysis further from single-cell resolution, and we, therefore,
elected to use author-annotated T cells and myeloid cells for analysis
without subclustering.
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distances relative to randomly permuted cell distances. Shown is an exact two-
sided Pvalue from the Wilcoxon rank-sum test. ¢, ROC plots depicting Scriabin’s
ability to correctly predict the gRNA with which a single cell was transduced
based onits communicative profile. Each of the n =15 lines represents a different
gene target by gRNAs ina CRISPRa dataset of stimulated T cells*’. d, Experimental
scheme to validate Scriabin through transfection of exogenous CCC edges. In
total, 21,538 cells from NK cell-B cell co-cultures were profiled by scRNA-seq.
Specific sample sizes for the four transfection conditions are as follows: 4,934
(GFP-GFP), 5,665 (GFP-CD40), 4,908 (CD40L-GFP) and 6,031 (CD40L-CD40).

ligand-receptor pair expression SNN graph used

for binning
e, CCIMs were generated by Scriabin for each co-culture condition with or
without ligand activity ranking. The bar plot depicts the top differentially
expressed ligand-receptor pairs between cell-cell pairs from control (GFP/GFP)
versus transfected (CD40L/CD40) samples. f, Box plot depicting CD40LG-CD40
cell-cell pair interaction scores in each co-culture condition. The CD40LG-
CD40interaction score is derived from CCIMs generated with ligand activity
ranking. The interaction scores are calculated from the sample sizes for each
condition noted in Fig. 3d. g, Scatter plot depicting the relationship between the
CD40LG-CD40interaction score and the CCC perturbation Dunn z-test statistic
for each of 311 bin-bin pairs (Methods). Pearson correlation coefficient, exact
two-sided Pvalue and a 95% confidence interval are shown. h, Bar plot depicting
the Pearson correlation coefficient between bin perturbation and CD40LG-CD40
interaction score using a full-transcriptome SNN graph for binning compared to
areference-based weighted SNN (WSNN) that does not contain structure related
to transfection.

Comparative CCC analysis with Connectome revealed /L1B and
CCL21 as the two most upregulated T-cell-expressed ligands received
by myeloid cells in RR granulomas (Fig. 4c). However, there was no
clear evidence of IL1B upregulation among RR granulomas (Fig. 4d);

rather, the RR granuloma that contributed the most T cells expressed
the highest level of /L1B, and the LL granuloma that contributed the
most T cells expressed the lowest level of /L1B (Fig. 4d). Addition-
ally, CCL21 was expressed by T cells of a single RR granuloma, and
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the myeloid cells of a different RR granuloma expressed the high-
est levels of the CCL21 receptor CCR7 and three CCL21 target genes
(Fig. 4e). This indicates that the most highly scored differential CCC
edgesmaybe dueto agglomeration of RRand LL granulomas required
by Connectome (Extended DataFig. 5) rather than conserved biological
changes between these two groups.

To compare differential CCC between LL and RR granulomas with
Scriabin, we aligned data from the nine granulomas together using
Scriabin’s binning procedure (Fig.1); generated single-cell summarized
interaction graphs for each granuloma; and calculated a ¢-statistic to
quantify the difference ininteraction for each pair of bins between LL
and RR granulomas (Fig. 4f). This analysis revealed agroup of T cell and
myeloid bins whose interaction was strongly increased in RR granulo-
mas relative to LL (Fig. 4f, black box). We visualized the cells in these
perturbed bins by generating cell-cell interaction matrices for these
cellsin each sample and embedding them in shared low-dimensional
space (Fig.4g). TheT cellsinthese bins were defined by expression of
CRTAM, amarker of cytotoxic CD4 T cells, and upregulated IFNGin the
RRgranulomas (Fig.4h). These perturbed T cells were enriched in ‘RR
CTL and ‘amCTL subclusters described by Ma et al.* that correspond
to IFNG-expressing cytotoxic T cells (Extended DataFig. 5). Perturbed
myeloid cells were enriched in transitional macrophage and type |
IFN"&" macrophage subclusters (Extended Data Fig. 5). Myeloid cells
in these bins upregulated several pro-inflammatory cytokines in RR
granulomas, including /L1B, CCL3 and TNF, in response to IFNG from
this T cell subset (Fig. 4i). IFNG-responsive /L1B and TNF were also pre-
dicted to be RR-specific ligands received by myeloid cells, fibroblasts
and endothelial cells in RR granulomas (Fig. 4j). Collectively, Scriabin
identified asubset of CRTAM' T cells that upregulated /FNGin RR granu-
lomasthatis predicted to act on myeloid cells to upregulate additional
pro-inflammatory cytokines. These CCCresults match previous results
demonstrating thatenhanced production of IFNG can drive RRs*** and
implicate cytotoxic CD4 T cells as initiators of this reaction.

Scalable discovery of co-expressed interaction programs
We next assessed Scriabin’s interaction program discovery workflow.
Toillustrate the scalability of this process, we chose to analyze a large
single-cell atlas of developing fetal gut*’ composed of 76,592 cells
sampled from four anatomicallocations (Fig. 5a). Scriabin discovered
a total of 75 significantly correlated interaction programs across all
anatomical locations. Scoring all single cells on the expression of the
ligands and receptors in these interaction programs revealed strong
cell-type-specific expression patterns for many programs (Fig. 5b) as
wellas subtle within-cell-type differencesin sender or receiver poten-
tial, highlighting the importance of maintaining single-cell resolution
(Extended Data Fig. 6 and Supplementary Text).

We next examined ways in which our identified interaction pro-
gramsreflected known biological networks of intestinal development.

Recently, several important interactions were shown to be critical
in maintaining the intestinal stem cell (ISC) niche**>>. We were able
to identify ISCs, defined by expression of LGRS and SOX9, within the
intestinal epithelial cells of this dataset, and we discovered a single
interaction program (hereafter referred to as IP1) whose receptors
were co-expressed with these ISC markers (Fig. 5¢). IP1 represents
a program of fibroblast-specific ligand and intestinal epithelial cell
receptor expression (Fig. 5d). Among IP1ligands were the ephrins
EPHB3, whose expression gradient is known to control ISC differentia-
tion®, and RSPO3 (Fig. 5¢). Two recent studies eachreported that RSPO3
production by lymphatic endothelial cells (LECs) and GREMI" fibro-
blastsis critical for maintaining the ISC niche in mice®*. In this human
dataset, we did not observe expression of RSPO3 in LECs (Extended
Data Fig. 6), and, although Fawkner-Corbett et al.*’ identified RSPO3
asapotential communication ligand for ISCs, they did not examine the
precise source of this ligand. In our application of Scriabin’s interac-
tion program workflow, we found that GREMI" fibroblasts expressed
RSPO3as apart of IP1that was predicted to be sensed primarily by ISCs,
thus demonstrating that this interaction pathway may communicate
between different cell typesinmouse thanin human (Fig. 5d-f). We also
found aseparateinteraction program containing the ligand GREMI; the
ligands of this interaction program were co-expressed with IP1ligands
(Fig.5f) and predicted tocommunicate to a different receiver cell type,
namely gut endothelial cells (Fig. 5g).

Despite the absence of RSPO3 expression in LECs, it remains pos-
sible that LECs maintain the ISC niche in human intestinal develop-
ment, particularly as these cells can reside in close spatial proximity
to ISCs*"*2, Although Fawkner-Corbett et al.*’ included several CCC
analyses on endothelial cells, these analyses were performed on aggre-
gated endothelial cells and not specifically on LECs. We were able
to identify a small population of LECs (Fig. 5h) and used Scriabin’s
single-cell-resolution ligand activity ranking workflow to examine
communicationbetween LECs and ISCs. We found that two LEC-specific
markers, CCL21 and NTS, were predicted to be active ligands for ISCs
(Fig. 5i). CCL21 and NTS were both predicted to result in upregulation
of target genes that notably included MYC and /D1 (Fig. 5j), which are
known to participate in intestinal crypt formation and ISC mainte-
nance®**. None of these ligand-receptor CCC edges was returned by
anagglomerative CCC analysis by Connectome (Extended DataFig. 6).
Our results suggest that, unlike in mice, in humans, LECs may contrib-
ute to ISC maintenance through production of CCL21 and NTS. Taken
together, our results demonstrate the utility of interaction programs
bothinidentifyingknown CCC edges and in providing new biological
insights.

Assembly of longitudinal communicative circuits
Afrequent analytical question in longitudinal analyses concerns how
events at one timepointinfluence cellular phenotype in the following

Fig. 4 |Scriabin reveals communicative pathways obscured by agglomerative
techniques. a, Schematic of the scRNA-seq dataset of leprosy granulomas
published by Ma et al.*". Sample sizes for each profiled granuloma are shown
inSupplementary Table 1. b, Ligands prioritized by Scriabin’s implementation

of NicheNet as predicting target gene signatures in granuloma myeloid cells.
Points are colored and sized by the number of granulomas in which the ligand is
predicted toresultin the downstream gene signature. ¢, Circos plot summarizing
RR versus LL differential CCC edges between T cells (senders) and myeloid

cells (receivers) generated by Connectome. Blue: edges upregulated in RR; red:
edges upregulatedin LL. The two black arrows mark T-cell-expressed ligands
IL1B and CCL21, whichare further analyzed ind and e. d, Percentage and average
of expression of ILIBby T cells per granuloma (left) and total number of T cells
per granuloma (right). e, Percentage and average expression of CCL21 by T cells
per granuloma (left); percentage and average expression of CCR7- and CCL21-
stimulated genes by myeloid cells per granuloma. f, RR versus LL differential
interaction heat map between T cell bins (senders; rows) and myeloid cell bins

(receivers; columns) generated by Scriabin, colored by the ¢-statistic between the
mean summarized interaction scores of n =4 RR granulomas relativeton=5LL
granulomas. In blue are the bins more highly interacting in RR; in red are the bins
more highly interactingin LL. The black box indicates groups of bins predicted
to be highly interacting in RR granulomas relative to LL. g, UMAP projection of
74,437 perturbed T cell-myeloid cell sender-receiver pairs indicating changes
inligand-receptor pairs used for T cell-myeloid communicationin LL versus RR
granulomas. h, Scatter plot depicting differential gene expression by T cells.

