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Quartet RNA reference materials improve 
the quality of transcriptomic data through 
ratio-based profiling
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Certified RNA reference materials are indispensable for assessing the 
reliability of RNA sequencing to detect intrinsically small biological 
differences in clinical settings, such as molecular subtyping of diseases. 
As part of the Quartet Project for quality control and data integration of 
multi-omics profiling, we established four RNA reference materials derived 
from immortalized B-lymphoblastoid cell lines from four members of 
a monozygotic twin family. Additionally, we constructed ratio-based 
transcriptome-wide reference datasets between two samples, providing 
cross-platform and cross-laboratory ‘ground truth’. Investigation of the 
intrinsically subtle biological differences among the Quartet samples 
enables sensitive assessment of cross-batch integration of transcriptomic 
measurements at the ratio level. The Quartet RNA reference materials, 
combined with the ratio-based reference datasets, can serve as unique 
resources for assessing and improving the quality of transcriptomic data in 
clinical and biological settings.

RNA sequencing (RNA-seq) is an indispensable tool for transcriptome- 
wide analysis of differential gene expression and is widely used in  
biomedical research to discover biomarkers for clinical diagnosis, 
prognosis and therapeutic action1–5. As transcriptome-based biomarker 
discovery continues to advance, RNA-seq-based assays will routinely 
be used within the clinic3,6,7. For example, clinical tests complemented 
by measuring the differential expression of clinically relevant genes 
will facilitate the prediction of clinical outcomes and treatment 

decisions8–10. It should be noticed that clinically relevant differences 
in gene expression among study groups are often small11–13. Hence, 
there is a consistent need for making RNA-seq more reliable to enhance  
its power of detecting subtle differential expression, especially for 
clinical applications such as companion diagnostics and prognostics. 
The reliability of RNA-seq technology comprises two aspects. It must be 
ensured that data from a certain laboratory or batch are acquired with 
the best proficiency obtainable with the technology (intra-batch)14, and 
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of National Reference Materials and are extensively being used for 
proficiency testing and method validation. The certified reference 
material numbers are GBW09904 (D5), GBW09905 (D6), GBW09906 
(F7) and GBW09907 (M8).

Large quantities of RNA (over 5 mg) were obtained per cell line, 
enabling standard RNA-seq experiments over 10,000 to 50,000 times 
and providing a material basis for long-term quality monitoring. RNA 
quality was high according to RNA integrity number (RIN) and RNA 
purity (Supplementary Fig. 1 and Supplementary Table 1). More
over, the RNA reference materials showed adequate stability across 
20 months of storage at −80 °C or 14 d of storage at room temperature 
(25 °C) or 4 °C or up to 20 times of bottle-opening and freeze–thaw 
cycle (Supplementary Fig. 2).

RNA-seq datasets from the Quartet RNA reference materials were 
then collected, consisting of 252 RNA-seq libraries from 21 batches 
generated in eight laboratories using two library construction  
protocols (PolyA selection and RiboZero) and two sequencing  
platforms (Illumina NovaSeq (ILM) and MGI DNBSEQ-T7 (BGI)) (Fig. 1a  
and Supplementary Table 2). Here, a batch is defined as 12 libraries  
from a standard sample set, consisting of 12 vials with each represent-
ing one of the triplicates of the Quartet RNA reference sample groups, 
whose library construction and sequencing experiments were con-
ducted simultaneously. On the other hand, libraries constructed at 
different timepoints, in different laboratories, with different sequenc-
ing platforms, or using different library preparation protocols, are rec-
ognized broadly as cross-batch libraries (Fig. 1a). This comprehensive 
study design allows for objective performance assessment at multiple 
levels, including cross-time, cross-laboratory, cross-platform and 
cross-protocol. Moreover, RNA-seq experiments with the MAQC RNA 
reference materials (A and B) were conducted simultaneously with the 
Quartet reference materials in 20 of the 21 batches (Fig. 1a), enabling 
head-to-head comparisons between the two sources (MAQC versus 
Quartet) of RNA reference materials. In addition, the bioinformatic 
analysis pipeline was validated using published data from the MAQC 
RNA reference materials by comparison with previous studies15,20  
(Supplementary Fig. 3).

The Quartet exhibits small intrinsic biological differences
Using principal component analysis (PCA) as an exploratory overview 
of data analysis, we found that multi-batch libraries of the Quartet 
reference materials from the same protocol (PolyA or RiboZero) were 
clustered together, whereas libraries of MAQC A and B samples were 
clustered separately into distinct groups according to protocol and 
sample groups (Fig. 1b and Supplementary Fig. 4). This result indi-
cates that the intrinsic biological differences among the four groups of 
Quartet RNA reference materials are much smaller compared to those 
between the two MAQC RNA reference materials.

