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Comparative analysis of cell–cell 
communication at single-cell resolution

Aaron J. Wilk    1,2,3 , Alex K. Shalek    4,5,6,7,8, Susan Holmes9,11 & 
Catherine A. Blish    1,2,3,10,11

Inference of cell–cell communication from single-cell RNA sequencing 
data is a powerful technique to uncover intercellular communication 
pathways, yet existing methods perform this analysis at the level of the cell 
type or cluster, discarding single-cell-level information. Here we present 
Scriabin, a flexible and scalable framework for comparative analysis of 
cell–cell communication at single-cell resolution that is performed without 
cell aggregation or downsampling. We use multiple published atlas-scale 
datasets, genetic perturbation screens and direct experimental validation 
to show that Scriabin accurately recovers expected cell–cell communication 
edges and identifies communication networks that can be obscured by 
agglomerative methods. Additionally, we use spatial transcriptomic data 
to show that Scriabin can uncover spatial features of interaction from 
dissociated data alone. Finally, we demonstrate applications to longitudinal 
datasets to follow communication pathways operating between timepoints. 
Our approach represents a broadly applicable strategy to reveal the full 
structure of niche–phenotype relationships in health and disease.

Complex multicellular organisms rely on coordination within and 
between their tissue niches to maintain homeostasis and appropri-
ately respond to internal and external perturbations. This coordination 
is achieved through cell–cell communication (CCC), whereby cells 
send and receive biochemical and physical signals that influence cell 
phenotype and function1,2. A fundamental goal of systems biology is 
to understand the communication pathways that enable tissues to 
function in a coordinated and flexible manner to maintain health and 
fight disease3,4.

The advent of single-cell RNA sequencing (scRNA-seq) has made 
it possible to dissect complex multicellular niches by applying the 
comprehensive nature of genomics at the ‘atomic’ resolution of the 
single cell. Concurrently, the assembly of protein–protein interaction 
databases5 and the rise of pooled genetic perturbation screening6,7 

have empowered the development of methods that infer putative 
axes of cell-to-cell communication from scRNA-seq datasets8–13. These 
techniques generally function by aggregating ligand and receptor 
expression values for groups of cells to infer which groups of cells 
are likely to interact with one another14–17. However, biologically, CCC 
does not operate at the level of the group; rather, such interactions 
take place between individual cells. There exists a need for methods 
of CCC inference that analyze interactions at the level of the single cell, 
that leverage the full information content contained within scRNA-seq 
data by looking at upstream and downstream cellular activity, that 
enable comparative analysis between conditions and that are robust 
to multiple experimental designs.

Here we introduce single-cell-resolved interaction analysis 
through binning (Scriabin)—an adaptable and computationally 
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of sampling noise24; meanwhile, aggregation at any level raises the 
possibility of obscuring important heterogeneity and/or specificity.

An alternate solution is to first intelligently identify cell–cell 
pairs of interest and build M using only those sender and receiver 
cells. We hypothesize that, in the context of a comparative analysis, 
sender–receiver cell pairs that change substantially in their magni-
tude of interaction are the most biologically informative. To identify 
these cells, Scriabin first constructs a summarized interaction graph S,  
characterized by an N × N matrix containing the sum of all cognate 
ligand–receptor pair expression scores for each pair of cells. S is much 
more computationally efficient to generate, store and analyze than a 
full dataset M (for a 1,000-cell dataset, S is 1,000 × 1,000, whereas M 
is ~3,000 × 1,000,000). Comparing summarized interaction graphs 
from multiple samples requires that cells from different samples share 
a set of labels or annotations of cells representing the same identity. 
We use recent progress in dataset integration methodology21,25 to 
develop a high-resolution registration and alignment process that we 
call ‘binning’, where we assign each cell a bin identity that maximizes 
the similarity of cells within each bin and maximizes the representation 
of all samples that we want to compare within each bin while simultane-
ously minimizing the degree of agglomeration required (Fig. 1 and Sup-
plementary Text). Sender and receiver cells belonging to the bins with 
the highest communicative variance can then be used to construct M.

Finally, Scriabin implements a workflow for single-cell-resolved 
CCC analysis that is scalable to any dataset size, enabling discovery of 
co-expressed ligand–receptor interaction programs. This workflow is 
motivated by the observation that transcriptionally similar sender–
receiver cell pairs will tend to communicate through similar sets of 
ligand–receptor pairs. To achieve this, we adapted the well-established 
weighted gene correlation network analysis (WGCNA) pipeline22—
designed to find modules of co-expressed genes—to uncover modules 
of ligand–receptor pairs co-expressed by the same sets of sender–
receiver cell pairs, which we call ‘interaction programs’. Scriabin calcu-
lates sequences of M subsets that are used to iteratively approximate a 
topological overlap matrix (TOM), which is then used to discover highly 
connected interaction programs. Because the dimensionality of the 
approximated TOM is consistent between datasets, this approach is 
highly scalable. The connectivity of individual interaction programs is 
then tested for statistical significance, which can reveal differences in 
co-expression patterns between samples. Single cells are then scored 
for the expression of statistically significant interaction programs. 
Comparative analyses include differential expression analyses on 
identified interaction programs as well as comparisons of intramodular 
connectivity between samples.

To illustrate the importance of performing CCC analyses at 
single-cell resolution, we examined CCC of T cells in the tumor micro-
environment. Owing to their low RNA content, it is often difficult to 
infer the functional states of T cells from their transcriptomes26, yet 
T cells participate in communicative pathways that are important 
to clinical and therapeutic outcomes27. Additionally, transcriptional 
evidence suggests that helper T cells may exist on a phenotypic con-
tinuum rather than in traditional discrete functional archetypes28. In 
a dataset of squamous cell carcinoma (SCC) and matched controls29, 
we found a high degree of whole-transcriptome phenotypic overlap 
between intratumoral T cells and those present in normal skin (Fig. 2a).  
Furthermore, although there were exhausted T cells in this dataset, 
they did not occupy a discrete cluster but were, rather, distributed 
across multiple clusters (Fig. 2a and Extended Data Fig. 1), precluding 
cluster-based CCC approaches from detecting communication modali-
ties unique to exhausted T cells without a priori knowledge. We tested 
Scriabin’s utility in exposing the heterogeneity of the T cell communica-
tive phenotype by applying the CCIM workflow to pairs of T cells and 
CD1C+ dendritic cells (DCs), the most abundant antigen-presenting cell 
(APC) in this dataset. This revealed both a clear distinction between 
communication profiles between tumor and matched normal as well 

efficient method for CCC analysis. Scriabin dissects complex com-
municative pathways at single-cell resolution by combining curated 
ligand–receptor interaction databases13,18,19, models of downstream 
intracellular signaling20, anchor-based dataset integration21 and gene 
network analysis22 to recover biologically meaningful CCC edges at 
single-cell resolution.

Results
A flexible framework for CCC analysis at single-cell resolution
Our goal is to develop a scalable and statistically robust method for 
the comprehensive analysis of CCC from scRNA-seq data. Scriabin 
implements three separate workflows depending on dataset size and 
analytical goals (Fig. 1): (1) the cell–cell interaction matrix (CCIM) 
workflow, optimal for smaller datasets, analyzes communication for 
each cell–cell pair in the dataset; (2) the summarized interaction graph 
workflow, designed for large comparative analyses, identifies cell–cell 
pairs with different total communicative potential between samples; 
and (3) the interaction program discovery workflow, suitable for any 
dataset size, finds modules of co-expressed ligand–receptor pairs.

The fundamental unit of CCC is a sender cell Ni expressing ligands 
that are received by their cognate receptors expressed by a receiver 
cell Nj. Scriabin encodes this information in a CCIM M by calculating 
the geometric mean of expression of each ligand–receptor pair by 
each pair of cells in a dataset (Fig. 1a). Scriabin currently supports the 
use of 15 different protein–protein interaction databases for defin-
ing potential ligand–receptor interactions and by default uses the 
OmniPath database, as this database contains robust annotation of 
gene category, mechanism and literature support for each potential 
interaction18,19. As ligand–receptor interactions are directional, Scriabin 
considers each cell separately as a ‘sender’ (ligand expression) and as 
a ‘receiver’ (receptor expression), thereby preserving the directed 
nature of the CCC network. M can be treated analogously to a gene 
expression matrix and used for dimensionality reduction, clustering 
and differential analyses.

Next, Scriabin identifies biologically meaningful edges, which we 
define as ligand–receptor pairs that are predicted to affect observed 
gene expression profiles in the receiving cell (Fig. 1). This requires 
defining a gene signature for each cell that reflects its relative gene 
expression patterns and determining which ligands are most likely to 
drive that observed signature. First, variable genes are identified to 
immediately focus the analysis on features that distinguish samples of 
relevance or salient dynamics. When analyzing a single dataset, this set 
of genes could be the most highly variable genes (HVGs) in the dataset, 
which would likely reflect cell-type-specific or state-specific modes 
of gene expression. Alternatively, when analyzing multiple datasets, 
the genes that are most variable between conditions (or timepoints) 
could be used. To define the relationship between the selected vari-
able genes and each cell, the single cells and chosen variable genes 
are placed into a shared low-dimensional space with multiple cor-
respondence analysis (MCA), a weighted generalization of principal 
component analysis (PCA) that applies to count data, implemented by 
Cell-ID23. A cell’s gene signature is defined as the set of genes in clos-
est proximity to the variable genes in the MCA embedding (Methods 
and Supplementary Text). An implementation of NicheNet20 is then 
used to nominate the ligands that are most likely to result in each cell’s 
observed gene signature. Ligand–receptor pairs that are recovered 
from this process are used to weight the CCIM M proportionally to 
their predicted activity, highlighting the most biologically important 
interactions (Fig. 1).

Because one dimension of M is N × N cells long, it is impractical 
to construct M for samples with high cell numbers; this problem will 
likely be exacerbated as scRNA-seq platforms continue to increase in 
throughput. Conceptually, solutions to this problem include subsam-
pling and aggregation. Subsampling, however, is statistically inadmissi-
ble because it involves omission of available valid data and introduction 

http://www.nature.com/naturebiotechnology


Nature Biotechnology | Volume 42 | March 2024 | 470–483 472

Article https://doi.org/10.1038/s41587-023-01782-z

Cell–cell interaction matrix

Weight by biologically
active ligands

Generate summarized
interaction graph

Bin 1 Bin 2 Bin 3

Multi-dataset binning

Identify cells in
variable bins

Iteratively
approximate ligand–

receptor pair TOM

Identify co-expressed
interaction programs

Score single cells for
module expression

Maximize connectivity within bin
Maximize sample representation within bin

C
orrelation

a

scRNA-seq dataset + ligand–receptor database

Generate cell–cell
interaction matrix

Cell–cell interaction
matrix workflow

Summarized interaction
graph workflow

Interaction program
discovery workflow

Dimensionality
reduction, clustering

and di�erential
expression analysis

Ligand rank

N
um

be
r o

f m
en

tio
ns

Output: processed object of
sender–receiver cell–cell pairs

Output: sender–receiver pairs
with di�erent communication
magnitude between samples

Output: List of co-expressed
ligand–receptor pair
interaction programs

IP1 IP2 IP3 IP4 IP5 IP6

b c d

N1

P1

P2

P3

Pn

N2 N1 N3 N2 N4

L1 *
N1 R1

N2√
L2 *

N1 R2
N2√

L3 *
N1 R3

N2√

L1 *
N1 R1

N3√
L2 *

N1 R2
N3√

L3 *
N1 R3

N3√

Ln *
N1 Rn

N3√Ln *
N1 Rn

N2√

L1 *
N2 R1

N4√

L2 *
N2 R2

N4√

L3 *
N2 R3

N4√

Ln *
N2 Rn

N4√

Ln *
N1 Rn

N2√∑

Ln *
N2 Rn

N2√∑

Ln *
N1 Rn

N3√∑

Ln *
N2 Rn

N3√∑

Ln *
N1 Rn

N4√∑

Ln *
N2 Rn

N4√∑

Se
nd

er
s

Receivers

APOE

IL33

TNF

IFNG

Fig. 1 | Schematic overview of cell-resolved communication analysis with 
Scriabin. Scriabin consists of multiple analysis workflows depending on 
dataset size and the user’s analysis goals. a, At the center of these workflows is 
the calculation of the CCIM M, which represents all ligand–receptor expression 
scores for each pair of cells. b, CCIM workflow. In small datasets, M can be 
calculated directly, active CCC edges predicted using NicheNet20 and the 
weighted cell–cell interaction matrix used for downstream analysis tasks, such as 
dimensionality reduction. M is a matrix of N × N cells by P ligand–receptor pairs, 
where each unique cognate ligand–receptor combination constitutes a unique P.  

c, Summarized interaction graph workflow. In large comparative analyses, a 
summarized interaction graph S can be calculated in lieu of a full dataset M. After 
high-resolution dataset alignment through binning, the most highly variable 
bins in total communicative potential can be used to construct an intelligently 
subsetted M. d, Interaction program (IP) discovery workflow. IPs of co-expressed 
ligand–receptor pairs can be discovered through iterative approximation of the 
ligand–receptor pair TOM. Single cells can be scored for the expression of each 
IP, followed by differential expression and modularity analyses.

http://www.nature.com/naturebiotechnology


Nature Biotechnology | Volume 42 | March 2024 | 470–483 473

Article https://doi.org/10.1038/s41587-023-01782-z

as distinct populations of cell–cell pairs with exhausted T cells (Fig. 2b). 
Compared to their non-exhausted counterparts, exhausted T cells com-
municated with CD1C+ DCs predominantly with exhaustion-associated 
markers CTLA4 and TIGIT and lost communication pathways involving 
pro-inflammatory chemokines, such as CCL4 and CCL5 (Fig. 2c)30. This 
illustrates the communicative heterogeneity that can be missed by 
agglomerative techniques.