The average log(fold change) of expression by cluster 2 bins is plotted on the

x axis; the average log(fold change) of expression by RR granulomas is plotted on
theyaxis. i, Target genes predicted to be upregulated by /FNGin RR granuloma
myeloid cellsin cluster 2 bins. Points are sized and colored by the number of
cellsinwhich the target gene is predicted to be IFNG responsive.j, Alluvial

plot depicting the RR granuloma cell types that are predicted to receive the
IFNG-responsive target genes from cluster 2 myeloid cells. DEG, differentially
expressed gene.
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timepoint®®”, We hypothesized, in datasets with close spacing between
timepoints, that Scriabin’s high-resolution binidentities would allow us
to assemble ‘longitudinal communicative circuits’—chains of sender-
receiver pairs across consecutive timepoints. Acommunicative circuit
consists of at least four cells across at least two timepoints: sender

cell at timepoint 1(S,), receiver cell at timepoint 1 (R,), sender cell at
timepoint 2 (S,) and receiver cell at timepoint 2 (R,). If the interaction
betweenS,andR;is predicted toresultintheupregulation of ligand L,
byR,, S;-R;-S,-R, participatesinalongitudinal circuitif R,and S, share
thesamebin (thatis, S, represents the counterpart of R, at timepoint 2)
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andif L, is predicted to be an active ligand in the S,-R, interaction
(Fig. 6a). This process enables the stitching together of multiple sequen-
tial timepoints toidentify communicative edges that are downstream
in time and mechanism.

Toillustrate this process, we analyzed a published dataset of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in
human bronchial epithelial cells (HBECs) in air-liquid interface (ALI)
that was sampled daily for 3 d*8. This dataset contains all canonical
epithelial cell types of the human airway and indicates that ciliated
and club cells are the preferentially infected cell types in this model
system, with some cells having more than 50% of unique molecular
identifiers (UMIs) from SARS-CoV-2 (Extended Data Fig. 7). We first
defined a per-cell gene signature of genes variable across time and
used this gene signature to predict active ligands expected to result
in the observed cellular gene signatures??. Next, we used Scriabin’s
high-resolution binning workflow to align the datasets from the three
post-infection timepoints, whichwe then used to assemble longitudinal
communicative circuits.

Scriabin identified circuits at the level of individual cells that
spanned all three post-infection timepoints. We summarized these
circuits by author-annotated cell type and whether SARS-CoV-2
reads were detected in the cell (Fig. 6b). Interestingly, we found that
uninfected cells were more frequently the initiators of longitudinal
circuits operating over all three timepoints (Fig. 6b). The most fre-
quent circuit-initiating ligand was /L1B produced by basal, ciliated
and club cells; inthese cell types at1 day post-infection (dpi), /LIBwas
more strongly expressed in bystander cells relative to infected cells
(Fig. 6¢). Uninfected basal cells at 1 dpi displayed the highest expression
of IL1B (Fig. 6¢), and these IL1B* cells were also characterized by higher
expression of other pro-inflammatory cytokines, including CCL20 and
CXCLS (Fig. 6d). Among the other ligands active at 1 dpi, acute phase
reactant-encoding genes, including SAA1 and CTGF*°°, were strongly
upregulated at1 dpirelative to the mock condition and were both more
highly expressed by uninfected cells (Fig. 6¢); these genes are known to
beinducedinthe setting of SARS-CoV-2infection and are hypothesized
tobeinvolved in downstreamtissue remodeling processes®. Thus, the
unique ability of Scribain to elucidate longitudinal signaling circuits
between cells implicates the activity of uninfected bystander cells as
potentiallyimportant mediators of downstream responses to infection.
This may reflect described processes in other viral infections where
non-productively infected cells may be key drivers of downstream
inflammatory activity®> ®*.

Whenwe assessed the predicted downstream targets at the ends
of the longitudinal circuits in both infected and bystander cells, we
found that TGFBI1 produced by infected basal cells was predicted
toresult in the upregulation of TNFSFI10 (encoding TRAIL) and the
alarmin SI00A8 predominantly by other infected cells (Fig. 6b,f).
Additionally, TGFBI was predicted to upregulate both NOTCHI and the
NOTCH]1 ligand JAGI, which indicates that these circuits may induce
downstream Notch signaling. In sum, these data illustrate how the
single-cell resolution of Scriabin’s CCC analysis workflow can per-
form integrated longitudinal analyses, nominating hypotheses for
experimental validation.

Discussion

Most existing CCC methodologies aggregate ligand and receptor
expression values at the level of the cell type or cluster, potentially
obscuring biologically valuable information. Here we introduce a
framework to perform comparative analyses of CCC at the level of
theindividual cell. Scriabin maximally leverages the single-cell resolu-
tion of the data to maintain the full structure of both communicative
heterogeneity and specificity. We used this framework to find rare
communication pathways in the developing intestine known to be
required for stem cell maintenance as well as to define the kinetics
of early dynamic communication events in response to SARS-CoV-2
infection through assembly of longitudinal communicative circuits.

A major challenge of single-cell-resolved CCC analysis is data
inflation: because CCC analysis fundamentally involves performing
pairwise calculations on cells or cell groups, itis frequently computa-
tionally prohibitive to analyze every sender-receiver cell pair. Some
existing tools, such as NICHES®, support single-cell resolution CCC
analysis but involve subsampling strategies when applied at scale.
Scriabin implements two complementary workflows to address the
issue of data inflation while avoiding subsampling and aggregation.
Subsampling and aggregation preclude a truly comprehensive view
of CCC structure and risk obscuring important biology; either can
be particularly problematicin situations where a small subset of cells
disproportionately drives intercellular communication, with agglom-
eration potentially concealing the full activity of those cells and sub-
sampling potentially removing those cells altogether. One biological
situationinwhichthe preservation of single-cell-resolution data could
be particularly importantisin the setting of activation-induced T cell
exhaustion®. Although exhausted T cells exert divergent effects on
their communication targets relative to their activated counterparts,
we show that exhausted T cells can often be difficult to distinguish from
activated cells by clustering or subclustering. By avoiding aggregation
and subsampling, Scriabinincreasesthelikelihood of detecting these
potentially meaningful differences in CCC pathways.

We observe that aggregation obscures potentially biologically
meaningful subsets of T cellsin SCC as well asin RRs in leprosy granu-
lomas. Owing to the degree of transcriptional perturbation in T cells
during RRs, subclusteringis not always atenable approach toincreas-
ing the resolution of CCC analyses because it, in turn, can preclude
analysis at a per-sample level. We also show that aggregating across
samples, whichisacommon practicein existing CCCtools, canreturn
putatively differential CCC edges that are driven disproportionately
by individual samples, potentially leading to inaccurate conclusions
thatare not generalizable.

Asthe throughput of scRNA-seq workflows continues toincrease,
it will be important that single-cell-resolution CCC methods are scal-
ableto any dataset size. We introduce two complementary workflows
toaddress this challenge. First, for large comparative analyses, the sum-
marized interaction graph workflow saves computational resources by
summarizing the total magnitude of communication between cell-cell
pairs, and a dataset alignment strategy called ‘binning’ enables iden-
tification of cells of the greatest biological interest between samples.
We provide empirical evidence that this strategy identifies subspaces

Fig. 5| Cell-cellinteraction programs of the developing fetal gut. a, UMAP
projections of the dataset of Fawkner-Corbett et al.* with 76,592 individual

cells colored by author-provided cell type annotations (left) or by anatomical
sampling location (right). b, Heat map depicting average expression of
interaction program (IP) ligands (left) or IP receptors (right) by each cell type.

¢, UMAP projections of 25,969 intestinal epithelial cells, colored by expression of
stem cell markers LGRS and SOX9 as well as by the receptor expression score for
IP1.d, UMAP projection of all cells colored by ligand (shades of blue) or receptor
(shades of red) expression of IP1. e, Intramodular connectivity scores for each
ligand-receptor pair in each anatomical location for IP1. The black arrows mark
ligand-receptor pairs thatinclude RSPO3. f, Heat map of two-dimensional bin

counts depicting the correlation between IP1sender score and the sender score
for the IP module that contains the ligand GREM1.Shown are Pearsonrand a
two-sided Pvalue. g, UMAP projection of all cells colored by ligand (shades of
blue) or receptor (shades of red) expression of the GREMI IP. h, UMAP projections
of 4,447 gut endothelial cells colored by expression of LEC markers LYVEI (top)
and PROX1 (bottom). i, Bar plot depicting predicted active ligands for intestinal
epithelial cells and correlation of predicted ligand activity with expression of

ISC markers LGRS and SOX9. Bars are colored by the average log(fold change) in
expression of each ligand by LECs relative to other gut endothelial cells. j, Alluvial
plot depicting target genes predicted to be upregulated in ISCs in response to
CCL21and NTS.

Nature Biotechnology | Volume 42 | March 2024 | 470-483

478


http://www.nature.com/naturebiotechnology

Article

https://doi.org/10.1038/s41587-023-01782-z

with the greatest degree of communication perturbation. However,
this approach is not robust to situations where ligand-receptor pair

Asanalternative, we alsointroduce asecond single-cell-resolution
CCC workflow that is scalable to datasets of any size. The interaction

mechanisms of CCC change between cell-cell pairs without changing  programdiscovery workflow of Scriabin accomplishes this by focusing
first on common patterns of ligand-receptor pair co-expression rather

the overall magnitude of CCC.
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Fig. 6 | Longitudinal circuits of CCCin acute SARS-CoV-2 infection.

a, Schematic representing a longitudinal communicative circuit. Four cells
participate in alongitudinal circuit if an interaction between S, and R, is
predicted toresultin the upregulation of ligand L, by R, if R, and S, share a bin
andif expression of L, by S, participatesin an active communication edge with
R,. b, Alluvial plot depicting longitudinal communicative circuits. Stratum
width corresponds to the number of cells in each cell grouping participating in
the circuit corrected for the total number of cells in that group. Red strata are
infected with SARS-CoV-2; blue strata are composed of uninfected cells.
¢, Dot plot depicting percent and scaled average expression of ILIB by club,
basal and ciliated cells at 1dpi. d, Volcano plot depicting log(fold change)
(xaxis) and ~log(Pvalue) (y axis) of IL1B* basal cells relative to /LIB basal cells at
1dpi. Positive log(fold change) indicates that the gene is more highly expressed
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thanindividual cell-cell pairs. Individual cells can be scored for expres-
sion of these interaction programs post hoc, enabling downstream
comparative analyses with a comprehensive view of CCC structure.
We apply this workflow to an atlas-scale dataset of human fetal gut
development, where we validate a mode of communication between
afibroblast subsetand ISCs that has recently been shown to beimpor-
tant for maintaining the ISC niche’*>. Owing to the relative scarcity
of these cells, we show that agglomerative methods fail to discover
theseimportantinteractions for downstream mechanistic validation.