To investigate whether the magnitude of intrinsic biological dif-
ferences or signals between the Quartet reference materials is repre-
sentative of those seen in clinically relevant scenarios, we compared the 
extent of intrinsic biological differences between reference materials 
(MAQC A versus B and Quartet members) and those of four biological 
classification problems from published datasets ranging from four 
subtypes of triple-negative breast cancers (TNBCs)34, four subtypes of 
breast cancers35, four types of tumor tissues35 and four types of normal 
tissues36. The number of differentially expressed genes (DEGs), previ-
ously used as a measure of ‘treatment effect size’13, identified from 
the four biological classification problems ranged from 884 to 4,980 
(mean), corresponding to an increase of intrinsic biological differences 
and/or decrease of within-group heterogeneity (Fig. 1c). Notably, the 
differences among Quartet RNA reference materials were 2,164 (mean) 
in terms of DEGs, which were ranked in the middle of these four clinical  
classification scenarios. In contrast, the differences between the two 
MAQC RNA reference materials were much larger (16,503, mean) 
than those observed in the aforementioned biological classification 

similar differential expression results from replicate samples processed 
with different platforms, laboratories, protocols or batches should 
be required (cross-batch)15. Cross-batch reproducibility also refers to 
multi-batch integrability, which is the ability to provide similar results 
between within-batch analysis and cross-batch integrative analysis  
in the existence of widespread batch effects16,17.

Reference materials are valuable tools for evaluating the reliability 
of omic data18,19. Based on RNA-seq data generated with reference mate-
rials from different platforms, laboratories or batches, reliability can be 
objectively evaluated according to the two aforementioned aspects of 
intra-batch (or laboratory) proficiency and cross-batch reproducibility. 
The MicroArray/Sequencing Quality Control (MAQC/SEQC) consortia 
previously established two publicly available transcriptome-wide RNA 
reference materials that are derived from 10 cancer cell lines and brain 
tissues of 23 donors15. Based on these RNA reference materials, the 
MAQC/SEQC consortia systematically evaluated the performances 
of different platforms and laboratories in using the microarray15 and 
RNA-seq20,21 technologies, which have served as resources for the 
research community to develop and validate new RNA quantification 
technologies22.

However, the ability to successfully distinguish the two MAQC 
RNA reference materials does not guarantee that the underlying tran-
scriptomic profiling system can be used to detect subtle differential 
expression for clinical diagnosis purposes. First, the considerable 
biological differences between the two MAQC reference materials23 
are substantially greater than groupwise differences commonly seen in 
most clinically relevant scenarios. Second, the ability of distinguishing  
two MAQC RNA sample groups does not translate to the ability of  
reliably distinguishing more than two sample groups as commonly seen 
in clinical applications. Third, the current stock of the MAQC B sample 
is almost exhausted24, and it is difficult to be regenerated. Therefore, 
there is an urgent need for a multiple-group RNA reference materials 
suite with subtle inter-sample differences, high stability, long-term 
availability and easy manufacturability.

Furthermore, reference datasets can be used as ‘ground truth’  
in performance assessment. Previous studies have shown that genome- 
wide reference datasets of genetic variants enable improvement of  
the reproducibility and accuracy of clinical applications of cancer25–27  
and genetic diseases28–30. However, there is a paucity of transcriptome- 
wide reference datasets3,18. Therefore, transcriptome-wide reference 
datasets associated with publicly available RNA reference materials 
are urgently needed but are lacking18.

As a part of the Quartet Project for the quality control and data 
integration of multi-omics profiling (http://chinese-quartet.org/), we 
established four RNA reference materials derived from immortalized 
B-lymphoblastoid cell lines (LCLs) from the four members of a mono
zygotic twin family quartet, which exhibited subtle inter-sample differ-
ences, high stability, long-term availability and easy manufacturability. 
Furthermore, matched multi-omics reference materials, including  
DNAs31, proteins32 and metabolites33, were established along with 
RNAs from the same culturing of the LCLs to enable integrative omics 
analyses. In this study, we performed a multi-laboratory RNA-seq study 
based on 21 batches of multi-laboratory RNA-seq datasets generated 
with different protocols, established ratio-based reference datasets 
of gene expression and developed quality metrics for assessing reli-
ability of RNA-seq technology in terms of intra-batch proficiency and 
cross-batch reproducibility.