Scriabin is robust and efficient for single-cell CCC analysis
One potential concern of performing single-cell-resolution CCC analy-
sis is that scRNA-seq measurements are inherently sparse and noisy. 
Aggregative techniques, although frequently obscuring biological 
heterogeneity, do carry the advantage of using less sparse and, there-
fore, more robust expression values. Additionally, using single-cell 
resolution versus aggregated pseudobulk measurements for CCC 
analysis is not a binary option but, rather, the ends of an entire spec-
trum of resolution. Probabilistic denoising techniques for scRNA-seq 
data31,32 use information from transcriptionally similar cells to smooth 
noise created by putative technical zeroes and represent a mild form of 
aggregation by smoothing measured expression values. Furthermore, 
cluster-based agglomerative CCC techniques can operate at a wide 
range of potential clustering resolutions. We sought to quantitatively 
examine the impact of technical noise on single-cell-resolution CCC 
analysis and identify if there is an optimal degree of aggregation that 
avoids issues with data sparsity without agglomerating over distinct 
communication phenotypes.

To do this, we simulated technical noise by randomly downsam-
pling a deeply sequenced scRNA-seq dataset (Fig. 2d). We used as 
ground truth (GT) three datasets generated by the Fluidigm C1 or 
Smart-Seq2 platforms8,13,21,33, which profile cells approximately one to 
two orders of magnitude more deeply than droplet-based methods. We 
then randomly downsampled these datasets to the sequencing depth 
of inDrop, between two-fold and 270-fold depending on the sequenc-
ing depth of the original dataset (Fig. 2e, right)34,35. We performed 
Scriabin’s CCIM workflow directly on the downsampled datasets, on the 
downsampled datasets denoised by adaptively thresholded low-rank 
approximation (ALRA)32, on datasets created by aggregating cells over 
similarity neighborhoods of nine different sizes or on pseudobulk 
expression values from clustering at four different resolutions. Next, 
we integrated the CCIM generated from the GT datasets with the CCIMs 
generated from the randomly downsampled datasets. To quantify 
the degree to which the CCIMs from the downsampled datasets reca-
pitulated the GT CCIMs, we calculated the local inverse Simpson’s 
index (LISI; Fig. 2d)36. This value defines the number of datasets in the 
neighborhood of each GT cell–cell pair and ranges between 1, denot-
ing that only GT cell–cell pairs are present in the neighborhood, and 
2, denoting an equal mixture of GT and downsampled cell–cell pairs.

We found that CCIMs generated either from raw downsampled 
data or from ALRA-denoised data best recapitulated GT data (Fig. 2e). 
Downsampling introduced technical noise only for the most highly 
downsampled dataset, but this technical noise was almost completely 
rescued via data denoising. When defining each cell’s transcriptome as 
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Fig. 2 | Benchmarking and robustness analysis of cell-resolved 
communication analysis. a, UMAP projections of 1,624 intratumoral T cells 
from the SCC dataset from Ji et al.29, colored by cluster identity (top left), sample 
of origin (tumor or matched normal; bottom left) and T cell exhaustion score 
(middle) (Methods). The dot plot at right depicts the percent and average 
expression of the T cell exhaustion score in each cluster. b, UMAP projections of 
202,708 T cell–CD1C+ DC cell–cell pairs from Scriabin’s CCIM workflow. Points 
are colored by sample of origin (left) and the T cell exhaustion score of the T 
cell in the cell–cell pair (right). c, Bar plot depicting differentially expressed 
ligand–receptor pairs among T cell–CD1C+ DC cell–cell pairs between exhausted 
and non-exhausted T cell senders. Individual bars are colored by the power from 

Seurat’s implementation of a ROC-based differential expression (DE) test.  
d, Schematic illustrating the workflow to evaluate the impact of technical noise 
on the robustness of cell–cell communication analyses with Scriabin. e, Left: box 
plot depicting the ability of downsampled CCIMs to recapitulate the GT CCIM. 
The y axis depicts the proportion of GT cell–cell pairs that are recapitulated by a 
query cell–cell pair (LISI score >1), and points are colored by the mean LISI score 
for GT cell–cell pairs. Each experimental condition was repeated on 12 different 
random subsamples of 300 cells from three independent datasets. Right: bar plot 
depicting the degree of downsampling required for each dataset to reach inDrop 
coverage.
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the mean transcriptome of that cell and its k-nearest neighbors, increas-
ing k worsened the recapitulation of the GT dataset. ALRA-denoised 
data outperformed all nine k tested. Furthermore, at all cluster resolu-
tions tested, at least 50% of GT CCC states are not captured by using 
pseudobulk expression values. These data indicate that agglomeration 
at nearly any level results in loss of unique CCC states. Additionally, 
in datasets from platforms with a high degree of sparsity, denoising 
methods may represent an optimal degree of data smoothing that 
decreases the impacts of technical noise while preserving data struc-
ture and heterogeneity.

We next explored Scriabin’s performance in comparison to other 
published CCC methods. Scriabin was faster than five agglomerative 
CCC methods15–17,37,38 in analyzing a single dataset at all the dataset 
sizes tested (Extended Data Fig. 2a). Of these five agglomerative CCC 
methods, only Connectome38 supports a full comparative workflow 
and was slower than Scriabin in a comparative CCC analysis of two 
datasets (Extended Data Fig. 2b). We also compared the top CCC edges 
predicted by these methods39 to a pseudobulk version of Scriabin. 
Applying these methods to four scRNA-seq datasets, we found that 
the top results returned by Scriabin overlapped with three of the five 
published methods analyzed (Connectome, CellChat and NATMI; 
Extended Data Fig. 2c). The remaining two methods (iTALK and SCA) 
did not have overlapping results with each other or any of the other 
tested methods for any of the datasets tested (Extended Data Fig. 2c).

Although the pseudobulk version of Scriabin’s results agreed 
with several published methods, we also sought to demonstrate more 
directly that these results were biologically correct. We hypothesized 
that spatial transcriptomic datasets could be leveraged for this pur-
pose, as cells that Scriabin predicts to be highly interacting should 
be, on average, in closer proximity. We ran Scriabin on 11 spatial tran-
scriptomic datasets, removing secreted ligand–receptor interactions 
that could operate over a distance from the ligand–receptor database 
(Fig. 3a). Cells that Scriabin predicted were the most highly interacting 
were in significantly closer proximity relative to randomly permuted 
distances (Fig. 3b and Extended Data Fig. 2d,e), indicating that Scriabin 
can detect spatial features from dissociated data alone.

We next hypothesized that we could leverage a single-cell- 
resolution pooled genetic perturbation screen to validate Scriabin’s 
ability to identify biologically relevant shifts in cellular communica-
tion phenotypes. In an analysis of a CRISPRa Perturb-seq screen of 
activated human T cells that included guide RNAs (gRNAs) targeting 
15 different cell surface ligands or receptors40, we found that Scriabin 
could accurately predict the gRNA with which a cell was transduced 
by analyzing cellular CCC profiles (average area under the curve  
(AUC): 0.93; Fig. 3c).

To provide direct experimental evidence of Scriabin’s ability to 
detect changes in CCC, we devised an experiment where we trans-
fected isolated natural killer (NK) cells with mRNA encoding CD40L 
and isolated B cells with mRNA encoding its cognate receptor CD40 
(Supplementary Text and Fig. 3d). After co-culture of the transfected 
cells, we performed scRNA-seq to assess how the forced expression of 
exogenous CD40 or CD40L impacted CCC. As NK cells do not normally 
express CD40L, but B cells can express low levels of CD40 at base-
line (Extended Data Fig. 3), we hypothesized that we would observe 
enhanced communication along the CD40L–CD40 edge only when 
CD40LG was transfected and that this would be enhanced when both 
CD40LG and CD40 were transfected. Using Scriabin’s CCIM workflow, 
we found that the CD40LG–CD40 communication edge was the only 
ligand–receptor pair that was substantially changed in the transfected 
conditions (Fig. 3e). This difference was enhanced by incorporating 
ligand activity weighting into construction of the CCIM (Fig. 3e). In 
line with our predictions, we also found that communication along 
the CD40LG–CD40 axis was strongest when NK cells were trans-
fected with CD40LG and further increased by transfecting B cells with  
CD40 (Fig. 3f).

Although the aggregative method Connectome38 returned 
CD40LG–CD40 as a differential communication edge, it also returned 
25 other ligand–receptor pairs as statistically significant (Extended 
Data Fig. 4). These additional unexpected differential results  
appeared to be driven by small shifts in expression of very lowly 
expressed ligands and receptors (Extended Data Fig. 4). We also used 
NicheNet alone to identify differentially active ligands between the 
transfected and untransfected conditions. Although CD40L was 
returned among the top 20 predicted active ligands, NicheNet pre-
dicted that FASLG and PTPRC were more differentially active despite 
there being little appreciable difference in the expression of these 
ligands (Extended Data Fig. 4). This underlines the utility of using 
information on both relative ligand and receptor expression as well 
as downstream gene expression changes in performing comparative 
CCC analyses.

Finally, we used Scriabin’s summarized interaction graph workflow 
to bin cells from the four transfection conditions and found a signifi-
cant correlation between the bin perturbation score and the degree 
to which the cells in each bin were transfected (Fig. 3g), demonstrat-
ing the utility of this workflow in identifying single cells that have the 
highest degree of communicative perturbation. This correlation was 
completely abrogated when binning was performed on data structures 
not related to transfection, such as proximity in a reference neighbor 
graph (Fig. 3h). These data provide empirical evidence that Scriabin 
accurately identifies meaningful changes in CCC.

Scriabin reveals known CCC concealed by aggregative methods
We further evaluated if Scriabin’s single-cell-resolution CCC results 
returned communicating edges that are obscured by agglomerative 
CCC methods. To this end, we analyzed a publicly available dataset 
of a well-characterized tissue niche: the granulomatous response to 
Mycobacterium leprae infection (Fig. 4a). Granulomas are histologi-
cally characterized by infected macrophages and other myeloid cells 
surrounded by a ring of Th1 T cells41–43. These T cells produce inter-
feron (IFN)-γ that is sensed by myeloid cells; this communication edge 
between T cells and myeloid cells is widely regarded as the most impor-
tant interaction in controlling mycobacterial spread44–46. Ma et al.41 
performed scRNA-seq on skin granulomas from patients infected with 
Mycobacterium leprae, the causative agent of leprosy. This dataset 
includes granulomas from five patients with disseminated lepromatous 
leprosy (LL) and four patients undergoing a reversal reaction (RR) to 
tuberculoid leprosy, which is characterized by more limited disease 
and a lower pathogen burden (Fig. 4a). Analysis of CCC with Scriabin 
revealed IFNG as the most important ligand sensed by myeloid cells in 
all analyzed granulomas, matching biological expectations (Fig. 4b). 
Baseline NicheNet also returned IFNG as the most differentially active 
ligand in RR granulomas, although with a lesser degree of specificity 
than Scriabin (Extended Data Fig. 5).