Longitudinal datasets pose an additional opportunity and chal-
lenge for comparative analyses because there is a priori knowledge
about the sequential relationship between different samples. The
single-cell nature of Scriabin’s workflows permits us to analyze how
pathways of CCC operate both within and between timepoints in
longitudinal datasets. By identifying circuits of CCC that function
over multiple timepoints in a longitudinal infection dataset, we
can observe how uninfected bystander cells may initiate important
inflammatory pathways first, which are later amplified by infected
cells. Afundamental assumption of the circuit assembly workflow is
that ligands upregulated at one timepoint can be observed to exert
their biological activity at the following timepoint. This assumption
is highly dependent on a priori biological knowledge of the com-
munication pathways of interest as well as on the spacing between
timepoints. Assembly of longitudinal communication circuits may
represent a valuable strategy to elucidate complex dynamic and
temporal signaling events, particularly when longitudinal sampling
is performed at frequencies on the same scale as signaling and tran-
scriptional response pathways.

The cell-cellinteraction matrix Mis more highly enriched for zero
values than gene expression matrices. Thisis because genes encoding
moleculesinvolvedin CCCtend to be more lowly expressed than other
genes (asthe most highly expressed genestend to encode intracellular
proteins involved in cell housekeeping) and because a zero value in
either the ligand or the receptor of a cell-cell pair will result in a zero
value in the interaction vector. Consequently, these zero values can
makeit difficult for Scriabin to determine if putatively downregulated
or ‘missing’ CCC edges are biological or due to dropout. We show that
data denoising algorithms for scRNA-seq are capable of removing
technical noise caused by data sparsity, substantially improving the
yield of bonafide single-cell CCCstates. This process can make the pres-
ence and absence of CCC edges more interpretable. We recommend
the use of denoising algorithms when analyzing datasets generated by
low-coverage platforms and particularly for non-UMImethods, which
are more likely to be zero-inflated®”*®,

Another complementary set of techniques for CCCinference are
computational methods that infer which cells are communicating by
identifying putative multiplets in the dataset or by directly sequenc-
ing interacting cells. The central premise of these techniques, which
include Neighbor-seq® and PIC-seq’’, is that physically interacting cells
are likely to be more difficult to dissociate when preparing single-cell
suspensions and, therefore, that multiplets may be more likely to rep-
resent cells that are genuinely interacting. Although this provides an
additional layer of evidence for biologically meaningful interactions,
there are some communication edges that cannot be detected with
these methods. For example, CCC involving secreted ligands will not
be adequately modeled with these techniques. Additionally, as each
scRNA-seq dataset represents a single snapshot of a sample, cells
that have previously interacted but are no longer associated will not
be detected. This latter problem has been addressed by techniques
such as LIPSTIC” that permanently label cells that have interacted
using particular ligands or receptors. However, these methods remain
poorly scalable and require prior cell engineering. We anticipate that
future technological developments will enable synergy of these com-
plementary approaches toward more comprehensive solutions for
CCCanalysis.

One current limitation of Scriabin is that it does not take into
account situations where multiple receptor subunits encoded by dif-
ferent genes are required in combination to respond to aligand or
wherereceptor subunits are known to differentially contribute to col-
lectiveligand-receptor avidity. An additional limitationis that Scriabin
assumes uniform validity of ligand-receptor interactions in curated
protein-protein interaction databases and treats all ligand-receptor
pairs as equally important. In situations where it is known a priori
which ligand-receptor pairs have a higher level of literature support,
this information could be used to prioritize downstream analysis of
particular ligand-receptor pairs. Additionally, Scriabin assumes the
interactiondirectionality thatis presented by the user-selected ligand-
receptor database; however, not all interactions are unidirectional,
and biologically important receptor-receptor interactions are also
possible’. Scriabin supports the use of custom ligand-receptor pair
databases for users who a priori have specific analytical questions
involving non-traditional interaction directionality.

Similarly, all downstream signaling analyses in Scriabin rely on
NicheNet’s ligand-target activity matrix, which may be biased by the
celltypes and stimulation conditions used to generate it. The NicheNet
database also does not allow for analysis of inhibitory signaling, and,
thus, Scriabin will only return CCC edges predicted to result in acti-
vated signaling. Although Scriabin uses NicheNet to predict active
CCC edges by examining downstream gene expression changes, an
additional analysis goal includes identifying the upstream signaling
machinery that resultsin the upregulation of aligand or denotes suc-
cessful signaling, as additional power could be gained by using sets
of genes to infer upstream signaling rather than relying on ligand
expression alone (which could beimpacted by dropout or differences
between mRNA and protein expression). More generally, Scriabin
assumes that gene expression values for ligands and receptors corre-
late well with their protein expression. A future point ofimprovement
would be to support analysis of multimodal datasets where cell surface
proteins that contribute to CCC are measured directly or to enable
analysis of protein measurements that are imputed from integration
with multimodal references”. Future iterations of Scriabin will seek
to address these issues as well as further improve computational
efficiency.

Collectively, our work provides a toolkit for comprehensive com-
parative analysis of CCC in scRNA-seq data, which should empower
discovery of information-rich communicative circuitry and niche-
phenotype relationships.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41587-023-01782-z.

References

1. Almet, A. A, Cang, Z., Jin, S. & Nie, Q. The landscape of cell-cell
communication through single-cell transcriptomics. Curr. Opin.
Syst. Biol. 26, 12-23 (2021).

2. Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E.
Deciphering cell-cell interactions and communication from gene
expression. Nat. Rev. Genet. 22, 71-88 (2020).

3. Tanay, A. & Regey, A. Scaling single-cell genomics from
phenomenology to mechanism. Nature 541, 331-338 (2017).

4. Yosef, N. & Regev, A. Writ large: genomic dissection of the effect
of cellular environment on immune response. Science 354,
64-68 (2016).

5. Ramilowski, J. A. et al. A draft network of ligand-
receptor-mediated multicellular signalling in human. Nat.
Commun. 6, 7866 (2015).

Nature Biotechnology | Volume 42 | March 2024 | 470-483

481


http://www.nature.com/naturebiotechnology
https://doi.org/10.1038/s41587-023-01782-z

Article

https://doi.org/10.1038/s41587-023-01782-z

10.

n.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Dixit, A. et al. Perturb-Seq: dissecting molecular circuits with
scalable single-cell RNA profiling of pooled genetic screens. Cell
167, 1853-1866 (2016).

Schraivogel, D. et al. Targeted Perturb-seq enables genome-scale
genetic screens in single cells. Nat. Methods 17, 629-635 (2020).
Puram, S. V. et al. Single-cell transcriptomic analysis of primary
and metastatic tumor ecosystems in head and neck cancer. Cell
171, 1611-1624 (2017).

Camp, J. G. et al. Multilineage communication regulates human
liver bud development from pluripotency. Nature 546, 533-538
(2017).

Pavlicev, M. et al. Single-cell transcriptomics of the human
placenta: inferring the cell communication network of the
maternal-fetal interface. Genome Res. 27, 349-361(2017).

Zepp, J. A. et al. Distinct mesenchymal lineages and niches
promote epithelial self-renewal and myofibrogenesis in the lung.
Cell 170, 1134-1148 (2017).

Cohen, M. et al. Lung single-cell signaling interaction map reveals
basophil role in macrophage imprinting. Cell 175, 1031-1044
(2018).

Vento-Tormo, R. et al. Single-cell reconstruction of the early
maternal-fetal interface in humans. Nature 563, 347-353 (2018).
Raredon, M. S. B. et al. Single-cell connectomic analysis of adult
mammalian lungs. Sci. Adv. 5, eaaw3851 (2019).

Jin, S. et al. Inference and analysis of cell-cell communication
using CellChat. Nat. Commun. 12, 1088 (2021).

Wang, Y. et al. iTALK: an R package to characterize and illustrate
intercellular communication. Preprint at bioRxiv https://doi.org/
10.1101/507871 (2019).

Hou, R., Denisenko, E., Ong, H. T., Ramilowski, J. A. & Forrest, A.R. R.
Predicting cell-to-cell communication networks using NATMI. Nat.
Commun. 11, 5011 (2020).

Turei, D., Korcsmaros, T. & Saez-Rodriguez, J. OmniPath:
guidelines and gateway for literature-curated signaling pathway
resources. Nat. Methods 13, 966-967 (2016).

Tirei, D. et al. Integrated intra- and intercellular signaling
knowledge for multicellular omics analysis. Mol. Syst. Biol. 17,
9923 (2021).

Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling
intercellular communication by linking ligands to target genes.
Nat. Methods 17, 159-162 (2020).

Stuart, T. et al. Comprehensive integration of single-cell data.
Cell177,1888-1902 (2019).

Langfelder, P. & Horvath, S. WGCNA: an R package for weighted
correlation network analysis. BMC Bioinformatics 9, 559 (2008).
Cortal, A., Martignetti, L., Six, E. & Rausell, A. Gene signature
extraction and cell identity recognition at the single-cell level
with Cell-ID. Nat. Biotechnol. 39, 1095-1102 (2021).

McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying
microbiome data is inadmissible. PLoS Comput. Biol. 10,
1003531 (2014).

Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch
effects in single-cell RNA-sequencing data are corrected by
matching mutual nearest neighbors. Nat. Biotechnol. 36,
421-427 (2018).

Wang, J. et al. Evaluation of ultra-low input RNA sequencing for
the study of human T cell transcriptome. Sci Rep. 9, 8445

(2019).

Wu, L. et al. Blockade of TIGIT/CD155 signaling reverses T-cell
exhaustion and enhances antitumor capability in head and neck
squamous cell carcinoma. Cancer Immunol. Res. 7,1700-1713
(2019).

Kiner, E. et al. Gut CD4" T cell phenotypes are a continuum
molded by microbes, not by T,, archetypes. Nat. Immunol. 22,
216-228 (2021).

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

Ji, A. L. et al. Multimodal analysis of composition and spatial
architecture in human squamous cell carcinoma. Cell 182,
497-514 (2020).

Joller, N. & Kuchroo, V. K. Tim-3, Lag-3, and TIGIT. Curr. Top.
Microbiol. Immunol. 410, 127-156 (2017).

van Dijk, D. et al. Recovering gene interactions from single-cell
data using data diffusion. Cell 174, 716-729 (2018).

Linderman, G. C. et al. Zero-preserving imputation of single-cell
RNA-seq data. Nat. Commun. 13, 192 (2022).

Lawlor, N. et al. Single-cell transcriptomes identify human islet
cell signatures and reveal cell-type-specific expression changes
in type 2 diabetes. Genome Res. 27, 208-222 (2017).

Baron, M. et al. A single-cell transcriptomic map of the human
and mouse pancreas reveals inter- and intra-cell population
structure. Cell Syst. 3, 346-360 (2016).

Zilionis, R. et al. Single-cell barcoding and sequencing using
droplet microfluidics. Nat. Protoc. 12, 44-73 (2016).

Korsunsky, I. et al. Fast, sensitive and accurate integration of
single-cell data with Harmony. Nat. Methods 16, 1289-1296 (2019).
Cabello-Aguilar, S. et al. SingleCellSignalR: inference of
intercellular networks from single-cell transcriptomics. Nucleic
Acids Res. 48, e55-e55 (2020).