Results
Overview of study design
The Quartet RNA reference materials were derived from the  
Epstein–Barr virus (EBV) LCLs from four members of a Chinese fam-
ily quartet, including monozygotic twin daughters (D5 and D6), 
father (F7) and mother (M8) (Fig. 1a). They have been certified by  
China’s State Administration for Market Regulation as the First Class 
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problems (Fig. 1c). These data again illustrate that the intrinsic bio-
logical differences among the Quartet reference materials are much 
smaller than those between MAQC RNA reference materials A and B 
and that such small differences are similar to those seen in clinical and 
biological classification scenarios.

Signal-to-noise ratio enables assessment of data quality
Based on the Quartet design, a signal-to-noise ratio (SNR) metric was 
established to gauge the performance of a platform, a laboratory, a 
protocol or a batch in distinguishing the intrinsic biological differences 
(‘signal’) among the Quartet samples from variations among technical 
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Fig. 1 | Overview of study design. a, Quartet RNA reference materials were 
derived from immortalized EBV-infected B-LCLs from a quartet family, including 
monozygotic twin daughters (D5 and D6) and their father (F7) and mother 
(M8). Multi-batches of RNA-seq datasets were generated from independent 
laboratories using different library preparation protocols and sequencing 
platforms. Intra-batch proficiency and cross-batch reproducibility were then 
estimated. Based on multi-batches of RNA-seq data, we constructed ratio-based 
transcriptome-wide reference datasets and developed corresponding quality 
metrics. b, Scatter plots of PCs on RNA-seq data of the Quartet and MAQC RNA 
reference materials (marked in colors) across 20 batches (marked in shapes; 
see Supplementary Fig. 4 for details). log2-transformed FPKM values were used 
for PCA. c, Box plots showing the numbers of DEGs among Quartet reference 
materials, MAQC reference materials and four clinical/biological classification 
problems from published datasets. The four clinical/biological classifications 
used to represent clinical scenarios include four subtypes of TNBCs with different 
therapeutic actions (basal-like and immune-suppressed, luminal androgen 

receptor, immunomodulatory subtype and mesenchymal-like subtypes)34, four 
subtypes of breast cancers (BRCAs) with different prognosis and therapeutic 
actions (luminal A, luminal B, basal-like/triple negative and HER2-positive 
subtypes)35, four types of tumor tissues (brain, breast, kidney and lung cancers)35 
and four types of normal tissues (brain, breast, kidney and lung)36. The latter two 
types of biological classification problems are important for understanding the 
genetic basis of human diseases. Three samples from each clinical subtype or 
biological group were randomly selected for differential expression analysis to 
eliminate effect of number of samples used for analysis. A gene was identified 
as differentially expressed when satisfying the criteria of Student’s t-test two-
sided P < 0.05 and fold change ≥2 or ≤0.5 between two groups or conditions. To 
eliminate selection biases, this process was repeated 20 times (n = 20). The box 
plots display the distribution of data with the median represented by the line 
inside the box and the interquartile range represented by the box. The whiskers 
extend from the box to the minimum and maximum values that are not outliers.
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replicates of the same sample group (‘noise’) (Fig. 2a). Generally, a lower 
SNR value indicates lower discriminating power and vice versa. An SNR 
value around or below zero means that the magnitude of signal is at a 
similar level as the noise or even lower than the noise. In this case, it is 
impossible to distinguish different sample groups under the high level 
of technical noises (Fig. 2b).

We evaluated the performance of five different methods in  
defining the SNR depending on whether the calculation is based  
on the original feature space or the dimensionality-reduced space  
(see Methods for details), including OriAll_EucDist, OriSingle_ 
MedianEucDist, OriAll_1-Cor, ReducedDim_tSNE and ReducedDim_
PCA. It was found that the PCA-based SNR outperformed the other 
four methods in terms of its sensitivity in differentiating the quality 
of different datasets, as seen by a larger variability and a higher value 
of the SNR (Supplementary Fig. 5a). We next computed SNR using 
different numbers of principal components (PCs) of PCA (Supple-
mentary Fig. 5b). SNR values based on the first component, the first 
two components or the first three components were highly correlated 
(Supplementary Fig. 5b). With the desire to maximize the range (that 
is, variability) of SNR over experiment batches and to match the good 
visual presentation of batch quality control, we chose SNR computed 
with the first two PCs.