To assess if Scriabin was capable of avoiding pitfalls associated 
with agglomerative methods in comparative CCC analyses, we ana-
lyzed differential CCC pathways from T cells to myeloid cells between 
LL and RR granulomas using an agglomerative method (Connectome, 
which implements a full comparative workflow38) and Scriabin. We first 
assessed if it would be possible to analyze higher levels of granularity 
by using author-provided subclustering annotations. However, as 
Connectome performs differential CCC analyses by aggregating data 
at the level of cell type or cluster, this requires that each subcluster 
have representatives from the conditions being compared. In the  
Ma et al.41 dataset, satisfying this condition meant decreasing cluster-
ing resolution from 1 to 0.1 so that all subclusters are present in all 
profiled granulomas and comparing all aggregated LL granulomas to 
all aggregated RR granulomas (Extended Data Fig. 5). This requirement 
moves analysis further from single-cell resolution, and we, therefore, 
elected to use author-annotated T cells and myeloid cells for analysis 
without subclustering.
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Comparative CCC analysis with Connectome revealed IL1B and 
CCL21 as the two most upregulated T-cell-expressed ligands received 
by myeloid cells in RR granulomas (Fig. 4c). However, there was no 
clear evidence of IL1B upregulation among RR granulomas (Fig. 4d); 

rather, the RR granuloma that contributed the most T cells expressed 
the highest level of IL1B, and the LL granuloma that contributed the 
most T cells expressed the lowest level of IL1B (Fig. 4d). Addition-
ally, CCL21 was expressed by T cells of a single RR granuloma, and 
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Fig. 3 | Scriabin accurately recovers expected CCC edges. a, Left: description 
of workflow to validate Scriabin using spatial transcriptomic datasets; right: 
density plots showing the distribution of cell–cell distances within the top 1% of 
highly interacting cell–cell pairs predicted by Scriabin. The vertical black lines 
denote the median distance of all cell–cell pairs. b, The procedure depicted in a 
was repeated for 11 biologically independent datasets, and the median distance 
quantile of the top 1% interacting cell–cell pairs was calculated using real cell 
distances relative to randomly permuted cell distances. Shown is an exact two-
sided P value from the Wilcoxon rank-sum test. c, ROC plots depicting Scriabin’s 
ability to correctly predict the gRNA with which a single cell was transduced 
based on its communicative profile. Each of the n = 15 lines represents a different 
gene target by gRNAs in a CRISPRa dataset of stimulated T cells40. d, Experimental 
scheme to validate Scriabin through transfection of exogenous CCC edges. In 
total, 21,538 cells from NK cell–B cell co-cultures were profiled by scRNA-seq. 
Specific sample sizes for the four transfection conditions are as follows: 4,934 
(GFP–GFP), 5,665 (GFP–CD40), 4,908 (CD40L–GFP) and 6,031 (CD40L–CD40).  

e, CCIMs were generated by Scriabin for each co-culture condition with or 
without ligand activity ranking. The bar plot depicts the top differentially 
expressed ligand–receptor pairs between cell–cell pairs from control (GFP/GFP) 
versus transfected (CD40L/CD40) samples. f, Box plot depicting CD40LG–CD40 
cell–cell pair interaction scores in each co-culture condition. The CD40LG–
CD40 interaction score is derived from CCIMs generated with ligand activity 
ranking. The interaction scores are calculated from the sample sizes for each 
condition noted in Fig. 3d. g, Scatter plot depicting the relationship between the 
CD40LG–CD40 interaction score and the CCC perturbation Dunn z-test statistic 
for each of 311 bin–bin pairs (Methods). Pearson correlation coefficient, exact 
two-sided P value and a 95% confidence interval are shown. h, Bar plot depicting 
the Pearson correlation coefficient between bin perturbation and CD40LG–CD40 
interaction score using a full-transcriptome SNN graph for binning compared to 
a reference-based weighted SNN (WSNN) that does not contain structure related 
to transfection.
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the myeloid cells of a different RR granuloma expressed the high-
est levels of the CCL21 receptor CCR7 and three CCL21 target genes  
(Fig. 4e). This indicates that the most highly scored differential CCC 
edges may be due to agglomeration of RR and LL granulomas required 
by Connectome (Extended Data Fig. 5) rather than conserved biological 
changes between these two groups.

To compare differential CCC between LL and RR granulomas with 
Scriabin, we aligned data from the nine granulomas together using 
Scriabin’s binning procedure (Fig. 1); generated single-cell summarized 
interaction graphs for each granuloma; and calculated a t-statistic to 
quantify the difference in interaction for each pair of bins between LL 
and RR granulomas (Fig. 4f). This analysis revealed a group of T cell and 
myeloid bins whose interaction was strongly increased in RR granulo-
mas relative to LL (Fig. 4f, black box). We visualized the cells in these 
perturbed bins by generating cell–cell interaction matrices for these 
cells in each sample and embedding them in shared low-dimensional 
space (Fig. 4g). The T cells in these bins were defined by expression of 
CRTAM, a marker of cytotoxic CD4 T cells, and upregulated IFNG in the 
RR granulomas (Fig. 4h). These perturbed T cells were enriched in ‘RR 
CTL’ and ‘amCTL’ subclusters described by Ma et al.41 that correspond 
to IFNG-expressing cytotoxic T cells (Extended Data Fig. 5). Perturbed 
myeloid cells were enriched in transitional macrophage and type I 
IFNhigh macrophage subclusters (Extended Data Fig. 5). Myeloid cells 
in these bins upregulated several pro-inflammatory cytokines in RR 
granulomas, including IL1B, CCL3 and TNF, in response to IFNG from 
this T cell subset (Fig. 4i). IFNG-responsive IL1B and TNF were also pre-
dicted to be RR-specific ligands received by myeloid cells, fibroblasts 
and endothelial cells in RR granulomas (Fig. 4j). Collectively, Scriabin 
identified a subset of CRTAM+ T cells that upregulated IFNG in RR granu-
lomas that is predicted to act on myeloid cells to upregulate additional 
pro-inflammatory cytokines. These CCC results match previous results 
demonstrating that enhanced production of IFNG can drive RRs47,48 and 
implicate cytotoxic CD4 T cells as initiators of this reaction.

Scalable discovery of co-expressed interaction programs
We next assessed Scriabin’s interaction program discovery workflow. 
To illustrate the scalability of this process, we chose to analyze a large 
single-cell atlas of developing fetal gut49 composed of 76,592 cells 
sampled from four anatomical locations (Fig. 5a). Scriabin discovered 
a total of 75 significantly correlated interaction programs across all 
anatomical locations. Scoring all single cells on the expression of the 
ligands and receptors in these interaction programs revealed strong 
cell-type-specific expression patterns for many programs (Fig. 5b) as 
well as subtle within-cell-type differences in sender or receiver poten-
tial, highlighting the importance of maintaining single-cell resolution 
(Extended Data Fig. 6 and Supplementary Text).

We next examined ways in which our identified interaction pro-
grams reflected known biological networks of intestinal development. 

Recently, several important interactions were shown to be critical 
in maintaining the intestinal stem cell (ISC) niche50–52. We were able 
to identify ISCs, defined by expression of LGR5 and SOX9, within the 
intestinal epithelial cells of this dataset, and we discovered a single 
interaction program (hereafter referred to as IP1) whose receptors 
were co-expressed with these ISC markers (Fig. 5c). IP1 represents 
a program of fibroblast-specific ligand and intestinal epithelial cell 
receptor expression (Fig. 5d). Among IP1 ligands were the ephrins 
EPHB3, whose expression gradient is known to control ISC differentia-
tion53, and RSPO3 (Fig. 5e). Two recent studies each reported that RSPO3 
production by lymphatic endothelial cells (LECs) and GREM1+ fibro-
blasts is critical for maintaining the ISC niche in mice51,52. In this human 
dataset, we did not observe expression of RSPO3 in LECs (Extended 
Data Fig. 6), and, although Fawkner-Corbett et al.49 identified RSPO3 
as a potential communication ligand for ISCs, they did not examine the 
precise source of this ligand. In our application of Scriabin’s interac-
tion program workflow, we found that GREM1+ fibroblasts expressed 
RSPO3 as a part of IP1 that was predicted to be sensed primarily by ISCs, 
thus demonstrating that this interaction pathway may communicate 
between different cell types in mouse than in human (Fig. 5d–f). We also 
found a separate interaction program containing the ligand GREM1; the 
ligands of this interaction program were co-expressed with IP1 ligands 
(Fig. 5f) and predicted to communicate to a different receiver cell type, 
namely gut endothelial cells (Fig. 5g).

Despite the absence of RSPO3 expression in LECs, it remains pos-
sible that LECs maintain the ISC niche in human intestinal develop-
ment, particularly as these cells can reside in close spatial proximity 
to ISCs51,52. Although Fawkner-Corbett et al.49 included several CCC 
analyses on endothelial cells, these analyses were performed on aggre-
gated endothelial cells and not specifically on LECs. We were able 
to identify a small population of LECs (Fig. 5h) and used Scriabin’s 
single-cell-resolution ligand activity ranking workflow to examine 
communication between LECs and ISCs. We found that two LEC-specific 
markers, CCL21 and NTS, were predicted to be active ligands for ISCs 
(Fig. 5i). CCL21 and NTS were both predicted to result in upregulation 
of target genes that notably included MYC and ID1 (Fig. 5j), which are 
known to participate in intestinal crypt formation and ISC mainte-
nance54,55. None of these ligand–receptor CCC edges was returned by 
an agglomerative CCC analysis by Connectome (Extended Data Fig. 6). 
Our results suggest that, unlike in mice, in humans, LECs may contrib-
ute to ISC maintenance through production of CCL21 and NTS. Taken 
together, our results demonstrate the utility of interaction programs 
both in identifying known CCC edges and in providing new biological 
insights.

Assembly of longitudinal communicative circuits
A frequent analytical question in longitudinal analyses concerns how 
events at one timepoint influence cellular phenotype in the following 

Fig. 4 | Scriabin reveals communicative pathways obscured by agglomerative 
techniques. a, Schematic of the scRNA-seq dataset of leprosy granulomas 
published by Ma et al.41. Sample sizes for each profiled granuloma are shown 
in Supplementary Table 1. b, Ligands prioritized by Scriabin’s implementation 
of NicheNet as predicting target gene signatures in granuloma myeloid cells. 
Points are colored and sized by the number of granulomas in which the ligand is 
predicted to result in the downstream gene signature. c, Circos plot summarizing 
RR versus LL differential CCC edges between T cells (senders) and myeloid 
cells (receivers) generated by Connectome. Blue: edges upregulated in RR; red: 
edges upregulated in LL. The two black arrows mark T-cell-expressed ligands 
IL1B and CCL21, which are further analyzed in d and e. d, Percentage and average 
of expression of IL1B by T cells per granuloma (left) and total number of T cells 
per granuloma (right). e, Percentage and average expression of CCL21 by T cells 
per granuloma (left); percentage and average expression of CCR7- and CCL21-
stimulated genes by myeloid cells per granuloma. f, RR versus LL differential 
interaction heat map between T cell bins (senders; rows) and myeloid cell bins 

(receivers; columns) generated by Scriabin, colored by the t-statistic between the 
mean summarized interaction scores of n = 4 RR granulomas relative to n = 5 LL 
granulomas. In blue are the bins more highly interacting in RR; in red are the bins 
more highly interacting in LL. The black box indicates groups of bins predicted 
to be highly interacting in RR granulomas relative to LL. g, UMAP projection of 
74,437 perturbed T cell–myeloid cell sender–receiver pairs indicating changes 
in ligand–receptor pairs used for T cell–myeloid communication in LL versus RR 
granulomas. h, Scatter plot depicting differential gene expression by T cells.  
The average log(fold change) of expression by cluster 2 bins is plotted on the  
x axis; the average log(fold change) of expression by RR granulomas is plotted on 
the y axis. i, Target genes predicted to be upregulated by IFNG in RR granuloma 
myeloid cells in cluster 2 bins. Points are sized and colored by the number of 
cells in which the target gene is predicted to be IFNG responsive. j, Alluvial 
plot depicting the RR granuloma cell types that are predicted to receive the 
IFNG-responsive target genes from cluster 2 myeloid cells. DEG, differentially 
expressed gene.
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timepoint56,57. We hypothesized, in datasets with close spacing between 
timepoints, that Scriabin’s high-resolution bin identities would allow us 
to assemble ‘longitudinal communicative circuits’—chains of sender–
receiver pairs across consecutive timepoints. A communicative circuit 
consists of at least four cells across at least two timepoints: sender 

cell at timepoint 1 (S1), receiver cell at timepoint 1 (R1), sender cell at 
timepoint 2 (S2) and receiver cell at timepoint 2 (R2). If the interaction 
between S1 and R1 is predicted to result in the upregulation of ligand LA 
by R1, S1–R1–S2–R2 participates in a longitudinal circuit if R1 and S2 share 
the same bin (that is, S2 represents the counterpart of R1 at timepoint 2)  
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and if LA is predicted to be an active ligand in the S2–R2 interaction  
(Fig. 6a). This process enables the stitching together of multiple sequen-
tial timepoints to identify communicative edges that are downstream 
in time and mechanism.