Raredon, M. S. B. et al. Computation and visualization of cell-
cell signaling topologies in single-cell systems data using
Connectome. Sci. Rep. 12, 1-12 (2022).

Dimitrov, D. et al. Comparison of methods and resources for
cell-cell communication inference from single-cell RNA-Seq data.
Nat. Commun. 13, 1-13 (2022).

Schmidt, R. et al. CRISPR activation and interference screens
decode stimulation responses in primary human T cells. Science
375, eabj4008 (2022).

Ma, F. et al. The cellular architecture of the antimicrobial response
network in human leprosy granulomas. Nat. Immunol. 22,
839-850 (2021).

Gordon, S. Alternative activation of macrophages. Nat. Rev.
Immunol. 3, 23-35 (2003).

Ridley, D. S. & Jopling, W. H. Classification of leprosy according to
immunity. A five-group system. Int. J. Lepr. Other Mycobact. Dis.
34, 255-273 (1966).

Flynn, J. L. et al. An essential role for interferon gamma in
resistance to Mycobacterium tuberculosis infection. J. Exp. Med.
178, 2249-2254 (1993).

Herbst, S., Schaible, U. E. & Schneider, B. E. Interferon gamma
activated macrophages kill mycobacteria by nitric oxide induced
apoptosis. PLoS ONE 6, 19105 (2011).

Ni Cheallaigh, C. et al. A common variant in the adaptor mal
regulates interferon gamma signaling. Immunity 44, 368-379
(2016).

Verhagen, C. E. et al. Reversal reaction in borderline leprosy is
associated with a polarized shift to type 1-like Mycobacterium
leprae T cell reactivity in lesional skin: a follow-up study.

J. Immunol. 159, 4474-4483 (1997).

Teles, R. M. B. et al. Identification of a systemic interferon-y
inducible antimicrobial gene signature in leprosy patients
undergoing reversal reaction. PLoS Negl. Trop. Dis. 13, e0007764
(2019).

Fawkner-Corbett, D. et al. Spatiotemporal analysis of human
intestinal development at single-cell resolution. Cell 184,
810-826 (2021).

Biton, M. et al. T helper cell cytokines modulate intestinal

stem cell renewal and differentiation. Cell 175, 1307-1320

(2018).

Goto, N. et al. Lymphatics and fibroblasts support intestinal stem
cells in homeostasis and injury. Cell Stem Cell 29, 1246-1261.e6
(2022).

Nature Biotechnology | Volume 42 | March 2024 | 470-483

482


http://www.nature.com/naturebiotechnology
https://doi.org/10.1101/507871
https://doi.org/10.1101/507871

Article

https://doi.org/10.1038/s41587-023-01782-z

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Niec, R. E. et al. Lymphatics act as a signaling hub to regulate
intestinal stem cell activity. Cell Stem Cell 29, 1067-1082.€18 (2022).
Darling, T. K. & Lamb, T. J. Emerging roles for Eph receptors and
ephrin ligands in immunity. Front. Immunol. 10, 1473 (2019).

Kim, M. J. et al. PAF-Myc-controlled cell stemness is required for
intestinal regeneration and tumorigenesis. Dev. Cell 44, 582-596
(2018).

Zhang, N. et al. ID1is a functional marker for intestinal stem and
progenitor cells required for normal response to injury. Stem Cell
Rep. 3, 716-724 (2014).

Kazer, S. W. et al. Integrated single-cell analysis of multicellular
immune dynamics during hyperacute HIV-1infection. Nat. Med.
26, 511-518 (2020).

Strunz, M. et al. Alveolar regeneration through a Krt8" transitional
stem cell state that persists in human lung fibrosis. Nat. Commun.
11, 3559 (2020).

Ravindra, N. G. et al. Single-cell longitudinal analysis of
SARS-CoV-2 infection in human airway epithelium identifies target
cells, alterations in gene expression, and cell state changes. PLoS
Biol. 19, e3001143 (2021).

Gressner, O. A., Peredniene, |. & Gressner, A. M. Connective tissue
growth factor reacts as an IL-6/STAT3-regulated hepatic negative
acute phase protein. World J. Gastroenterol. 17, 151-163 (2011).
Sack, G. H. Jr. Serum amyloid A—a review. Mol. Med. 24, 46 (2018).
Xu, J. et al. SARS-CoV-2 induces transcriptional signatures in
human lung epithelial cells that promote lung fibrosis. Respir. Res.
21,182 (2020).

Doitsh, G. et al. Cell death by pyroptosis drives CD4 T-cell
depletion in HIV-1infection. Nature 505, 509-514 (2013).
Vignuzzi, M. & Lépez, C. B. Defective viral genomes are key drivers
of the virus-host interaction. Nat. Microbiol. 4, 1075-1087 (2019).
Lopez, C. B. Defective viral genomes: critical danger signals of
viral infections. J. Virol. 88, 8720-8723 (2014).

Raredon, M. S. B. et al. Comprehensive visualization of cell-cell
interactions in single-cell and spatial transcriptomics with
NICHES. Bioinform. 39, btac775 (2023).

66.

67.

68.

69.

70.

7.

72.

73.

Andreatta, M. et al. Interpretation of T cell states from single-cell
transcriptomics data using reference atlases. Nat. Commun. 12,
2965 (2021).

Svensson, V. Droplet scRNA-seq is not zero-inflated. Nat.
Biotechnol. 38, 147-150 (2020).

Cao, Y., Kitanovski, S., Kiippers, R. & Hoffmann, D. UMI or not UMI,
that is the question for scRNA-seq zero-inflation. Nat. Biotechnol.
39, 158-159 (2021).

Ghaddar, B. & De, S. Reconstructing physical cell interaction
networks from single-cell data using Neighbor-seq. Nucleic Acids
Res. 50, €82 (2022).

Giladi, A. et al. Dissecting cellular crosstalk by sequencing
physically interacting cells. Nat. Biotechnol. 38, 629-637

(2020).

Pasqual, G. et al. Monitoring T cell-dendritic cell interactions

in vivo by intercellular enzymatic labelling. Nature 553, 496-500
(2018).

Guidolin, D., Marcoli, M., Tortorella, C., Maura, G. & Agnati, L. F.
Receptor-receptor interactions as a widespread phenomenon:
novel targets for drug development? Front. Endocrinol. 10, 53
(2019).

Hao, Y. et al. Integrated analysis of multimodal single-cell data.
Cell184, 3573-3587 (2021).

Publisher’s note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional
affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with
the author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature America,
Inc. 2023

Nature Biotechnology | Volume 42 | March 2024 | 470-483

483


http://www.nature.com/naturebiotechnology

Article

https://doi.org/10.1038/s41587-023-01782-z

Methods

CCIM workflow

Generation of CCIM. We define the cell-cell interaction vector
between a pair of cells as the geometric mean of expression values of
each cognateligand-receptor pair. Formally, the interaction vector V
between sender cell N;and receiver cell N;is given by

Vi, = [\/Nf1 >kl\{,"\/l\/fZ *NJ’Z\/Nf" *N/,"j

where [, r, represent a cognate ligand-receptor pair. We chose to
multiply ligand and receptor expression values so that zero values
of either ligand or receptor expression would result in a zero value
for the corresponding index of the interaction vector. Additionally,
we chose to take the square root of the product of ligand-receptor
expression values so that highly expressed ligand-receptor pairs do
not disproportionately drive downstream analysis. This definition is
equivalent to the geometric mean. The cell-cell interaction matrix M
isconstructed by concatenating the cell-cellinteraction vectors. Mis
used as input to low-dimensional embeddings for visualization and
nearest neighbor graphs for graph-based clustering.

Weighting CCIM by upstream regulome. The CCIM M canbe weighted
by ligand-receptor edges that are predicted to be active based on
observed downstream gene expression changes. First, we identify
genesin the dataset that are variable across some axis of interest. For
analyses of single datasets, variable genes can be defined as the set of
genes with the highest residual variance in the dataset—for example,
by calling FindVariableFeatures as implemented by Seurat. For com-
parative analyses, Scriabin provides several utility functions to aid
in the identification of variable genes between samples or between
timepoints, depending on the user’s analytical questions.

Next, the package CelliD*, which provides a convenient and scal-
able workflow to define single-cell gene signatures, is used to define
per-cellgene signatures. Inbrief, user-defined variable genes are used
toembed the dataset into low-dimensional space by MCA. A cell’s gene
signatureis then defined asthe set of genes to which that cell is nearest
inthe MCA bi-plot. A quantile cutoffis used to threshold gene proxim-
ity, by default the 5% of nearest genes.

NicheNet’s* ligand-target matrix, which denotes the regulatory
potential scores between ligands and target genes, is then used to rank
ligands based on their predicted ability to result in the per-cell gene
signature. First, expressed genes are defined by the percentage of cells
in which they are detected (by default, 2.5%). Next, a set of potential
ligands is defined as those ligands that are expressed genes and for
which atleast onereceptorisalso an expressed gene. Next, the ligand-
target matrix isfiltered to contain only the set of potential ligands and
targetsinthe set of expressed genes. The authors of NicheNet showed
that the Pearson correlation coefficient between aligand’s target pre-
diction and observed transcriptional response is the most informative
metric of ligand activity®®. Therefore, the activity of asingle ligand for
asingle cell is defined as the Pearson correlation coefficient between
the vector of that cell’s gene signature and the target gene scores for
thatligand. For eachactive ligand, target gene weights for each cell are
defined as the ligand-target matrix regulatory score for the top 250
targets for each ligand that appear inagiven cell’s gene signature. We
selected a Pearson coefficient threshold (by default, 0.075) to define
activeligandsineach cell.

Finally, we weightindividual values of Vy,y. Scriabin supports two
methods for weighting the CCIM by predicted ligand activities. Method
‘product’ (default) weights interaction vectors proportionally to pre-
dictedligand activities. The vector of ligand activities for receiver cell
N, A; isscaled so that values above the Pearson threshold lie between
twoscaling factors (by default, 1.5and 3), and values below the Pearson
threshold are set to 1. The interaction vector is then given by:

product _ [ L " n I
Vv, = [\/Nfl N} *Ajl’\/’vi2 * N7 *Ajz"“’\/M N 5 A ]

Method ‘sum’ treats a ligand activity as orthogonal evidence of
receptor expression. Pearson coefficients in the vector of ligand activi-
ties for receiver cell N, A;, that are below the Pearson threshold are set
to 0. Theinteraction vector is then given by:

Vs = [V O+ A7) AN (8 AN 7 47|

Use cases for ligand activity weighting methods, as well as other
parameters involved in calculating ligand activities, are described in
the Supplementary Text.