SNR enables assessment of quality across the 21 batches of 
RNA-seq data. For most batches, the three replicates from the same 
sample group can be clearly distinguished from those of other sample 
groups (Supplementary Fig. 6). Large fluctuations of SNR values were 
observed across batches generated with the same protocol, the same 
sequencing platform or even from the same laboratory, highlight-
ing the need for objectively assessing and monitoring the technical 
competency in data generation (Fig. 2c). Using an SNR cutoff of 12 
(mean − s.d. across 21 batches), batches were flagged as high and low 
quality (Fig. 2d). It should be noted that SNR values based on different 
bioinformatics pipelines might differ, whereas the trend of the SNR 
across batches remained similar (Supplementary Fig. 7).

SNR can also be applied to diagnose potential causes of quality 
issues. In addition to the SNR values considering all 12 libraries in a 
batch, we also calculated SNR11 values with any 11 of the 12 libraries 
in each batch (Fig. 2c). In five batches, the SNR11 values increased by 
more than 6 dB compared to the corresponding 12-sample SNR values, 
indicating that the lower SNR values from these five batches might 
be a result of a ‘random failure’ of a particular technical replicate (for 
example, replicate M8-1 from batch L5_B1 and replicate F7-2 from batch 
L2_B1). In contrast, the three batches with the lowest SNR values were 
possibly due to systematic technical issues, because excluding any 
specific replicate (or potential outlier) could not greatly improve the 
SNR values.

Moreover, SNR enables assessment of data quality not only at gene 
expression level but also at alternative splicing (AS) level. Similarly, SNR 
values at AS level varied across batches. SNR values could be as high as 
32.3, so that the three technical replicates for each sample type on the 
PCA plot could be loosely regarded as one dot (Supplementary Fig. 8a)  
or as low as 2.4 where technical replicates of one sample type were 
mixed with libraries from other sample types (Supplementary Fig. 8b).

Using multiple metrics, including SNR and other widely used 
quality metrics, with fastq, bam and expression profiles, with SNR 
showing the greatest differentiating power, 13 batches were flagged  
as high quality and were used for subsequent data integration to  
create the reference datasets, whereas the other eight batches were 
flagged as low quality and excluded from constructing the reference 
datasets (Fig. 2d and Supplementary Table 3).

Ratio-based reference datasets
We next constructed transcriptome-wide reference datasets based 
on multi-batch and high-quality RNA-seq datasets, providing ‘ground 
truth’ for benchmarking. Ratio-based expression profiles, defined as a 

ratio or a fold change of expression levels between two sample groups 
for the same gene, agreed well across multiple transcriptomic technolo-
gies, including RNA-seq, microarray and quantitative polymerase chain 
reaction (qPCR)15,20. On the other hand, the incomparability of conven-
tional ‘absolute’ expression profiles across different batches prevented 
meaningful cross-batch data integration15,20. Hence, we constructed the 
ratio-based transcriptome-wide reference datasets (Fig. 3a).

First, the detectable genes in each sample group (D5, D6, F7 or M8) 
were identified by consensus separately. In brief, if a gene was detected 
in all 13 batches in a sample group, it was considered expressed in 
that sample group. For the four Quartet reference materials (D5, D6, 
F7 and M8), 21,300, 22,161, 22,134 and 22,500 genes were expressed, 
respectively, representing 36.5–38.5% of the 58,395 genes annotated 
in GRCh38 (Fig. 3a). Moreover, around 32,104–33,937 genes (55–58%) 
were detected in more than four high-quality batches.

Second, ratio-based expressions (as log2 transformed) were  
calculated for three pairs of sample groups using replicates of D6 as  
the common denominator (D5/D6, F7/D6 and M8/D6). To improve the 
reliability of the reference values, genes that were satisfied with thresh-
olds of P < 0.05 in each sample pair were used. Furthermore, genes 
that were significantly different (P < 0.05 and fold change ≥2 or ≤0.5) 
between PolyA and RiboZero protocols were removed to minimize 
technical variations introduced by the differences between the two 
distinct library preparation protocols. After these filtrations, the num-
ber of retained genes was 10,976, 9,451 and 10,728 for the three sample 
pairs (D5/D6, F7/D6 and M8/D6), respectively (Fig. 3a). Ratio-based 
reference datasets were then characterized between each pair of 
samples for a gene and were provided in the format of a geometric  
mean by summarizing from the 13 ratios calculated from each of the  
13 high-quality RNA-seq datasets (Supplementary Tables 4 and 5).