To illustrate this process, we analyzed a published dataset of severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in 
human bronchial epithelial cells (HBECs) in air–liquid interface (ALI) 
that was sampled daily for 3 d58. This dataset contains all canonical 
epithelial cell types of the human airway and indicates that ciliated 
and club cells are the preferentially infected cell types in this model 
system, with some cells having more than 50% of unique molecular 
identifiers (UMIs) from SARS-CoV-2 (Extended Data Fig. 7). We first 
defined a per-cell gene signature of genes variable across time and 
used this gene signature to predict active ligands expected to result 
in the observed cellular gene signatures20,23. Next, we used Scriabin’s 
high-resolution binning workflow to align the datasets from the three 
post-infection timepoints, which we then used to assemble longitudinal 
communicative circuits.

Scriabin identified circuits at the level of individual cells that 
spanned all three post-infection timepoints. We summarized these 
circuits by author-annotated cell type and whether SARS-CoV-2 
reads were detected in the cell (Fig. 6b). Interestingly, we found that 
uninfected cells were more frequently the initiators of longitudinal 
circuits operating over all three timepoints (Fig. 6b). The most fre-
quent circuit-initiating ligand was IL1B produced by basal, ciliated 
and club cells; in these cell types at 1 day post-infection (dpi), IL1B was 
more strongly expressed in bystander cells relative to infected cells  
(Fig. 6c). Uninfected basal cells at 1 dpi displayed the highest expression 
of IL1B (Fig. 6c), and these IL1B+ cells were also characterized by higher 
expression of other pro-inflammatory cytokines, including CCL20 and 
CXCL8 (Fig. 6d). Among the other ligands active at 1 dpi, acute phase 
reactant-encoding genes, including SAA1 and CTGF59,60, were strongly 
upregulated at 1 dpi relative to the mock condition and were both more 
highly expressed by uninfected cells (Fig. 6e); these genes are known to 
be induced in the setting of SARS-CoV-2 infection and are hypothesized 
to be involved in downstream tissue remodeling processes61. Thus, the 
unique ability of Scribain to elucidate longitudinal signaling circuits 
between cells implicates the activity of uninfected bystander cells as 
potentially important mediators of downstream responses to infection. 
This may reflect described processes in other viral infections where 
non-productively infected cells may be key drivers of downstream 
inflammatory activity62–64.

When we assessed the predicted downstream targets at the ends 
of the longitudinal circuits in both infected and bystander cells, we 
found that TGFB1 produced by infected basal cells was predicted 
to result in the upregulation of TNFSF10 (encoding TRAIL) and the 
alarmin S100A8 predominantly by other infected cells (Fig. 6b,f). 
Additionally, TGFB1 was predicted to upregulate both NOTCH1 and the 
NOTCH1 ligand JAG1, which indicates that these circuits may induce 
downstream Notch signaling. In sum, these data illustrate how the 
single-cell resolution of Scriabin’s CCC analysis workflow can per-
form integrated longitudinal analyses, nominating hypotheses for 
experimental validation.

Discussion
Most existing CCC methodologies aggregate ligand and receptor 
expression values at the level of the cell type or cluster, potentially 
obscuring biologically valuable information. Here we introduce a 
framework to perform comparative analyses of CCC at the level of 
the individual cell. Scriabin maximally leverages the single-cell resolu-
tion of the data to maintain the full structure of both communicative 
heterogeneity and specificity. We used this framework to find rare 
communication pathways in the developing intestine known to be 
required for stem cell maintenance as well as to define the kinetics 
of early dynamic communication events in response to SARS-CoV-2 
infection through assembly of longitudinal communicative circuits.

A major challenge of single-cell-resolved CCC analysis is data 
inflation: because CCC analysis fundamentally involves performing 
pairwise calculations on cells or cell groups, it is frequently computa-
tionally prohibitive to analyze every sender–receiver cell pair. Some 
existing tools, such as NICHES65, support single-cell resolution CCC 
analysis but involve subsampling strategies when applied at scale. 
Scriabin implements two complementary workflows to address the 
issue of data inflation while avoiding subsampling and aggregation. 
Subsampling and aggregation preclude a truly comprehensive view 
of CCC structure and risk obscuring important biology; either can 
be particularly problematic in situations where a small subset of cells 
disproportionately drives intercellular communication, with agglom-
eration potentially concealing the full activity of those cells and sub-
sampling potentially removing those cells altogether. One biological 
situation in which the preservation of single-cell-resolution data could 
be particularly important is in the setting of activation-induced T cell 
exhaustion66. Although exhausted T cells exert divergent effects on 
their communication targets relative to their activated counterparts, 
we show that exhausted T cells can often be difficult to distinguish from 
activated cells by clustering or subclustering. By avoiding aggregation 
and subsampling, Scriabin increases the likelihood of detecting these 
potentially meaningful differences in CCC pathways.

We observe that aggregation obscures potentially biologically 
meaningful subsets of T cells in SCC as well as in RRs in leprosy granu-
lomas. Owing to the degree of transcriptional perturbation in T cells 
during RRs, subclustering is not always a tenable approach to increas-
ing the resolution of CCC analyses because it, in turn, can preclude 
analysis at a per-sample level. We also show that aggregating across 
samples, which is a common practice in existing CCC tools, can return 
putatively differential CCC edges that are driven disproportionately 
by individual samples, potentially leading to inaccurate conclusions 
that are not generalizable.

As the throughput of scRNA-seq workflows continues to increase, 
it will be important that single-cell-resolution CCC methods are scal-
able to any dataset size. We introduce two complementary workflows 
to address this challenge. First, for large comparative analyses, the sum-
marized interaction graph workflow saves computational resources by 
summarizing the total magnitude of communication between cell–cell 
pairs, and a dataset alignment strategy called ‘binning’ enables iden-
tification of cells of the greatest biological interest between samples. 
We provide empirical evidence that this strategy identifies subspaces 

Fig. 5 | Cell–cell interaction programs of the developing fetal gut. a, UMAP 
projections of the dataset of Fawkner-Corbett et al.49 with 76,592 individual 
cells colored by author-provided cell type annotations (left) or by anatomical 
sampling location (right). b, Heat map depicting average expression of 
interaction program (IP) ligands (left) or IP receptors (right) by each cell type.  
c, UMAP projections of 25,969 intestinal epithelial cells, colored by expression of 
stem cell markers LGR5 and SOX9 as well as by the receptor expression score for 
IP1. d, UMAP projection of all cells colored by ligand (shades of blue) or receptor 
(shades of red) expression of IP1. e, Intramodular connectivity scores for each 
ligand–receptor pair in each anatomical location for IP1. The black arrows mark 
ligand–receptor pairs that include RSPO3. f, Heat map of two-dimensional bin 

counts depicting the correlation between IP1 sender score and the sender score 
for the IP module that contains the ligand GREM1. Shown are Pearson r and a 
two-sided P value. g, UMAP projection of all cells colored by ligand (shades of 
blue) or receptor (shades of red) expression of the GREM1 IP. h, UMAP projections 
of 4,447 gut endothelial cells colored by expression of LEC markers LYVE1 (top) 
and PROX1 (bottom). i, Bar plot depicting predicted active ligands for intestinal 
epithelial cells and correlation of predicted ligand activity with expression of 
ISC markers LGR5 and SOX9. Bars are colored by the average log(fold change) in 
expression of each ligand by LECs relative to other gut endothelial cells. j, Alluvial 
plot depicting target genes predicted to be upregulated in ISCs in response to 
CCL21 and NTS.

http://www.nature.com/naturebiotechnology


Nature Biotechnology | Volume 42 | March 2024 | 470–483 479

Article https://doi.org/10.1038/s41587-023-01782-z

with the greatest degree of communication perturbation. However, 
this approach is not robust to situations where ligand–receptor pair 
mechanisms of CCC change between cell–cell pairs without changing 
the overall magnitude of CCC.

As an alternative, we also introduce a second single-cell-resolution 
CCC workflow that is scalable to datasets of any size. The interaction 
program discovery workflow of Scriabin accomplishes this by focusing 
first on common patterns of ligand–receptor pair co-expression rather 
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than individual cell–cell pairs. Individual cells can be scored for expres-
sion of these interaction programs post hoc, enabling downstream 
comparative analyses with a comprehensive view of CCC structure. 
We apply this workflow to an atlas-scale dataset of human fetal gut 
development, where we validate a mode of communication between 
a fibroblast subset and ISCs that has recently been shown to be impor-
tant for maintaining the ISC niche51,52. Owing to the relative scarcity 
of these cells, we show that agglomerative methods fail to discover 
these important interactions for downstream mechanistic validation.

Longitudinal datasets pose an additional opportunity and chal-
lenge for comparative analyses because there is a priori knowledge 
about the sequential relationship between different samples. The 
single-cell nature of Scriabin’s workflows permits us to analyze how 
pathways of CCC operate both within and between timepoints in 
longitudinal datasets. By identifying circuits of CCC that function 
over multiple timepoints in a longitudinal infection dataset, we 
can observe how uninfected bystander cells may initiate important 
inflammatory pathways first, which are later amplified by infected 
cells. A fundamental assumption of the circuit assembly workflow is 
that ligands upregulated at one timepoint can be observed to exert 
their biological activity at the following timepoint. This assumption 
is highly dependent on a priori biological knowledge of the com-
munication pathways of interest as well as on the spacing between 
timepoints. Assembly of longitudinal communication circuits may 
represent a valuable strategy to elucidate complex dynamic and 
temporal signaling events, particularly when longitudinal sampling 
is performed at frequencies on the same scale as signaling and tran-
scriptional response pathways.

The cell–cell interaction matrix M is more highly enriched for zero 
values than gene expression matrices. This is because genes encoding 
molecules involved in CCC tend to be more lowly expressed than other 
genes (as the most highly expressed genes tend to encode intracellular 
proteins involved in cell housekeeping) and because a zero value in 
either the ligand or the receptor of a cell–cell pair will result in a zero 
value in the interaction vector. Consequently, these zero values can 
make it difficult for Scriabin to determine if putatively downregulated 
or ‘missing’ CCC edges are biological or due to dropout. We show that 
data denoising algorithms for scRNA-seq are capable of removing 
technical noise caused by data sparsity, substantially improving the 
yield of bona fide single-cell CCC states. This process can make the pres-
ence and absence of CCC edges more interpretable. We recommend 
the use of denoising algorithms when analyzing datasets generated by 
low-coverage platforms and particularly for non-UMI methods, which 
are more likely to be zero-inflated67,68.