Downstream analysis of weighted CCIMs. M can be treated analo-
gously to the gene expression matrix and used for downstream anal-
ysis tasks, such as dimensionality reduction. After generation and
(optional) weighting of Mby active ligands, Mis placed into anassay of a
Seurat object for downstream analysis. Mis scaled by ScaleData; latent
variables are found via PCA; and the top principal components (PCs)
(identified by EIbowPlot for each dataset) are used to embed the dataset
intwo dimensions using uniform manifold approximation and projec-
tion (UMAP)™. Neighbor graphs are constructed by FindNeighbors,
which canthenbe clustered viamodularity optimization graph-based
clustering” as implemented by Seurat’s FindClusters”. Differential
ligand-receptor edges among clusters, cell types or samples can be
identified using FindMarkers. Scriabin provides several utility func-
tions to facilitate visualization of gene expression profiles or other
metadata on Seurat objects built from cell-cell interaction matrices.

Summarized interaction graph and binning workflow
Generation of summarized interaction graph. Because M scales
exponentially with dataset size, itis frequently impractical to calculate
M for all cell-cell pairs N,,N,. In this situation, Scriabin supports two
workflows that do not require aggregation or subsampling. In the first
workflow, asummarized cell-cell interaction graph Sis builtin lieu of
M where §; ; = XV, . S thus represents the magnitude of predicted
interaction across all cognate ligand-receptor pairs expressed by all
sender-receiver cell pairs. S is then corrected for associations with
sequencing depth by linear regression. The sequencing depth of cell-
cell pair N;,N; is defined as nUMIy, + nUMI,, . A linear model is fit to
describe the relationship between the summarized interaction score
(Sij = ZVyn, where S is the summarized interaction matrix and Vy,, is
theinteraction vector for cell-cell pair N,N)) and the total sequencing
depth of each cell-cell pair. The residuals of this model are used as a
sequencing depth-corrected S. S may optionally be weighted through
prediction of ligand activity as described above. The second workflow
is described below in the ‘Interaction program discovery workflow’
subsection.

Dataset binning for comparative CCC analyses. Once summarized
interaction graphs are built for multiple samples, alignment of these
graphs requires knowledge about which cells between samples repre-
sentashared molecular state. The goal of binning is to assign each cell
abinidentity so that S from multiple samples can be summarizedinto
equidimensional matrices based on shared bin identities.

The binning process begins by constructing a shared nearest
neighbor (SNN) graph using FindNeighbors, defining connectivity
between all cells to be compared. Alternate neighbor graphs—for
example, those produced using Seurat’s weighted nearest neighbor
(WNN) workflow, which leverages information from multimodal refer-
ences—can also be used. Next, mutual nearest neighbors (MNNs) are
identified between all sub-datasets to be compared using Seurat’s inte-
gration workflow (FindIntegrationAnchors)”. In brief, two sub-datasets
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to be compared are placed into a shared low-dimensional space via
diagonalized canonical correlation analysis (CCA), and the canonical
correlation vectors are log-normalized. Normalized canonical corre-
lation vectors are then used to identify k-nearest neighbors for each
cellinits paired dataset, and the resulting MNN pairings are scored as
described”. Low-scoring MNN pairings are then removed, as they have
a higher tendency to represent incorrect cell-cell correspondences
when orthogonal data are available (Extended Data Fig. 10).

For each cell that participates in an MNN pair, Scriabin defines a
bin as that cell and all cells with which it participates in an MNN pair.
Considering a dataset of n cells i of which a subset i’ participatesinan
MNN pair, for each cell i/, we define abinj, that contains i’,and all MNNs
of i’,. Next, Scriabin constructs a connectivity matrix Gwhere G;;is the
mean connectivity inthe SNN graphbetween cell i and the cells within
binj.Eachcelli,is assigned abinidentity of the binj, withwhichitshares
the highest connectivity in G. Thus, at the end of this process, each cell
has asingle binidentity, which reflects its SNN similarity to a group of
cells with cross-dataset MNN connectivity.

However, at this stage, each binj, may not contain cells fromall the
samples being compared. Thus, we next optimize for the set of bins that
results in the best representation of all samples. Binsjwith the lowest
total connectivity and lowest multi-sample representationin G are
iteratively removed, and cell binidentities are re-scored until the mean
sample representation of each bin plateaus. Within-bin connectivity
and sample representation are further improved by reassigning cells
that result in better sample representation of an incompletely repre-
sented bin while maintaining equal or greater SNN connectivity with
thecellsin that bin. Finally, remaining incompletely represented bins
aremerged with the nearest completely represented bin with whichit
shares the highest SNN connectivity. At the end of this process, each cell
will, thus, have asingle assigned bin identity, where each bin contains
cells from all samples to be compared.

Statistical analysis of bin significance. Bins are then tested for the
statistical significance of their connectivity structure using a permuta-
tion test. For each bin, randombins of the same size and number of cells
per sample are generated iteratively (by default, 10,000 times). The
connectivity vector of thereal binsis tested against each of the random
bins by a one-sided Mann-Whitney U-test. If the bin fails 500 or more
ofthese tests (P> 0.05), itis considered non-significant.

Because bin SNN connectivity is generally non-zero, but randomly
sampled cells generally have an SNN connectivity of zero, this strategy
willtend to returnmost bins as statistically significantly connected. Thus,
we recommend passing high-resolution cell type labels to the binning
significance testing. In this situation, randomly generated bins are gen-
erated by randomly selecting cells from the same sample and cell type
annotation, and the permutationtest proceeds as described above. Bins
where more thanathreshold (by default, 95%) of cellsbelong to the same
celltypeannotation are automatically considered significant. This avoids
rare cell types that may only form a single bin from being discarded.
Cells that were assigned to bins that failed the significance testing are
reassigned to the bin with which they share the highest SNN connectivity.

Identification of variable bins. For each bin, a Kruskal-Wallis test is
used to assess differences in the magnitude of CCC between cell-cell
pairs from different samples. The Kruskal-Wallis P value and test sta-
tistic can be used to identify which bins contain cells that exhibit the
highest change in prediction interaction scores. Specific samples
that contribute to each significantly variable bin’s perturbation are
thenidentified through the Dunn post hoc test. This set of sender and
receiver cells can then be used to construct M as described above.

Interaction program discovery workflow
Iterative approximation of a ligand-receptor pair TOM. An alter-
native to the summarized interaction graph workflow is to instead

identify co-expressed ligand-receptor pairs, which we refer to as
‘interaction programs’. Thisapproach represents an adaptation of the
well-established WGCNA? and is scalable to any dataset size and still
permits analysis of CCC at single-cell resolution. The first step in this
workflowis to generate asigned covariance matrix of ligand-receptor
pairs for each sample, defined as
sfjfg"ed = 0.5+ 0.5cor (Ir;, Ir;),

where Ir;, Ir; are individual ligand-receptor pair vectors of M. In large
datasets, sfj"g”e" isapproximated by iteratively generating subsets of M.
sf.’g"e" is next converted into an adjacency matrix via soft
tﬁresholding

; B
_ ( Signed
a; = () -

where Bisthe soft power. Soft power is a user-defined parameter thatis
recommended to be the lowest value that resultsin a scale-free topol-
ogy model fit of >0.6. Next, this adjacency matrix is converted into a
TOM as described’. This process proceeds separately for each sample
to be analyzed in amulti-sample dataset.

Identification and significance testing of interaction programs. The
TOM s hierarchically clustered, and interaction programs are identi-
fied through adaptive branch pruning of the hierarchical clustering
dendrogram. Intramodular connectivity for each ligand-receptor
pair in each interaction program is then calculated as described”. If
interaction programs are being discovered in amulti-sample dataset,
similar modules (defined by Jaccard overlap index above a user-defined
threshold) are merged. Next, interaction programs are then tested for
statistically significant co-expression structure viaa permutation test
whererandominteraction programs are generated 10,000 times. The
correlation vector of the real module is tested against each of the ran-
dommodules by aone-sided Mann-Whitney U-test. If the module fails
500 or more of these tests (P> 0.05), it is considered non-significant.
Each sampleis tested for significant correlation of each module.

Downstream analysis of interaction programs. Single cells are scored
separately for the expression of the ligands and receptors of each signif-
icantmodule with Seurat’s AddModuleScore. This function calculates a
module score by comparing the expression level of anindividual query
gene to other randomly selected control genes expressed at similar
levels to the query genes and is, therefore, robust to scoring modules
containing both lowly and highly expressed genes as well as to scoring
cellswith different sequencing depth. Scriabinincludes several utility
functionsto conveniently visualize interaction programexpression for
sender and receiver cells.

Identification of longitudinal CCC circuits

Alongitudinal CCC circuit is composed of S,-L,-R,-S,-L,-R,, where S
aresender cellsand Rarereceiver cells at timepoints1and 2 and where
L, is expressed by/sensed by S,/R,, and L, is expressed by/sensed by
S,/R,.For computational efficiency, construction of longitudinal CCC
circuits starts at the end of the circuit and proceeds upstream. First,
ligands L, predicted by NicheNet to be active in receiver cells at time-
point2areidentified. Next, sender cells that express L, and have thelL,
inits per-cell gene signature are identified. Among the bins occupied
by these S, candidates, Scriabin then searches for receiver cells at time-
point1that occupy the samebin and have the corresponding timepoint
2ligand L, withinitslist of upregulated target genes and identifies the
ligand(s) L, predicted by NicheNet to resultin upregulation of that tar-
get. Finally, Scriabinidentifies S, candidates that express the timepoint
1ligands L, and have L, in its per-cell gene signature. S,-R,-S,—-R, cell
groups that meet these criteria are retained for further analysis. This
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process repeats for every pair of timepoints. Finally, Scriabin searches
for overlap between circuits of sequential timepoint pairs to identify
circuits that operate over more than two timepoints.

Ligand-receptor pair databases for analysis

Scriabin supports the use of 15 ligand-receptor interaction data-
bases for all analytical functions; these resources were collected from
LIANA®, By default, Scriabin uses the OmniPath database'®" filtered for
curationstrength of >7 to ensure that ligand-receptor interactions with
strong experimental evidence are included in downstream analysis.
Scriabin also supports the use of custom ligand-receptor pair lists for
users with specific analytical questions.

Transfection and co-culture of primary NK and B cells
Peripheral blood mononuclear cells (PBMCs) were acquired from a
healthy blood donor who was consented for release of genetic data
by the Stanford Blood Center. PBMCs were isolated by Ficoll-Paque
(GE Healthcare) density gradient centrifugationand cryopreservedin
90% FBS +10% DMSO (v/v). PBMCs were thawed at 37 °C in complete
RPMI1640 media (supplemented with 10% FBS, L-glutamine and peni-
cillin-streptomycin-amphotericin; RP10) containing benzonase (EMD
Millipore). NK cells and B cells were purified from thawed PBMCs by
magnetic beadisolation vianegative selection according to the manu-
facturer’s specifications (MiltenyiBiotec,130-092-657 and 130-101-638,
respectively). NK and B cells were maintained in complete RP10 media
without additional cytokines to ensure a resting state. All cell culture
was performed at 37 °C/5% CO, in a humidified environment.

eGFP-encoding, CD40-encoding and CD40L-encoding mRNAs
were purchased from TriLink BioTechnologies and used without further
purification. Notably, openreading frame (ORF) sequences for mRNAs
encoding CD40 and CD40L were codon optimized using the codon
optimization tool developed by Integrated DNA Technologies: this
serves both to improve translational efficacy as well as to enable dis-
tinguishing endogenous versus exogenous CD40 and CD40LG mRNAs
through sequencing.

mRNAs were delivered to isolated NK and B cells via transfec-
tion by charge-altering releasable transporters (CARTSs) as previously
described”. In brief, CART/mRNA polyplexes were prepared by diluting
0.84 of MRNA (1 pg pl™) into14.52 pl of PBS (pH 5.5). To this solution was
added1.44 plof CART BDK-O,:N,:A;; (2 mM DMSO) to achieve a charge
ratio of10:1 (+, assumingallionizable cationic groups are protonated).
After mixing by finger vortex for15s, 2.5 pl of the polyplexes was added
tocellsandincubated for 6 hin serum-free media. After thisincubation,
an aliquot was taken from each transfection condition for flow cyto-
metric analysis; FBS was added to a final concentration of10%; the cells
were counted; and NK cells and B cells from the respective transfection
conditions were mixed togetherinal:1ratio for co-culture. Cells were
co-cultured for12 hbefore analysis by flow cytometry and scRNA-seq.

Flow cytometry

Antibodies used for flow cytometric analyses are listed in Supplemen-
tary Table 2. eBioscience Fixable Viability Dye eFluor 780 (Thermo
Fisher Scientific) was used as a viability stain. After application of viabil-
ity stain, cells were surface stained for 20 min at room temperature
before acquisition on an Aurora flow cytometer (Cytek Biosciences)
and analysis by FlowJo version10.6.1 software.

scRNA-seq by Seq-Well

The Seq-Well platform for scRNA-seq was used as described previ-
ously’*°"® Immediately after co-culture, cells were counted and
diluted in RP10 to a concentration of 75,000 cells per milliliter. Then,
200 pl of this cell suspension (15,000 cells) was loaded onto Seq-Well
arrays pre-loaded with mRNA capture beads (ChemGenes). After four
washes with DPBS to remove serum, the arrays were sealed with a poly-
carbonate membrane (pore size, 0.01 um) for 30 min at 37 °C. Next,

arrays were placed in lysis buffer; transcripts were hybridized to the
mRNA capture beads; beads were recovered fromthe arrays and pooled
for downstream processing. Immediately after bead recovery, mRNA
transcripts were reverse transcribed using Maxima H-RT (Thermo
Fisher Scientific, EPO0753) in atemplate-switching-based RACE reac-
tion; excess unhybridized bead-conjugated oligonucleotides were
removed with Exonuclease I (New England Biolabs (NEB), M0293L);
second-strand synthesis was performed with Klenow fragment (NEB,
MO0212L) to enhance transcript recovery in the event of failed tem-
plate switching®. Whole-transcriptome amplification (WTA) was per-
formed with KAPA HiFi PCR Mastermix (Kapa Biosystems, KK2602)
using approximately 6,000 beads per 50-pl reaction volume. Result-
ing libraries were then pooled in sets of six (approximately 36,000
beads per pool), and products were purified by Agencourt AMPure XP
beads (Beckman Coulter, A63881) with a 0.6x volume wash followed
by a 0.8x volume wash. Quality and concentration of WTA products
were determined using an Agilent TapeStation, with a mean product
size of more than 800 base pairs (bp) and a non-existent primer peak
indicating successful preparation. Library preparation was performed
withaNextera XT DNA Library PreparationKit (Illumina, FC-131-1096)
with1ngofpooledlibrary using single-index primers. Tagmented and
amplified libraries were again purified by Agencourt AMPure XP beads
with a 0.6x volume wash followed by a1.0x volume wash, and quality
and concentration were determined by TapeStation analysis. Libraries
between 400 bp and 1,000 bp with no primer peaks were considered
successful and pooled for sequencing. Sequencing was performed on
aNovaSeq 6000 instrument (Illumina; Chan Zuckerberg Biohub). The
read structure was paired-end with read 1 beginning from a custom
read 1 primer®® containing a 12-bp cell barcode and an 8-bp UMl and
with read 2 containing 50 bp of mRNA sequence.

Alignment and quality control of scRNA-seq data

Sequencing reads were aligned and count matrices assembled
using STAR®* and dropEst®, respectively. In brief, the mRNA reads
in read 2 demultiplexed FASTQ files were tagged with the cell bar-
code and UMI for the corresponding read in the read 1 FASTQ file
using the dropTag function of dropEst. Next, reads were aligned with
STAR using the GRCh38.p13 (hg38) human reference genome from
Ensembl. This reference alsoincluded sequences and annotations for
the codon-optimized ORFs for GFP-encoding, CD40-encoding and
CD40L-encoding mRNAs so that both endogenous and exogenous
mRNAs could be quantified. Count matrices were built from resulting
BAM files using dropEst®. Cells that had fewer than 750 UMIs or more
than15,000 UMIs, as well as cells that contained more than 20% of reads
from mitochondrial genes or rRNA genes (RNAI8S5 or RNA28SS5), were
considered low quality and removed from further analysis. To remove
putative multiplets, cells that expressed more than 75 genes per 100
UMIs were also filtered out.

Pre-processing of scRNA-seq data

The R package Seurat?7>%¢ was used for data scaling, transformation,
clustering, dimensionality reduction, differential expression analysis
and most visualizations. Unless otherwise noted, data were scaled and
transformed and variable genes identified using the SCTransform()
function, and linear regression was performed to remove unwanted
variation dueto cell quality (% mitochondrial reads and % rRNA reads).
PCA was performed using the 3,000 most highly variable genes, and
the first 50 PCs were used to perform UMAP to embed the datasetinto
two dimensions”™¥. Next, the first 50 PCs were used to construct an
SNN graph (FindNeighbors()), and this SNN was used to cluster the
dataset (FindClusters()). Although upstream quality control removed
many dead or low-quality cells, ifany clusters were identified that were
defined by few canonical cell lineage markers and enriched for genes
of mitochondrial or ribosomal origin, these clusters were removed
from further analysis®®,
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Annotation of transfected NK and B cells in scRNA-seq data
Because of the strong degree of transcriptional perturbation caused
by transfection (Extended Data Fig. 3), we elected to annotate NK
and B cells in this dataset by integration with a multimodal reference
rather than by graph-based clustering. First, we noted two clusters
with high expression of CD3-encoding genes and monocyte-specific
genes (including LYZ and CD14), respectively; we considered these
clusters contaminating T cellsand monocytes and removed them from
further analysis. Next, we used the multimodal (whole transcriptome
plus 228 cell surface proteins) PBMC dataset published by Hao et al.”
as a reference. We subsetted the reference to contain only NK and B
cells, scaled both the transcriptome and protein assays and ran PCA on
both modalities. Next, we found multimodal neighbors between the
modalities using WNN analysis, which learns the relative utility of each
datamodality ineach cell. Supervised PCA (SPCA) was thenrunon the
WNN SNN graph, which seeks to capture a linear transformation that
maximizesits dependency tothe WNNSNN graph. These SPCA-reduced
dimensions were then used for identification of anchors between the
reference and query datasets as previously described?. Finally, these
anchors were used to transfer reference cell type annotations to the
query dataset.

Processing, analysis and visualization of public scRNA-seq
datasets

Published scRNA-seq datasets were acquired asdescribedin the ‘Data
availability’ section. In each case, we acquired raw count matrices or
processed Seurat objects containing raw count matrices. Any upstream
processing was performed as described in the respective manuscripts.

Raw count matrices from Ravindra et al.”® required filtering
before downstream analysis; cells meeting the following criteria
were kept: >1,000 UMIs, <20,000 UMIs, >500 unique features, <0.85
UMI-to-unique feature ratio, <20% UMIs of mitochondrial origin and
<35% reads from ribosomal protein-encoding genes. Pbmc5k and
pbmcl0k datasets from10x Genomics were filtered to enforce amini-
mum number of features per cell of 200 and to remove genes not
expressed in at least three cells.

Celltype annotations were provided for theJietal.”’, Maetal.* and
Fawkner-Corbett et al.* datasets, which were used for downstream
analytical tasks. For the Ravindra et al.>® dataset, manual annotation
of cellular identity was performed by finding differentially expressed
genes for each cluster using Seurat’simplementation of the Wilcoxon
rank-sumtest (FindMarkers()) and comparing those markers to known
cell-type-specific genes listed in Ravindra et al.”*, PBMC datasets were
annotated by WNN projection and label transfer from a multimodal
PBMC reference as described”®’.

For analysis of T cell exhaustion in the SCC dataset fromJieta
an exhaustion signature was defined by PDCD1, TOX, CXCL13, CTLA4,
TNFRSF9,HAVCR2,LAG3,CD160 and CD244. This signatureincorporates
several markers of exhausted T cell reported in the literature®*?°-%%,
Individual T cells were scored for expression of this signature using
Seurat’s AddModuleScore.

29
1.7,

Analysis of the impact of sparsity on single-cell-resolution
CCCanalysis
We collected three scRNA-seq datasets generated from methods with
high coverage: Fluidigm C1 pancreas islets?**, Smart-seq2 uterine
decidua®and Smart-seq2 HNSCC®. We used Scriabin’s CCIM workflow
togenerate a CCIM for each of these datasets, whichwe consider tobe
the GT of CCC for that dataset. Next, we randomly downsampled the
datasets to inDrop coverage using downsampleMatrix() from scut-
tle” % For these analyses, inDrop coverage was defined as the mean
UMIs per cell of the inDrop dataset included in the pancreasislet dataset
available through SeuratData®, which is 5,828 UMIs per cell.
Fromthese downsampled datasets, we generated several interac-
tion matrices:

1. Raw. We calculated an unweighted CCIM through Scriabin’s
standard CCIM workflow.

2. ALRA-denoised. We used ALRA*, a denoising algorithm for
scRNA-seq, to denoise the downsampled dataset and then built
an unweighted CCIM from the denoised dataset.

3. Neighborhood-aggregated. We generated nearest neigh-
bor graphs from each downsampled dataset using Seurat’s
FindNeighbors() using the first 15 PCs. Next, we defined
the neighborhood for each cell as that cell and its nearest
kneighbors. Finally, we defined the transcriptome of each
cell as the mean of that cell and its nearest k neighbors. We
used values of k between 5 and 100. We used this matrix of
neighborhood-aggregated expression values to generate
CCIMs.