Another complementary set of techniques for CCC inference are 
computational methods that infer which cells are communicating by 
identifying putative multiplets in the dataset or by directly sequenc-
ing interacting cells. The central premise of these techniques, which 
include Neighbor-seq69 and PIC-seq70, is that physically interacting cells 
are likely to be more difficult to dissociate when preparing single-cell 
suspensions and, therefore, that multiplets may be more likely to rep-
resent cells that are genuinely interacting. Although this provides an 
additional layer of evidence for biologically meaningful interactions, 
there are some communication edges that cannot be detected with 
these methods. For example, CCC involving secreted ligands will not 
be adequately modeled with these techniques. Additionally, as each 
scRNA-seq dataset represents a single snapshot of a sample, cells 
that have previously interacted but are no longer associated will not 
be detected. This latter problem has been addressed by techniques 
such as LIPSTIC71 that permanently label cells that have interacted 
using particular ligands or receptors. However, these methods remain 
poorly scalable and require prior cell engineering. We anticipate that 
future technological developments will enable synergy of these com-
plementary approaches toward more comprehensive solutions for 
CCC analysis.

One current limitation of Scriabin is that it does not take into 
account situations where multiple receptor subunits encoded by dif-
ferent genes are required in combination to respond to a ligand or 
where receptor subunits are known to differentially contribute to col-
lective ligand–receptor avidity. An additional limitation is that Scriabin 
assumes uniform validity of ligand–receptor interactions in curated 
protein–protein interaction databases and treats all ligand–receptor 
pairs as equally important. In situations where it is known a priori 
which ligand–receptor pairs have a higher level of literature support, 
this information could be used to prioritize downstream analysis of 
particular ligand–receptor pairs. Additionally, Scriabin assumes the 
interaction directionality that is presented by the user-selected ligand–
receptor database; however, not all interactions are unidirectional, 
and biologically important receptor–receptor interactions are also 
possible72. Scriabin supports the use of custom ligand–receptor pair 
databases for users who a priori have specific analytical questions 
involving non-traditional interaction directionality.

Similarly, all downstream signaling analyses in Scriabin rely on 
NicheNet’s ligand–target activity matrix, which may be biased by the 
cell types and stimulation conditions used to generate it. The NicheNet 
database also does not allow for analysis of inhibitory signaling, and, 
thus, Scriabin will only return CCC edges predicted to result in acti-
vated signaling. Although Scriabin uses NicheNet to predict active 
CCC edges by examining downstream gene expression changes, an 
additional analysis goal includes identifying the upstream signaling 
machinery that results in the upregulation of a ligand or denotes suc-
cessful signaling, as additional power could be gained by using sets 
of genes to infer upstream signaling rather than relying on ligand 
expression alone (which could be impacted by dropout or differences 
between mRNA and protein expression). More generally, Scriabin 
assumes that gene expression values for ligands and receptors corre-
late well with their protein expression. A future point of improvement 
would be to support analysis of multimodal datasets where cell surface 
proteins that contribute to CCC are measured directly or to enable 
analysis of protein measurements that are imputed from integration 
with multimodal references73. Future iterations of Scriabin will seek 
to address these issues as well as further improve computational 
efficiency.

Collectively, our work provides a toolkit for comprehensive com-
parative analysis of CCC in scRNA-seq data, which should empower 
discovery of information-rich communicative circuitry and niche–
phenotype relationships.
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Methods
CCIM workflow
Generation of CCIM. We define the cell–cell interaction vector 
between a pair of cells as the geometric mean of expression values of 
each cognate ligand–receptor pair. Formally, the interaction vector V 
between sender cell Ni and receiver cell Nj is given by

VNiNj = [√Nl1
i ∗ N

r1
j ,√Nl2

i ∗ N
r2
j ,… ,√Nln

i ∗ Nrn
j ] ,

where ln,rn represent a cognate ligand–receptor pair. We chose to 
multiply ligand and receptor expression values so that zero values 
of either ligand or receptor expression would result in a zero value 
for the corresponding index of the interaction vector. Additionally, 
we chose to take the square root of the product of ligand–receptor 
expression values so that highly expressed ligand–receptor pairs do 
not disproportionately drive downstream analysis. This definition is 
equivalent to the geometric mean. The cell–cell interaction matrix M 
is constructed by concatenating the cell–cell interaction vectors. M is 
used as input to low-dimensional embeddings for visualization and 
nearest neighbor graphs for graph-based clustering.

Weighting CCIM by upstream regulome. The CCIM M can be weighted 
by ligand–receptor edges that are predicted to be active based on 
observed downstream gene expression changes. First, we identify 
genes in the dataset that are variable across some axis of interest. For 
analyses of single datasets, variable genes can be defined as the set of 
genes with the highest residual variance in the dataset—for example, 
by calling FindVariableFeatures as implemented by Seurat. For com-
parative analyses, Scriabin provides several utility functions to aid 
in the identification of variable genes between samples or between 
timepoints, depending on the user’s analytical questions.

Next, the package CelliD23, which provides a convenient and scal-
able workflow to define single-cell gene signatures, is used to define 
per-cell gene signatures. In brief, user-defined variable genes are used 
to embed the dataset into low-dimensional space by MCA. A cell’s gene 
signature is then defined as the set of genes to which that cell is nearest 
in the MCA bi-plot. A quantile cutoff is used to threshold gene proxim-
ity, by default the 5% of nearest genes.

NicheNet’s20 ligand–target matrix, which denotes the regulatory 
potential scores between ligands and target genes, is then used to rank 
ligands based on their predicted ability to result in the per-cell gene 
signature. First, expressed genes are defined by the percentage of cells 
in which they are detected (by default, 2.5%). Next, a set of potential 
ligands is defined as those ligands that are expressed genes and for 
which at least one receptor is also an expressed gene. Next, the ligand–
target matrix is filtered to contain only the set of potential ligands and 
targets in the set of expressed genes. The authors of NicheNet showed 
that the Pearson correlation coefficient between a ligand’s target pre-
diction and observed transcriptional response is the most informative 
metric of ligand activity20. Therefore, the activity of a single ligand for 
a single cell is defined as the Pearson correlation coefficient between 
the vector of that cell’s gene signature and the target gene scores for 
that ligand. For each active ligand, target gene weights for each cell are 
defined as the ligand–target matrix regulatory score for the top 250 
targets for each ligand that appear in a given cell’s gene signature. We 
selected a Pearson coefficient threshold (by default, 0.075) to define 
active ligands in each cell.

Finally, we weight individual values of VNiNj. Scriabin supports two 
methods for weighting the CCIM by predicted ligand activities. Method 
‘product’ (default) weights interaction vectors proportionally to pre-
dicted ligand activities. The vector of ligand activities for receiver cell 
Nj, Aj, is scaled so that values above the Pearson threshold lie between 
two scaling factors (by default, 1.5 and 3), and values below the Pearson 
threshold are set to 1. The interaction vector is then given by:

Vproduct
NiNj

= [√Nl1
i ∗ N

r1
j ∗ A

l1
j ,√Nl2

i ∗ N
r2
j ∗ Al2

j ,… ,√Nln
i ∗ Nrn

j ∗ Aln
j ]

Method ‘sum’ treats a ligand activity as orthogonal evidence of 
receptor expression. Pearson coefficients in the vector of ligand activi-
ties for receiver cell Nj, Aj, that are below the Pearson threshold are set 
to 0. The interaction vector is then given by:

Vsum
NiNj

= [√Nl1
i ∗ (N

r1
j + Al1

j ),√Nl2
i ∗ (N

r2
j + Al2

j ),… ,√Nln
i ∗ (Nrn

j + Aln
j )]

Use cases for ligand activity weighting methods, as well as other 
parameters involved in calculating ligand activities, are described in 
the Supplementary Text.

Downstream analysis of weighted CCIMs. M can be treated analo-
gously to the gene expression matrix and used for downstream anal-
ysis tasks, such as dimensionality reduction. After generation and 
(optional) weighting of M by active ligands, M is placed into an assay of a 
Seurat object for downstream analysis. M is scaled by ScaleData; latent 
variables are found via PCA; and the top principal components (PCs) 
(identified by ElbowPlot for each dataset) are used to embed the dataset 
in two dimensions using uniform manifold approximation and projec-
tion (UMAP)74. Neighbor graphs are constructed by FindNeighbors, 
which can then be clustered via modularity optimization graph-based 
clustering75 as implemented by Seurat’s FindClusters73. Differential 
ligand–receptor edges among clusters, cell types or samples can be 
identified using FindMarkers. Scriabin provides several utility func-
tions to facilitate visualization of gene expression profiles or other 
metadata on Seurat objects built from cell–cell interaction matrices.

Summarized interaction graph and binning workflow
Generation of summarized interaction graph. Because M scales 
exponentially with dataset size, it is frequently impractical to calculate 
M for all cell–cell pairs Ni,Nj. In this situation, Scriabin supports two 
workflows that do not require aggregation or subsampling. In the first 
workflow, a summarized cell–cell interaction graph S is built in lieu of 
M where Si, j = ΣVNiNj . S thus represents the magnitude of predicted 
interaction across all cognate ligand–receptor pairs expressed by all 
sender–receiver cell pairs. S is then corrected for associations with 
sequencing depth by linear regression. The sequencing depth of cell–
cell pair Ni,Nj is defined as nUMINi + nUMINj . A linear model is fit to 
describe the relationship between the summarized interaction score 
(Si,j = ΣVNiNj, where S is the summarized interaction matrix and VNiNj is 
the interaction vector for cell–cell pair Ni,Nj) and the total sequencing 
depth of each cell–cell pair. The residuals of this model are used as a 
sequencing depth-corrected S. S may optionally be weighted through 
prediction of ligand activity as described above. The second workflow 
is described below in the ‘Interaction program discovery workflow’ 
subsection.

Dataset binning for comparative CCC analyses. Once summarized 
interaction graphs are built for multiple samples, alignment of these 
graphs requires knowledge about which cells between samples repre-
sent a shared molecular state. The goal of binning is to assign each cell 
a bin identity so that S from multiple samples can be summarized into 
equidimensional matrices based on shared bin identities.

The binning process begins by constructing a shared nearest 
neighbor (SNN) graph using FindNeighbors, defining connectivity 
between all cells to be compared. Alternate neighbor graphs—for 
example, those produced using Seurat’s weighted nearest neighbor 
(WNN) workflow, which leverages information from multimodal refer-
ences—can also be used. Next, mutual nearest neighbors (MNNs) are 
identified between all sub-datasets to be compared using Seurat’s inte-
gration workflow (FindIntegrationAnchors)21. In brief, two sub-datasets 
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to be compared are placed into a shared low-dimensional space via 
diagonalized canonical correlation analysis (CCA), and the canonical 
correlation vectors are log-normalized. Normalized canonical corre-
lation vectors are then used to identify k-nearest neighbors for each 
cell in its paired dataset, and the resulting MNN pairings are scored as 
described21. Low-scoring MNN pairings are then removed, as they have 
a higher tendency to represent incorrect cell–cell correspondences 
when orthogonal data are available (Extended Data Fig. 10).

For each cell that participates in an MNN pair, Scriabin defines a 
bin as that cell and all cells with which it participates in an MNN pair. 
Considering a dataset of n cells i of which a subset i′ participates in an 
MNN pair, for each cell i′n we define a bin jn that contains i′n and all MNNs 
of i′n. Next, Scriabin constructs a connectivity matrix G where Gi,j is the 
mean connectivity in the SNN graph between cell i and the cells within 
bin j. Each cell in is assigned a bin identity of the bin jn with which it shares 
the highest connectivity in G. Thus, at the end of this process, each cell 
has a single bin identity, which reflects its SNN similarity to a group of 
cells with cross-dataset MNN connectivity.