4. Cluster-aggregated. We used Seurat’s graph-based clustering
algorithm with resolutions between 2.5 and 5 to cluster each
downsampled dataset. We then generated a matrix of pseudo-
bulk expression vectors for each cluster and used this matrix to
generate a cluster-cluster interaction matrix.

Next, we used Seurat’s dataset integration pipeline to integrate
each CCIM from the downsampled dataset with the GT CCIM?. The
first 30 PCs were used for CCIM integration. Finally, we used the LISI*®
to quantify the degree to which the CCIMs from the downsampled
datasets recapitulated the GT CCIMs. This value defines the number
of datasets in the neighborhood of each GT cell-cell pair and ranges
between1, denotingthatonly GT cell-cell pairs are present in the neigh-
borhood, and 2, denoting an equal mixture of GT and downsampled
cell-cell pairs.

Comparative analyses between Scriabin and published CCC
analysis methods

Pbmc5k and pbmc10k datasets from 10x Genomics were used to
benchmark the computational efficiency of Scriabin. For single data-
set analyses, pbmc5k was randomly subsetted to multiple dataset
sizes. Cell type annotations were passed to Connectome®, NATMIY,
CellChat®,iTALK' and SingleCellSignalR (SCA)*, which were run using
default parameters defined by LIANA®. The time for these methods to
returnresults was compared to a version of Scriabin that generated and
visualized a full dataset summarized interaction graph and returned
pseudobulkligand-receptor pair scores for each cell type annotation.
Connectome™ is the only of these packages that supports a full com-
parative workflow. For comparative analysis, we analyzed differences
in CCC between the pbmc5k and pbmcl0k datasets. We compared
Connectome’s total runtime to the runtime of Scriabin to generate full
dataset summarized interactiongraphs, performdataset binning and
visualize the most perturbed bins.

Multiple ligand-receptor resources compiled by LIANA* were
used to compare results returned by published CCC analysis meth-
ods and Scriabin. This analysis was performed on four datasets: 10x
PBMC 5k, Fluidigm C1 pancreasislets***, Smart-seq2 uterine decidua®
and Smart-seq2 HNSCC®. The following results parameters were used
from each method: prob (CellChat), LRscore (SingleCellSignalR),
weight_norm (Connectome), weight_comb (iTALK) and edge_avg_expr
(NATMI). Tovisualize the overlap in results between the methods and
resources, we extracted the top 1,000 results from each method-
resource pair and calculated the Jaccard index between these top
results (as described by ref. 39).

Analysis of spatial transcriptomic datasets with Scriabin

Toevaluateif Scriabin returns biologically meaningful CCC edges, we
downloaded spatial coordinates and gene expression count matrices
from10 spatial transcriptomic datasets from the 10x Visium platform
available at https://www.10xgenomics.com/resources/datasets. We
also analyzed aspatial transcriptomic dataset published by Maet al.* of
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ahumanleprosy granuloma. We treated each count matrix analogously
toscRNA-seqdata, performing data transformation and dimensionality
reduction as described above. We calculated per-cell gene signatures
for each dataset based on variable genes across the dataset, which we
then used to rank ligands based on their predicted ability to resultin
the observed gene expression profile using NicheNet*. Next, we con-
structed asummarized interaction graph using aligand-receptor pair
database that was restricted to membrane-bound ligands and recep-
tors, which we weighted according to the predicted ligand activities.
Finally, we compared the distance quantile of the top 1% of interacting
cell-cell pairs compared to randomly permuted distances.

Analysis of CRISPRa Perturb-seq data

To quantify Scriabin’s ability to detect changesin CCC at single-cell res-
olution, we analyzed data from a pooled genetic perturbation screen.
We elected to analyze the Perturb-seq dataset published by Schmidt
et al.*’ as this dataset was collected on primary cells and contained a
high number of gRNAs (15) targeting cell surface ligands or receptors
usedin CCC.We collected aprocessed and publicly available h5Seurat
object of the anti-human CD3/CD28 re-stimulated T cells from the
Schmidtetal.** dataset from https://zenodo.org/record/5784651. The
authors’gRNA calls were used for all downstream analysis; we identified
gRNAs gin this dataset that targeted cell surface ligands or receptors
that were presentin OmniPath’s ligand-receptorinteraction database.
The dataset was then subsetted to include only cells transduced with
agRNA targeting one of these cell surfaceligands or receptors or cells
transduced with a non-targeting gRNA. Untransduced T cells were
removed from further analysis. We repeated the following process
for each gRNA g;. Given a gRNA, g,, targeting a ligand-encoding gene
A: we isolated cells transduced with g, and cells transduced with a
non-targeting gRNA. From this subsetted dataset, we generated a CCIM
without ligand activity ranking using Scriabin’s CCIM workflow. We next
isolated interaction vectors Vforligand Aand all receptors of A, R,. For
eachinteraction vector V,;, we constructed areceiver operating char-
acteristic (ROC) curve using V,z as the predictor variable and the gRNA
assignment (either g, or non-targeting) as the response variable to
quantify and visualize the sensitivity and specificity of the prediction.

Visualization

For allbox plot features: minimum whisker, 25th percentile -1.5 x inter-
quartile range (IQR) or the lowest value within; minimum box, 25th
percentile; center, median; maximum box, 75th percentile; maximum
whisker, 75th percentile +1.5 X IQR or greatest value within.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Raw and processed scRNA-seq data generated in this manuscript
are available on the Gene Expression Omnibus (GEO) as accession
GSE228415 (ref. 101). Spatial transcriptomic datasets and datasets of
PBMCs (pbmcSk and pbmcl0k) were downloaded from 10x Genomics;
for comparison of mouse and human PBMCs, datasets from 10x
Genomics’ cell multiplexing oligo demonstration were used (https://
www.10xgenomics.com/resources/datasets). Processed scRNA-seq
data of SCC and matched normals® were provided directly by the study
authors. Processed count matrices from the Smart-Seq2 human HNSCC
dataset were downloaded from GEO accession GSE103322 (ref. 8).
Processed count matrices from the Smart-Seq2 human uterine decidua
dataset were downloaded from European Bioinformatics Institute
accession E-MTAB-6678 (ref.13). Processed Seurat objects of the Fluid-
igm Clpancreasislet dataset are available through the R package Seur-
atData”*. Processed CRISPRaPerturb-seq data were downloaded from
Zenodo record 5784651 (ref. 40). scRNA-seq data of human leprosy

granulomas* were downloaded from https://github.com/mafeiyang/
leprosy_amg_network. Data from developing fetal intestine* were
acquired from the CELLXGENE portal: https://cellxgene.cziscience.
com/collections/60358420-6055-411d-ba4f-e8ac80682a2e. Data
of longitudinal responses to SARS-CoV-2 infection in HBECs™® were
downloaded from GEO accession GSE166766. The GRCh38.p13 refer-
ence genomeis available from the National Center for Biotechnology
Information.

Code availability
Scriabin is available for download and use as an R package at https://
github.com/BlishLab/scriabin (ref.102).
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Extended Data Fig.1| Additional analyses of exhausted intratumoral SCCT
cells. a) UMAP projection of all T cells from the dataset published by Ji, et al.”,
colored by author-annotated T cell subtype. b) Dot plot depicting average and
percent expression of the exhaustion signature score by author-annotated T cell
subtypes. ¢) ROC curves depicting the ability of each cluster from the single-

cell T cell object (left) or Scriabin generated T cell-CDIC' DC CCIM (right) to

be classified as exhausted or non-exhausted. Each line corresponds to asingle
cluster. The diagonal black line corresponds to an AUC = 0.5, where there is no
predictive power of classification. AUC = 0, the cluster can be perfectly classified
as non-exhausted; AUC =1, the cluster can be perfectly classified as exhausted.
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pancreasislets”*, Smart-seq2 uterine decidua®, and Smart-seq2 HNSCC®. d, e)
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Extended Data Fig. 5| See next page for caption.
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Extended DataFig. 5| Additional analyses of the scRNA-seq dataset ofleprosy ~ NicheNet for this analysis. d) UMAP projections of T cells (top) and myeloid cells

granulomas. a) Bar graph depicting cell proportions per granulomain the (bottom) colored by author-generated subcluster cell type annotation (left),
dataset of Ma, etal.”. Author-provided cell type annotations are used for analysis. ~ granuloma type (middle), or if the cell falls into a cluster 2 perturbed bin (right;
b) Subclustering resolutions of T cells (left) and myeloid cells (right) required seeFig. 4f). e) We applied a binomial test to determine if cells froma cluster 2

for comparative CCC analysis by agglomerative methods. Pink barsindicate the perturbed bin were significantly enriched or depleted in any T cell or myeloid cell
percentage of subclusters containing at least one cell froman LL granuloma and subcluster. The bar plot depicts the -log(p-value) of the exact binomial test. When
one cell from an RR granuloma. Blue bars indicate the percentage of subclusters p <0.05, the bars are colored to indicate if perturbed cells are either enriched
containing at least one cell from all nine analyzed granulomas. ¢) NicheNet* (red) or depleted (blue) from the cluster. The dotted line indicates the point at
was applied to predict ligand activities in myeloid cells between RR granulomas which p = 0.05. Calculated p-values are two-sided.

relative to LL granulomas. The bar plot depicts pearson coefficient outputs of
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Extended Data Fig. 6 | Co-expressed interaction programsinintestinal
development. a) Scatter plot depicting expression of LEC marker LYVE1

and RSPO3.Shown are Pearson’s r, and an exact two-sided P value. b) UMAP
projections of ligand (shades of purple) or receptor (shades of green) expression
in3 gutendothelial cell-specific modules. c) UMAP projection of gut endothelial
cells colored by expression of ligands in the interaction programs depicted in
(b).d) Dot plot depicting the expression fold-change and Bonferroni-corrected
Wilcoxon rank-sum test 2-sided p-values of interaction program expression in
eachanatomical location. e) Intramodular connectivity scores for each ligand-

receptor pair in each anatomical location for the module indicated by the arrow
in(d). Theblack arrow in (e) indicates the genes whose average and percent
expression are plotted to the right. Shown is an exact two-sided Bonferroni-
corrected p-value from the Wilcoxon rank-sum test as described in panel (d).