However, at this stage, each bin jn may not contain cells from all the 
samples being compared. Thus, we next optimize for the set of bins that 
results in the best representation of all samples. Bins j with the lowest 
total connectivity and lowest multi-sample representation in G are 
iteratively removed, and cell bin identities are re-scored until the mean 
sample representation of each bin plateaus. Within-bin connectivity 
and sample representation are further improved by reassigning cells 
that result in better sample representation of an incompletely repre-
sented bin while maintaining equal or greater SNN connectivity with 
the cells in that bin. Finally, remaining incompletely represented bins 
are merged with the nearest completely represented bin with which it 
shares the highest SNN connectivity. At the end of this process, each cell 
will, thus, have a single assigned bin identity, where each bin contains 
cells from all samples to be compared.

Statistical analysis of bin significance. Bins are then tested for the 
statistical significance of their connectivity structure using a permuta-
tion test. For each bin, random bins of the same size and number of cells 
per sample are generated iteratively (by default, 10,000 times). The 
connectivity vector of the real bins is tested against each of the random 
bins by a one-sided Mann–Whitney U-test. If the bin fails 500 or more 
of these tests (P > 0.05), it is considered non-significant.

Because bin SNN connectivity is generally non-zero, but randomly 
sampled cells generally have an SNN connectivity of zero, this strategy 
will tend to return most bins as statistically significantly connected. Thus, 
we recommend passing high-resolution cell type labels to the binning 
significance testing. In this situation, randomly generated bins are gen-
erated by randomly selecting cells from the same sample and cell type 
annotation, and the permutation test proceeds as described above. Bins 
where more than a threshold (by default, 95%) of cells belong to the same 
cell type annotation are automatically considered significant. This avoids 
rare cell types that may only form a single bin from being discarded. 
Cells that were assigned to bins that failed the significance testing are 
reassigned to the bin with which they share the highest SNN connectivity.

Identification of variable bins. For each bin, a Kruskal–Wallis test is 
used to assess differences in the magnitude of CCC between cell–cell 
pairs from different samples. The Kruskal–Wallis P value and test sta-
tistic can be used to identify which bins contain cells that exhibit the 
highest change in prediction interaction scores. Specific samples 
that contribute to each significantly variable bin’s perturbation are 
then identified through the Dunn post hoc test. This set of sender and 
receiver cells can then be used to construct M as described above.

Interaction program discovery workflow
Iterative approximation of a ligand–receptor pair TOM. An alter-
native to the summarized interaction graph workflow is to instead 

identify co-expressed ligand–receptor pairs, which we refer to as 
‘interaction programs’. This approach represents an adaptation of the 
well-established WGCNA22 and is scalable to any dataset size and still 
permits analysis of CCC at single-cell resolution. The first step in this 
workflow is to generate a signed covariance matrix of ligand–receptor 
pairs for each sample, defined as

ssignedij = 0.5 + 0.5cor (lri, lrj) ,

where lri, lrj are individual ligand–receptor pair vectors of M. In large 
datasets, ssignedij  is approximated by iteratively generating subsets of M. 
ssignedij  is next converted into an adjacency matrix via soft 
thresholding

aij = (ssignedij )
β
,

where β is the soft power. Soft power is a user-defined parameter that is 
recommended to be the lowest value that results in a scale-free topol-
ogy model fit of >0.6. Next, this adjacency matrix is converted into a 
TOM as described76. This process proceeds separately for each sample 
to be analyzed in a multi-sample dataset.

Identification and significance testing of interaction programs. The 
TOM is hierarchically clustered, and interaction programs are identi-
fied through adaptive branch pruning of the hierarchical clustering 
dendrogram. Intramodular connectivity for each ligand–receptor 
pair in each interaction program is then calculated as described77. If 
interaction programs are being discovered in a multi-sample dataset, 
similar modules (defined by Jaccard overlap index above a user-defined 
threshold) are merged. Next, interaction programs are then tested for 
statistically significant co-expression structure via a permutation test 
where random interaction programs are generated 10,000 times. The 
correlation vector of the real module is tested against each of the ran-
dom modules by a one-sided Mann–Whitney U-test. If the module fails 
500 or more of these tests (P > 0.05), it is considered non-significant. 
Each sample is tested for significant correlation of each module.

Downstream analysis of interaction programs. Single cells are scored 
separately for the expression of the ligands and receptors of each signif-
icant module with Seurat’s AddModuleScore. This function calculates a 
module score by comparing the expression level of an individual query 
gene to other randomly selected control genes expressed at similar 
levels to the query genes and is, therefore, robust to scoring modules 
containing both lowly and highly expressed genes as well as to scoring 
cells with different sequencing depth. Scriabin includes several utility 
functions to conveniently visualize interaction program expression for 
sender and receiver cells.

Identification of longitudinal CCC circuits
A longitudinal CCC circuit is composed of S1–L1–R1–S2–L2–R2, where S 
are sender cells and R are receiver cells at timepoints 1 and 2 and where 
L1 is expressed by/sensed by S1/R1, and L2 is expressed by/sensed by  
S2/R2. For computational efficiency, construction of longitudinal CCC 
circuits starts at the end of the circuit and proceeds upstream. First, 
ligands L2 predicted by NicheNet to be active in receiver cells at time-
point 2 are identified. Next, sender cells that express L2 and have the L2 
in its per-cell gene signature are identified. Among the bins occupied 
by these S2 candidates, Scriabin then searches for receiver cells at time-
point 1 that occupy the same bin and have the corresponding timepoint 
2 ligand L2 within its list of upregulated target genes and identifies the 
ligand(s) L1 predicted by NicheNet to result in upregulation of that tar-
get. Finally, Scriabin identifies S1 candidates that express the timepoint 
1 ligands L1 and have L1 in its per-cell gene signature. S1–R1–S2–R2 cell 
groups that meet these criteria are retained for further analysis. This 
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process repeats for every pair of timepoints. Finally, Scriabin searches 
for overlap between circuits of sequential timepoint pairs to identify 
circuits that operate over more than two timepoints.

Ligand–receptor pair databases for analysis
Scriabin supports the use of 15 ligand–receptor interaction data-
bases for all analytical functions; these resources were collected from 
LIANA78. By default, Scriabin uses the OmniPath database18,19 filtered for 
curation strength of >7 to ensure that ligand–receptor interactions with 
strong experimental evidence are included in downstream analysis. 
Scriabin also supports the use of custom ligand–receptor pair lists for 
users with specific analytical questions.

Transfection and co-culture of primary NK and B cells
Peripheral blood mononuclear cells (PBMCs) were acquired from a 
healthy blood donor who was consented for release of genetic data 
by the Stanford Blood Center. PBMCs were isolated by Ficoll-Paque  
(GE Healthcare) density gradient centrifugation and cryopreserved in 
90% FBS + 10% DMSO (v/v). PBMCs were thawed at 37 °C in complete 
RPMI 1640 media (supplemented with 10% FBS, L-glutamine and peni-
cillin–streptomycin–amphotericin; RP10) containing benzonase (EMD 
Millipore). NK cells and B cells were purified from thawed PBMCs by 
magnetic bead isolation via negative selection according to the manu-
facturer’s specifications (Miltenyi Biotec, 130-092-657 and 130-101-638, 
respectively). NK and B cells were maintained in complete RP10 media 
without additional cytokines to ensure a resting state. All cell culture 
was performed at 37 °C/5% CO2 in a humidified environment.

eGFP-encoding, CD40-encoding and CD40L-encoding mRNAs 
were purchased from TriLink BioTechnologies and used without further 
purification. Notably, open reading frame (ORF) sequences for mRNAs 
encoding CD40 and CD40L were codon optimized using the codon 
optimization tool developed by Integrated DNA Technologies: this 
serves both to improve translational efficacy as well as to enable dis-
tinguishing endogenous versus exogenous CD40 and CD40LG mRNAs 
through sequencing.

mRNAs were delivered to isolated NK and B cells via transfec-
tion by charge-altering releasable transporters (CARTs) as previously 
described79. In brief, CART/mRNA polyplexes were prepared by diluting 
0.84 of mRNA (1 μg μl−1) into 14.52 μl of PBS (pH 5.5). To this solution was 
added 1.44 μl of CART BDK-O7:N7:A13 (2 mM DMSO) to achieve a charge 
ratio of 10:1 (±, assuming all ionizable cationic groups are protonated). 
After mixing by finger vortex for 15 s, 2.5 μl of the polyplexes was added 
to cells and incubated for 6 h in serum-free media. After this incubation, 
an aliquot was taken from each transfection condition for flow cyto-
metric analysis; FBS was added to a final concentration of 10%; the cells 
were counted; and NK cells and B cells from the respective transfection 
conditions were mixed together in a 1:1 ratio for co-culture. Cells were 
co-cultured for 12 h before analysis by flow cytometry and scRNA-seq.

Flow cytometry
Antibodies used for flow cytometric analyses are listed in Supplemen-
tary Table 2. eBioscience Fixable Viability Dye eFluor 780 (Thermo 
Fisher Scientific) was used as a viability stain. After application of viabil-
ity stain, cells were surface stained for 20 min at room temperature 
before acquisition on an Aurora flow cytometer (Cytek Biosciences) 
and analysis by FlowJo version 10.6.1 software.

scRNA-seq by Seq-Well
The Seq-Well platform for scRNA-seq was used as described previ-
ously56,80–83. Immediately after co-culture, cells were counted and 
diluted in RP10 to a concentration of 75,000 cells per milliliter. Then, 
200 μl of this cell suspension (15,000 cells) was loaded onto Seq-Well 
arrays pre-loaded with mRNA capture beads (ChemGenes). After four 
washes with DPBS to remove serum, the arrays were sealed with a poly-
carbonate membrane (pore size, 0.01 μm) for 30 min at 37 °C. Next, 

arrays were placed in lysis buffer; transcripts were hybridized to the 
mRNA capture beads; beads were recovered from the arrays and pooled 
for downstream processing. Immediately after bead recovery, mRNA 
transcripts were reverse transcribed using Maxima H-RT (Thermo 
Fisher Scientific, EPO0753) in a template-switching-based RACE reac-
tion; excess unhybridized bead-conjugated oligonucleotides were 
removed with Exonuclease I (New England Biolabs (NEB), M0293L); 
second-strand synthesis was performed with Klenow fragment (NEB, 
M0212L) to enhance transcript recovery in the event of failed tem-
plate switching81. Whole-transcriptome amplification (WTA) was per-
formed with KAPA HiFi PCR Mastermix (Kapa Biosystems, KK2602) 
using approximately 6,000 beads per 50-μl reaction volume. Result-
ing libraries were then pooled in sets of six (approximately 36,000 
beads per pool), and products were purified by Agencourt AMPure XP 
beads (Beckman Coulter, A63881) with a 0.6× volume wash followed 
by a 0.8× volume wash. Quality and concentration of WTA products 
were determined using an Agilent TapeStation, with a mean product 
size of more than 800 base pairs (bp) and a non-existent primer peak 
indicating successful preparation. Library preparation was performed 
with a Nextera XT DNA Library Preparation Kit (Illumina, FC-131-1096) 
with 1 ng of pooled library using single-index primers. Tagmented and 
amplified libraries were again purified by Agencourt AMPure XP beads 
with a 0.6× volume wash followed by a 1.0× volume wash, and quality 
and concentration were determined by TapeStation analysis. Libraries 
between 400 bp and 1,000 bp with no primer peaks were considered 
successful and pooled for sequencing. Sequencing was performed on 
a NovaSeq 6000 instrument (Illumina; Chan Zuckerberg Biohub). The 
read structure was paired-end with read 1 beginning from a custom 
read 1 primer80 containing a 12-bp cell barcode and an 8-bp UMI and 
with read 2 containing 50 bp of mRNA sequence.

Alignment and quality control of scRNA-seq data
Sequencing reads were aligned and count matrices assembled 
using STAR84 and dropEst85, respectively. In brief, the mRNA reads 
in read 2 demultiplexed FASTQ files were tagged with the cell bar-
code and UMI for the corresponding read in the read 1 FASTQ file 
using the dropTag function of dropEst. Next, reads were aligned with 
STAR using the GRCh38.p13 (hg38) human reference genome from 
Ensembl. This reference also included sequences and annotations for 
the codon-optimized ORFs for GFP-encoding, CD40-encoding and 
CD40L-encoding mRNAs so that both endogenous and exogenous 
mRNAs could be quantified. Count matrices were built from resulting 
BAM files using dropEst85. Cells that had fewer than 750 UMIs or more 
than 15,000 UMIs, as well as cells that contained more than 20% of reads 
from mitochondrial genes or rRNA genes (RNA18S5 or RNA28S5), were 
considered low quality and removed from further analysis. To remove 
putative multiplets, cells that expressed more than 75 genes per 100 
UMIs were also filtered out.