f-g) Connectome’® was used to analyze CCC in the human intestinal development
dataset* using author-annotated cell types for aggregation. Results are plotted
for communication between gut endothelial cells (senders) and intestinal
epithelial cells (receivers; f) or between fibroblasts (senders) and intestinal
epithelial cells (receivers; g).
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Extended DataFig. 7| scRNA-seq dataset of SARS-CoV-2 infected HBECs. UMAP projections of 64,008 cells from the dataset published by Ravindra, et al.*® colored
by time point (a), annotated cell type (b), or the percentage of UMIs per cell of SARS-CoV-2 origin (c).
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Parameter tuning for ligand activity ranking and
interaction program discovery workflows. a) Heatmaps depicting Jaccard
overlapindex between DE testing results from CCIMs constructed with 217
different combinations of ligand activity ranking parameters. Three different
datasets were used for testing: a pancreas islet dataset*, a uterine decidua
dataset”, and a dataset of HNSCC®. b-d) 217 different parameter combinations
were used to analyze CCC between NK cells transfected with CD40L-

encoding mRNA and B cells transfected with CD40-encoding mRNA. Ligand
activity-weighted CCIMs were calculated from each of these combinations

and differential expression testing performed to identify which parameter
combinations returned CD40L-CD40 as a differential edge with the highest
specificity. b) Box plot depicting the difference between the log(fold-change) for
CD40L-CD40 and the mean log(fold-change) for all other ligand-receptor pairs,
withand without application of ligand activity ranking. n = 1for analysis without
ligand activity ranking; n = 216 for with ligand activity ranking. c) § coefficients
and p-values from multiple regression analysis modeling the impact of each

ligand ranking parameter on relative predictive power for the CD40L-CD40 edge.

d) Scatter plots depicting relative predictive power for the CD40L-CD40 edge for
all combinations of ligand ranking parameters. The mean for each parameter is

shown within the plot. e) Example ligand activity distributions to aid in selection
of the appropriate Pearson coefficient threshold. Generally, ligand activity
coefficients formaright-skewed distribution, similar to the distributions shown
here. The right tails of these distributions represent the putative biological
activity and are the coefficients that should be used for CCIM weighting. We
therefore encourage users to consider the number of ligands that are expected
to display biological activity and the number of cells that are expected to have
downstream signaling induced by those ligands. If there are very few ligands
expected to be biologically active, and only a subset of cells responding to
them, this threshold should be increased to include less of the right tail of the
distribution. f) The interaction program discovery workflow was repeated on
35random subsamples of the inDrop panc8 dataset***, using 19 different R?
thresholds to define the appropriate softPower parameter. Scatter plots depict
association between R* threshold and (clockwise from top left): recommended
softPower, percentage of identified programs that failed significance testing,
percentage of programs composed of only 1ligand or receptor, and the average
number of ligands and receptors composing a program. Shown are Pearson’sr,
and an exact two-sided Pvalue.
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other B cells shared between the human and mouse cells in bin #191. Differential
expression tests were run individually for human and mouse cells. e-g) A toy
dataset of ~14,000 peripheral blood mononuclear cells (PBMCs) with nine sub-
datasets was analyzed. e) Density plot depicting the number of cells in each bin.
The medianbin size in this analysisis 25 cells.f) Asin (b) An SNN graph was used
to assess cell-cell connectivity for the binning workflow. Cell type annotations are
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the anchor pairs used to generate the bins depicted in (f).
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Software and code

Policy information about availability of computer code

Data collection Libraries were sequenced on a NovaSeq 6000 instrument (Chan Zuckerberg Biohub). Reads were aligned with STAR_2.5.4 using the
GRCh38.p13 (hg38) human reference genome from Ensembl. This reference also included sequences and annotations for the codon-
optimized ORFs for GFP-, CD40-, and CD40L-encoding mRNAs so that both endogenous and exogenous mRNAs could be quantified. Count
matrices were built with dropEst_0.6.8

Data analysis Custom code is available at: github.com/BlishLab/scriabin
Additional packages used for analysis include: On R version 4.1.2--Seurat_4.1.0.9004, tidyr_1.1.4, nichenetr_1.0.0, ggplot2_3.3.5, FSA_0.9.3,
cowplot_1.1.1, dplyr_1.0.7, sctransform_0.3.3, matrixStats_0.61.0, Matrix_1.3-4, magritty_2.0.1, ade4_1.7-18, WGCNA_1.70-3,
circlize_0.4.13, glcMatrix_0.9.7, ComplexHeatmap_2.10.0, uwot_0.1.11, CelliD_1.2.0, flashClust_1.01-2

FlowJo version 10.6.1 was used for analysis of flow cytometry data.

Scriabin is available as an open-source R package at: github.com/BlishLab/scriabin

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Raw and processed scRNA-seq data generated in this manuscript are available on GEO as accession GSE228415.

Sources of public datasets:

10X PBMC datasets (including pbmc5k, pbmc 10k, mouse PBMC CMO data, and spatial transcriptomic datasets): https://www.10xgenomics.com/resources/datasets
SCC and matched normals (Ji, et al.): provided directly from study authors

CRISPRa Perturb-seq (Schmidt, et al.): downloaded from Zenodo #5784651

Leprosy granulomas (Ma, et al.): https://github.com/mafeiyang/leprosy_amg_network

Developing fetal intestine (Fawkner-Corbett, et al.): https://cellxgene.cziscience.com/collections/60358420-6055-411d-ba4f-e8ac80682a2e

SARS-CoV-2 infection of HBECs (Ravindra, et al.): downloaded from GEO #GSE166766

Smart-Seq2 human HNSCC (Puram, et al.): downloaded from GEO #GSE1033228

Smart-Seq2 human uterine decidua (Vento-Tormo, et al.): downloaded from EBI #E-MTAB-667813

The GRCh38.p13 reference genome is available from NCBI at: https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39/
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size 21,538 cells from NK cell-B cell co-cultures were profiled by scRNA-seq. Specific sample sizes for the 4 transfection conditions are: 4,934 (GFP-
GFP), 5,665 (GFP-CD40), 4,908 (CD40L-GFP), and 6,031 (CD40L-CD40). PBMCs from one donor were used to perform NK and B cell isolations,
transfections, and co-cultures. Sample size was not pre-determined. The recommended number of cells was loaded per array (15,000 cells)
according to Seg-Well protocols published by Gierahn, et al., and Hughes, et al.

Data exclusions  Cells that are low-quality are excluded from downstream analysis as their inclusion would add unwanted noise to downstream analysis.
Dataset-specific thresholds were chosen based on dataset-specific sample quality and sequencing depth. Specifically, for data generated by
this study: Cells that had fewer than 750 UMls or greater than 15,000 UMIs, as well as cells that contained greater than 20% of reads from
mitochondrial genes or rRNA genes (RNA18S5 or RNA28S5), were considered low quality and removed from further analysis. To remove
putative multiplets, cells that expressed more than 75 genes per 100 UMIs were also filtered out. Additionally, raw count matrices from
Ravindra, et al. required filtering before downstream analysis; cells meeting the following criteria were kept: >1,000 UMls, <20,000 UMIs,
>500 unique features, <0.85 UMI-to-unique feature ratio, <20% UMIs of mitochondrial origin, <35% reads from ribosomal protein-encoding
genes. Pbmc5k and pbmc10k datasets from 10X genomics were filtered to enforce a minimum number features per cell of 200 and to remove
genes not expressed in at least 3 cells.

Replication Given the small amount of materials available for transfection, we were unable to perform multiple technical replicates on individual samples.
Randomization  Specific samples were not allocated into experimental groups.

Blinding Blinding was not relevant as there was no placebo group and samples were not allocated into experimental groups.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems

Methods

Involved in the study
™ Antibodies

Eukaryotic cell lines

Clinical data

XXX KX XS
Odoooob

Antibodies

Palaeontology and archaeology

n/a | Involved in the study

IZ D ChiIP-seq
|:| IZ Flow cytometry

IZ D MRI-based neuroimaging

Animals and other organisms

Human research participants

Dual use research of concern

Antibodies used

Anti-human CD3-BV421 1:200 (OKT3; BioLegend 317343)

Anti-human CD7-PEDazzle594 1:100 (CD7-6B7; BioLegend 343119)
Anti-human CD14-PE-Cy5 1:400 (61D3; ThermoFisher 15-0149-42)
Anti-human CD16-AF700 1:400 (3G8; BioLegend 302025)
Anti-human CD19-PerCP-Cy5.5 1:200 (HIB19; BD Biosciences 561295)
Anti-human CD56-PE-Cy7 1:50 (HCD56; BioLegend 318317)
Anti-human CD40-BV510 1:400 (5C3; BioLegend 334330)
Anti-human CD40L-BV605 1:50 (24-31; BioLegend 310826)

Validation

All antibodies are commercially available. All antibodies are validated for research use by flow cytometry by the vendor. For each

antibody, validation was performed by the vendor by staining human peripheral blood mononuclear cells and analyzing staining by
flow cytometry.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

|X| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument
Software
Cell population abundance

Gating strategy

Peripheral blood mononuclear cells (PBMCs) were acquired from a healthy blood donor that was consented for release of
genetic data by the Stanford Blood Center. PBMCs were isolated by Ficoll-Paque (GE Healthcare) density gradient
centrifugation and cryopreserved in 90% FBS + 10% DMSO (v/v). PBMCs were thawed at 37°C in complete RPMI-1640 media
(supplemented with 10% FBS, L-glutamine, and Penicillin-Streptomycin-Amphotericin; RP10) containing benzonase (EMD
Millipore). After isolation, transfections, and subsequent co-culture, cells were prepared for flow cytometric analysis by first
applying eBioscience™ Fixable Viability Dye eFluor™ 780 (ThermoFisher) as a viability stain for 20 minutes at room
temperature. Surface stain antibody mixes were prepared by diluting the surface antibodies in the panel in FACS buffer (PBS
+2% FCS + 0.5% BSA) at the titrations listed above. Following two washes in FACS buffer, surface stains were applied for 20
minutes at room temperature. Single-color controls for unmixing were prepared by applying single antibodies diluted in FACS
buffer at the same titration as used in the complete panel to Anti-Mouse Ig, k/Negative Control (BSA) Compensation Plus (7.5
um) Particles for 20 minutes at room temperature. Following surface staining, cells and beads were washed twice with FACS
buffer for immediate data acquisition.

Aurora flow cytometer (Cytek Biosciences)

Flow cytometry data were analyzed by FlowJo version 10.6.1

Cells were discarded after acquisition. Cell populations were quantified via the gating strategy described below.

First, multiplets were removed from further analysis by gating first on SSC-area against SSC-height, and next on FSC-area
against FSC-height. Next, debris was removed from further analysis by gating conservatively on populations visible on SSC-
area vs. FSC-area. Live cells were gated as APC-eFluor780 negative.

Live cells were then gated to identify NK cells and B cells. NK cells were defined as CD3-CD14-CD7+CD16+CD56+. CD16 vs.

CD56 gating was performed with a rainbow gate to exclude CD16-CD56- cells while capturing CD56bright NK cells that do not
express high levels of CD16. B cells were defined as CD3-CD14-CD7-CD19+.

|X| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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