Pre-processing of scRNA-seq data
The R package Seurat21,73,86 was used for data scaling, transformation, 
clustering, dimensionality reduction, differential expression analysis 
and most visualizations. Unless otherwise noted, data were scaled and 
transformed and variable genes identified using the SCTransform() 
function, and linear regression was performed to remove unwanted 
variation due to cell quality (% mitochondrial reads and % rRNA reads). 
PCA was performed using the 3,000 most highly variable genes, and 
the first 50 PCs were used to perform UMAP to embed the dataset into 
two dimensions74,87. Next, the first 50 PCs were used to construct an 
SNN graph (FindNeighbors()), and this SNN was used to cluster the 
dataset (FindClusters()). Although upstream quality control removed 
many dead or low-quality cells, if any clusters were identified that were 
defined by few canonical cell lineage markers and enriched for genes 
of mitochondrial or ribosomal origin, these clusters were removed 
from further analysis88,89.
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Annotation of transfected NK and B cells in scRNA-seq data
Because of the strong degree of transcriptional perturbation caused 
by transfection (Extended Data Fig. 3), we elected to annotate NK 
and B cells in this dataset by integration with a multimodal reference 
rather than by graph-based clustering. First, we noted two clusters 
with high expression of CD3-encoding genes and monocyte-specific 
genes (including LYZ and CD14), respectively; we considered these 
clusters contaminating T cells and monocytes and removed them from 
further analysis. Next, we used the multimodal (whole transcriptome 
plus 228 cell surface proteins) PBMC dataset published by Hao et al.73 
as a reference. We subsetted the reference to contain only NK and B 
cells, scaled both the transcriptome and protein assays and ran PCA on 
both modalities. Next, we found multimodal neighbors between the 
modalities using WNN analysis, which learns the relative utility of each 
data modality in each cell. Supervised PCA (SPCA) was then run on the 
WNN SNN graph, which seeks to capture a linear transformation that 
maximizes its dependency to the WNN SNN graph. These SPCA-reduced 
dimensions were then used for identification of anchors between the 
reference and query datasets as previously described21. Finally, these 
anchors were used to transfer reference cell type annotations to the 
query dataset.

Processing, analysis and visualization of public scRNA-seq 
datasets
Published scRNA-seq datasets were acquired as described in the ‘Data 
availability’ section. In each case, we acquired raw count matrices or 
processed Seurat objects containing raw count matrices. Any upstream 
processing was performed as described in the respective manuscripts.

Raw count matrices from Ravindra et al.58 required filtering 
before downstream analysis; cells meeting the following criteria 
were kept: >1,000 UMIs, <20,000 UMIs, >500 unique features, <0.85 
UMI-to-unique feature ratio, <20% UMIs of mitochondrial origin and 
<35% reads from ribosomal protein-encoding genes. Pbmc5k and 
pbmc10k datasets from 10x Genomics were filtered to enforce a mini-
mum number of features per cell of 200 and to remove genes not 
expressed in at least three cells.

Cell type annotations were provided for the Ji et al.29, Ma et al.41 and 
Fawkner-Corbett et al.49 datasets, which were used for downstream 
analytical tasks. For the Ravindra et al.58 dataset, manual annotation 
of cellular identity was performed by finding differentially expressed 
genes for each cluster using Seurat’s implementation of the Wilcoxon 
rank-sum test (FindMarkers()) and comparing those markers to known 
cell-type-specific genes listed in Ravindra et al.58. PBMC datasets were 
annotated by WNN projection and label transfer from a multimodal 
PBMC reference as described73,83.

For analysis of T cell exhaustion in the SCC dataset from Ji et al.29, 
an exhaustion signature was defined by PDCD1, TOX, CXCL13, CTLA4, 
TNFRSF9, HAVCR2, LAG3, CD160 and CD244. This signature incorporates 
several markers of exhausted T cell reported in the literature66,90–92. 
Individual T cells were scored for expression of this signature using 
Seurat’s AddModuleScore.

Analysis of the impact of sparsity on single-cell-resolution 
CCC analysis
We collected three scRNA-seq datasets generated from methods with 
high coverage: Fluidigm C1 pancreas islets21,33, Smart-seq2 uterine 
decidua13 and Smart-seq2 HNSCC8. We used Scriabin’s CCIM workflow 
to generate a CCIM for each of these datasets, which we consider to be 
the GT of CCC for that dataset. Next, we randomly downsampled the 
datasets to inDrop coverage using downsampleMatrix() from scut-
tle93–100. For these analyses, inDrop coverage was defined as the mean 
UMIs per cell of the inDrop dataset included in the pancreas islet dataset 
available through SeuratData21, which is 5,828 UMIs per cell.

From these downsampled datasets, we generated several interac-
tion matrices:

 1. Raw. We calculated an unweighted CCIM through Scriabin’s 
standard CCIM workflow.

 2. ALRA-denoised. We used ALRA32, a denoising algorithm for 
scRNA-seq, to denoise the downsampled dataset and then built 
an unweighted CCIM from the denoised dataset.

 3. Neighborhood-aggregated. We generated nearest neigh-
bor graphs from each downsampled dataset using Seurat’s 
FindNeighbors() using the first 15 PCs. Next, we defined 
the neighborhood for each cell as that cell and its nearest 
k neighbors. Finally, we defined the transcriptome of each 
cell as the mean of that cell and its nearest k neighbors. We 
used values of k between 5 and 100. We used this matrix of 
neighborhood-aggregated expression values to generate 
CCIMs.

 4. Cluster-aggregated. We used Seurat’s graph-based clustering 
algorithm with resolutions between 2.5 and 5 to cluster each 
downsampled dataset. We then generated a matrix of pseudo-
bulk expression vectors for each cluster and used this matrix to 
generate a cluster–cluster interaction matrix.

Next, we used Seurat’s dataset integration pipeline to integrate 
each CCIM from the downsampled dataset with the GT CCIM21. The 
first 30 PCs were used for CCIM integration. Finally, we used the LISI36 
to quantify the degree to which the CCIMs from the downsampled 
datasets recapitulated the GT CCIMs. This value defines the number 
of datasets in the neighborhood of each GT cell–cell pair and ranges 
between 1, denoting that only GT cell–cell pairs are present in the neigh-
borhood, and 2, denoting an equal mixture of GT and downsampled 
cell–cell pairs.

Comparative analyses between Scriabin and published CCC 
analysis methods
Pbmc5k and pbmc10k datasets from 10x Genomics were used to 
benchmark the computational efficiency of Scriabin. For single data-
set analyses, pbmc5k was randomly subsetted to multiple dataset 
sizes. Cell type annotations were passed to Connectome38, NATMI17, 
CellChat15, iTALK16 and SingleCellSignalR (SCA)37, which were run using 
default parameters defined by LIANA39. The time for these methods to 
return results was compared to a version of Scriabin that generated and 
visualized a full dataset summarized interaction graph and returned 
pseudobulk ligand–receptor pair scores for each cell type annotation. 
Connectome38 is the only of these packages that supports a full com-
parative workflow. For comparative analysis, we analyzed differences 
in CCC between the pbmc5k and pbmc10k datasets. We compared 
Connectome’s total runtime to the runtime of Scriabin to generate full 
dataset summarized interaction graphs, perform dataset binning and 
visualize the most perturbed bins.

Multiple ligand–receptor resources compiled by LIANA39 were 
used to compare results returned by published CCC analysis meth-
ods and Scriabin. This analysis was performed on four datasets: 10x 
PBMC 5k, Fluidigm C1 pancreas islets21,33, Smart-seq2 uterine decidua13 
and Smart-seq2 HNSCC8. The following results parameters were used 
from each method: prob (CellChat), LRscore (SingleCellSignalR), 
weight_norm (Connectome), weight_comb (iTALK) and edge_avg_expr 
(NATMI). To visualize the overlap in results between the methods and 
resources, we extracted the top 1,000 results from each method–
resource pair and calculated the Jaccard index between these top 
results (as described by ref. 39).

Analysis of spatial transcriptomic datasets with Scriabin
To evaluate if Scriabin returns biologically meaningful CCC edges, we 
downloaded spatial coordinates and gene expression count matrices 
from 10 spatial transcriptomic datasets from the 10x Visium platform 
available at https://www.10xgenomics.com/resources/datasets. We 
also analyzed a spatial transcriptomic dataset published by Ma et al.41 of 
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a human leprosy granuloma. We treated each count matrix analogously 
to scRNA-seq data, performing data transformation and dimensionality 
reduction as described above. We calculated per-cell gene signatures 
for each dataset based on variable genes across the dataset, which we 
then used to rank ligands based on their predicted ability to result in 
the observed gene expression profile using NicheNet20. Next, we con-
structed a summarized interaction graph using a ligand–receptor pair 
database that was restricted to membrane-bound ligands and recep-
tors, which we weighted according to the predicted ligand activities. 
Finally, we compared the distance quantile of the top 1% of interacting 
cell–cell pairs compared to randomly permuted distances.

Analysis of CRISPRa Perturb-seq data
To quantify Scriabin’s ability to detect changes in CCC at single-cell res-
olution, we analyzed data from a pooled genetic perturbation screen. 
We elected to analyze the Perturb-seq dataset published by Schmidt 
et al.40 as this dataset was collected on primary cells and contained a 
high number of gRNAs (15) targeting cell surface ligands or receptors 
used in CCC. We collected a processed and publicly available h5Seurat 
object of the anti-human CD3/CD28 re-stimulated T cells from the 
Schmidt et al.40 dataset from https://zenodo.org/record/5784651. The 
authors’ gRNA calls were used for all downstream analysis; we identified 
gRNAs g in this dataset that targeted cell surface ligands or receptors 
that were present in OmniPath’s ligand–receptor interaction database. 
The dataset was then subsetted to include only cells transduced with 
a gRNA targeting one of these cell surface ligands or receptors or cells 
transduced with a non-targeting gRNA. Untransduced T cells were 
removed from further analysis. We repeated the following process 
for each gRNA gi. Given a gRNA, gA, targeting a ligand-encoding gene 
A: we isolated cells transduced with gA and cells transduced with a 
non-targeting gRNA. From this subsetted dataset, we generated a CCIM 
without ligand activity ranking using Scriabin’s CCIM workflow. We next 
isolated interaction vectors V for ligand A and all receptors of A, RA. For 
each interaction vector VAR, we constructed a receiver operating char-
acteristic (ROC) curve using VAR as the predictor variable and the gRNA 
assignment (either gA or non-targeting) as the response variable to 
quantify and visualize the sensitivity and specificity of the prediction.

Visualization
For all box plot features: minimum whisker, 25th percentile −1.5 × inter-
quartile range (IQR) or the lowest value within; minimum box, 25th 
percentile; center, median; maximum box, 75th percentile; maximum 
whisker, 75th percentile +1.5 × IQR or greatest value within.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw and processed scRNA-seq data generated in this manuscript 
are available on the Gene Expression Omnibus (GEO) as accession 
GSE228415 (ref. 101). Spatial transcriptomic datasets and datasets of 
PBMCs (pbmc5k and pbmc10k) were downloaded from 10x Genomics;  
for comparison of mouse and human PBMCs, datasets from 10x 
Genomics’ cell multiplexing oligo demonstration were used (https://
www.10xgenomics.com/resources/datasets). Processed scRNA-seq 
data of SCC and matched normals29 were provided directly by the study 
authors. Processed count matrices from the Smart-Seq2 human HNSCC 
dataset were downloaded from GEO accession GSE103322 (ref. 8).  
Processed count matrices from the Smart-Seq2 human uterine decidua 
dataset were downloaded from European Bioinformatics Institute 
accession E-MTAB-6678 (ref. 13). Processed Seurat objects of the Fluid-
igm C1 pancreas islet dataset are available through the R package Seur-
atData21,33. Processed CRISPRa Perturb-seq data were downloaded from 
Zenodo record 5784651 (ref. 40). scRNA-seq data of human leprosy 

granulomas41 were downloaded from https://github.com/mafeiyang/
leprosy_amg_network. Data from developing fetal intestine49 were 
acquired from the CELLxGENE portal: https://cellxgene.cziscience.
com/collections/60358420-6055-411d-ba4f-e8ac80682a2e. Data 
of longitudinal responses to SARS-CoV-2 infection in HBECs58 were 
downloaded from GEO accession GSE166766. The GRCh38.p13 refer-
ence genome is available from the National Center for Biotechnology 
Information.

Code availability
Scriabin is available for download and use as an R package at https://
github.com/BlishLab/scriabin (ref. 102).
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Extended Data Fig. 1 | Additional analyses of exhausted intratumoral SCC T 
cells. a) UMAP projection of all T cells from the dataset published by Ji, et al.29, 
colored by author-annotated T cell subtype. b) Dot plot depicting average and 
percent expression of the exhaustion signature score by author-annotated T cell 
subtypes. c) ROC curves depicting the ability of each cluster from the single-

cell T cell object (left) or Scriabin generated T cell-CD1C+ DC CCIM (right) to 
be classified as exhausted or non-exhausted. Each line corresponds to a single 
cluster. The diagonal black line corresponds to an AUC = 0.5, where there is no 
predictive power of classification. AUC = 0, the cluster can be perfectly classified 
as non-exhausted; AUC = 1, the cluster can be perfectly classified as exhausted.
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Extended Data Fig. 2 | Comparison of Scriabin to agglomerative CCC analysis 
techniques and validation with spatial transcriptomic data. a) Runtime of 
Scriabin and five published CCC methods on the 10X PBMC 5k dataset. For each 
dataset size, the dataset was randomly subsampled to six different indicated 
sizes and the same subsampled dataset was used for all methods. b) Runtime 
of Scriabin and Connectome comparative workflows. The 10X PBMC 5k and 
10k datasets were merged into a single dataset which was subsampled as in (a), 
and the comparative workflows performed between cells from the 5k vs. 10k 
dataset. Six different dataset sizes were compared. c) Jaccard index heatmaps 
depicting the degree of overlap in the top 1,000 ligand-receptor CCC edges 

from each method-resource pair for four datasets: 10X PBMC 5k, Fluidigm C1 
pancreas islets21,33, Smart-seq2 uterine decidua13, and Smart-seq2 HNSCC8. d, e) 
The procedure described in Fig. 3a was repeated for 11 datasets, and the median 
distance quantile of a percentile of the most highly interacting cell-cell pairs was 
calculated using real cell distances relative to randomly permuted cell distances. 
d) Each facet shows the median distance quantile of the top 0.1%, 0.5%, 2.5%, 
5%, 10%, and 20% most highly interacting cell-cell pairs. e) Each facet shows the 
median distance quantile of cell-cell pairs within the range of interaction quantile 
shown. In each facet, an exact two-sided p-value from the Wilcoxon rank-sum test 
is shown.
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Extended Data Fig. 3 | Flow cytometry and transcriptional analysis of B 
and NK cell transfection and co-culture. a) Flow cytometry gating scheme 
used to identify B and NK cells. b) Scatter plots of flow cytometry data showing 
expression of CD40 and CD40L by B cells and NK cells. Left: B cells and NK cells 
transfected with GFP-encoding mRNA at start of co-culture. Middle: B cells 
transfected with CD40-encoding mRNA and NK cells transfected with CD40L-

encoding mRNA at start of co-culture. Right: B cells transfected with CD40-
encoding mRNA and NK cells transfected with CD40L-encoding mRNA at end 
of co-culture. For (a-b), percentages of the parent gate are shown for each gate. 
c) UMAP projections of full dataset colored by cell condition of origin (left) or 
annotated cell type (right). d) Dot plot depicting average and percent expression 
of exogenous mRNAs in the four co-cultures.
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Extended Data Fig. 4 | Analysis of CCC between CD40LG-transfected NK cells 
and CD40-transfected B cells with Connectome and NicheNet. a) Circos plot 
summarizing Connectome’s38 results of significantly differentially-expressed 
ligand-receptor pair edges between the CD40LG-CD40 transfected condition 
(shades of red) and GFP-GFP transfected condition (shades of blue). CCC is 
analyzed between ligands expressed by sender NK cells (bottom) and receptors 
expressed by receiver B cells (top). b) Dot plot depicting percentage and average 

expression of differentially-expressed receptors by B cells (top) and ligands by 
NK cells (bottom) returned by Connectome’s DifferentialConnectome workflow. 
c) NicheNet20 was applied to predict ligand activities in B cells between the 
CD40LG-CD40 transfected condition and the GFP-GFP transfected condition. 
The bar plot depicts pearson coefficient outputs of NicheNet for this analysis. 
d) Dot plot depicting percentage and average expression of potentially-active 
ligands shown in (c) by NK cells.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Additional analyses of the scRNA-seq dataset of leprosy 
granulomas. a) Bar graph depicting cell proportions per granuloma in the 
dataset of Ma, et al.41. Author-provided cell type annotations are used for analysis. 
b) Subclustering resolutions of T cells (left) and myeloid cells (right) required 
for comparative CCC analysis by agglomerative methods. Pink bars indicate the 
percentage of subclusters containing at least one cell from an LL granuloma and 
one cell from an RR granuloma. Blue bars indicate the percentage of subclusters 
containing at least one cell from all nine analyzed granulomas. c) NicheNet20 
was applied to predict ligand activities in myeloid cells between RR granulomas 
relative to LL granulomas. The bar plot depicts pearson coefficient outputs of 

NicheNet for this analysis. d) UMAP projections of T cells (top) and myeloid cells 
(bottom) colored by author-generated subcluster cell type annotation (left), 
granuloma type (middle), or if the cell falls into a cluster 2 perturbed bin (right; 
see Fig. 4f). e) We applied a binomial test to determine if cells from a cluster 2 
perturbed bin were significantly enriched or depleted in any T cell or myeloid cell 
subcluster. The bar plot depicts the -log(p-value) of the exact binomial test. When 
p < 0.05, the bars are colored to indicate if perturbed cells are either enriched 
(red) or depleted (blue) from the cluster. The dotted line indicates the point at 
which p = 0.05. Calculated p-values are two-sided.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01782-z

Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Co-expressed interaction programs in intestinal 
development. a) Scatter plot depicting expression of LEC marker LYVE1 
and RSPO3. Shown are Pearson’s r, and an exact two-sided P value. b) UMAP 
projections of ligand (shades of purple) or receptor (shades of green) expression 
in 3 gut endothelial cell-specific modules. c) UMAP projection of gut endothelial 
cells colored by expression of ligands in the interaction programs depicted in 
(b). d) Dot plot depicting the expression fold-change and Bonferroni-corrected 
Wilcoxon rank-sum test 2-sided p-values of interaction program expression in 
each anatomical location. e) Intramodular connectivity scores for each ligand-

receptor pair in each anatomical location for the module indicated by the arrow 
in (d). The black arrow in (e) indicates the genes whose average and percent 
expression are plotted to the right. Shown is an exact two-sided Bonferroni-
corrected p-value from the Wilcoxon rank-sum test as described in panel (d).  
f-g) Connectome38 was used to analyze CCC in the human intestinal development 
dataset49 using author-annotated cell types for aggregation. Results are plotted 
for communication between gut endothelial cells (senders) and intestinal 
epithelial cells (receivers; f) or between fibroblasts (senders) and intestinal 
epithelial cells (receivers; g).
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Extended Data Fig. 7 | scRNA-seq dataset of SARS-CoV-2 infected HBECs. UMAP projections of 64,008 cells from the dataset published by Ravindra, et al.58 colored 
by time point (a), annotated cell type (b), or the percentage of UMIs per cell of SARS-CoV-2 origin (c).
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Parameter tuning for ligand activity ranking and 
interaction program discovery workflows. a) Heatmaps depicting Jaccard 
overlap index between DE testing results from CCIMs constructed with 217 
different combinations of ligand activity ranking parameters. Three different 
datasets were used for testing: a pancreas islet dataset21,33, a uterine decidua 
dataset13, and a dataset of HNSCC8. b-d) 217 different parameter combinations 
were used to analyze CCC between NK cells transfected with CD40L-
encoding mRNA and B cells transfected with CD40-encoding mRNA. Ligand 
activity-weighted CCIMs were calculated from each of these combinations 
and differential expression testing performed to identify which parameter 
combinations returned CD40L-CD40 as a differential edge with the highest 
specificity. b) Box plot depicting the difference between the log(fold-change) for 
CD40L-CD40 and the mean log(fold-change) for all other ligand-receptor pairs, 
with and without application of ligand activity ranking. n = 1 for analysis without 
ligand activity ranking; n = 216 for with ligand activity ranking. c) β coefficients 
and p-values from multiple regression analysis modeling the impact of each 
ligand ranking parameter on relative predictive power for the CD40L-CD40 edge. 
d) Scatter plots depicting relative predictive power for the CD40L-CD40 edge for 
all combinations of ligand ranking parameters. The mean for each parameter is 

shown within the plot. e) Example ligand activity distributions to aid in selection 
of the appropriate Pearson coefficient threshold. Generally, ligand activity 
coefficients form a right-skewed distribution, similar to the distributions shown 
here. The right tails of these distributions represent the putative biological 
activity and are the coefficients that should be used for CCIM weighting. We 
therefore encourage users to consider the number of ligands that are expected 
to display biological activity and the number of cells that are expected to have 
downstream signaling induced by those ligands. If there are very few ligands 
expected to be biologically active, and only a subset of cells responding to 
them, this threshold should be increased to include less of the right tail of the 
distribution. f ) The interaction program discovery workflow was repeated on 
35 random subsamples of the inDrop panc8 dataset21,34, using 19 different R2 
thresholds to define the appropriate softPower parameter. Scatter plots depict 
association between R2 threshold and (clockwise from top left): recommended 
softPower, percentage of identified programs that failed significance testing, 
percentage of programs composed of only 1 ligand or receptor, and the average 
number of ligands and receptors composing a program. Shown are Pearson’s r, 
and an exact two-sided P value.
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Extended Data Fig. 9 | Highly perturbed samples require a higher degree 
of aggregation for dataset alignment. A toy dataset of peripheral blood 
monocytes from a longitudinal dataset was analyzed. a) UMAP projection 
colored by time point. b-d) UMAP projections (left) colored by cluster identity, 

and bar plot depicting per timepoint cluster membership in the cluster 
principally occupied by sample Week 04 (right). Cluster resolutions: 1 (default, 
b), 0.3 (c), 0.05 (d).

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01782-z

Extended Data Fig. 10 | Robustness analysis of Scriabin’s binning workflow. 
a-d) Mouse and human PBMC scRNA-seq datasets from 10X Genomics were 
analyzed. a) UMAP projections of mouse and human PBMCs colored by the 
sample of origin (left) and by manually-annotated cell types (right). b) Heatmap 
depicting overlap between bin identity and cell type annotations. Each row 
sums to 100%, and the annotations at left show the number of cells within each 
bin and maximum degree of overlap of each bin with a given cell type identity 
(ie. the highest value in each row). c) UMAP projection highlighting cells in bin 
#191. d) Bar plot depicting differentially-expressed genes in bin #191 relative to 

other B cells shared between the human and mouse cells in bin #191. Differential 
expression tests were run individually for human and mouse cells. e-g) A toy 
dataset of ~14,000 peripheral blood mononuclear cells (PBMCs) with nine sub-
datasets was analyzed. e) Density plot depicting the number of cells in each bin. 
The median bin size in this analysis is 25 cells. f ) As in (b) An SNN graph was used 
to assess cell-cell connectivity for the binning workflow. Cell type annotations are 
transferred from a reference dataset and are thus orthogonal to the data used to 
generate the bins. g) Dot plot depicting the cell type annotations and scores for 
the anchor pairs used to generate the bins depicted in (f).
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