Third, the homogeneity and stability of the Quartet RNA reference 
materials were assessed (Fig. 3a and Supplementary Fig. 9). Homogene-
ity and stability are two crucial characteristics of reference materials37. 
Homogeneity assessment aims to ensure that the previously charac-
terized properties of reference materials are uniformly distributed 
across packaging units of the reference materials. Because the Quartet 
RNA reference materials were characterized using gene expressions, 
homogeneity assessment was conducted based on gene expression 
data. Here, we evaluated the homogeneity of reference materials by 
calculating within-unit (n = 9) versus between-unit (n = 16) variances 
of each gene using the analysis of variance (ANOVA) method (Sup-
plementary Fig. 9a,b). Most (94.2–96.3%) genes performed well in 
homogeneity assessment (Supplementary Table 6). On the other hand, 
stability assessment aims to ensure that the value of the properties of 
the reference materials previously characterized remains unchanged 
over time. Here, we evaluated the stability of the Quartet RNA refer-
ence materials by calculating the slope of the regression of each gene 
based on the 15 batches of RNA-seq datasets that were generated from 
10 timepoints over 26 months (Supplementary Fig. 9c,d). Most genes 
(91.9–95.1%) performed well in long-term stability assessment (Sup-
plementary Table 6). Therefore, the Quartet RNA reference materials 
stored at −80 °C were homogenous and stable, as can be seen from the 
corresponding reference datasets.

Fourth, uncertainties of the reference materials were estimated. It 
is essential for identifying each source of uncertainties and to quantify 
the uncertainty introduced by each source. According to ISO Guide 
35 (2017)37, ISO/IEC Guide 93-3 (2008)38 and SAC JJF-1343 (2012)39, 
the source of uncertainties can be classified into characterization 
uncertainties (uchar), sample inhomogeneities (between-bottle vari-
ation, ubb) and instabilities (us). These values were then aggregated 
to form the combined uncertainties (uc) and expanded uncertainties 
(U) with an expansion factor (k = 2, 95% confidence level) (Fig. 3a and 
Supplementary Table 6). As a result, most genes (83.1–88.1%) showed 
limited expanded uncertainties of less than 30%, demonstrating that 
the characterization of reference datasets was valid.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01867-9

Finally, high-confidence DEGs in the reference datasets (refer-
ence DEGs) were identified. A gene was considered as a reference DEG 
between two sample groups if it was concordantly discovered as an 
upregulated or downregulated gene (P < 0.05 and fold change ≥2 or 
≤0.5) in more than four of the 13 high-quality batches. The number 
of reference DEGs was 1,863, 1,418 and 1,755 for the D5/D6, F7/D6 and 
M8/D6 sample pairs, respectively (Fig. 3a and Supplementary Table 7).

To verify the reliability of the reference datasets, we performed 
qPCR with reverse transcription (RT–qPCR) as an orthogonal valida-
tion. We selected 82 genes from the Quartet RNA reference datasets and 

conducted RT–qPCR experiments on the four RNA reference materials 
(Supplementary Table 8). There is a high level of concordance between 
the Quartet reference datasets and the RT–qPCR data in terms of DEGs 
(92%, 91 of 99 DEGs across three sample pairs). We also compared the 
fold change of RT–qPCR versus that of reference datasets for the DEGs 
that were detected by both technologies (n = 91) (Supplementary Table 
9). We observed an expected high level of concordance to RT–qPCR 
(R = 0.85), similar to what was previously reported between microarray 
and RT–qPCR (R = 0.80–1)13 (Fig. 3b). DEGs that were identified in the 
reference datasets and RT–qPCR were further validated using droplet 

Signal

Noise

SNR =
10 × log10(Psignal/Pnoise)

a b

d

c

N read
Q30
Contamination
rRNA & mtRNA
Mapping ratio
5’–3’ bias
Intergenic region
Correlation

Final quality

SNR

Protocol
Platform
Lab

Quality
High
Low

PC1

PC
2

Good, SNR = 31

PC1

PC
2

Bad, SNR = 0

Group
D5
D6
F7
M8

F7-2

F7-2 D5-3

M8-1

M8-1

10
12

20

30

35

SN
R

SNR11
Normal
Outlier

R_
BG

I_L
3_

B1

R_
IL

M
_L

8_
B1

P_
IL

M
_L

8_
B1

R_
IL

M
_L

5_
B2

R_
IL

M
_L

2_
B2

R_
IL

M
_L

4_
B3

R_
IL

M
_L

1_
B1

R_
IL

M
_L

4_
B2

P_
BG

I_L
3_

B1

R_
BG

I_L
6_

B1

P_
IL

M
_L

1_
B1

R_
IL

M
_L

6_
B1

R_
IL

M
_L

5_
B3

P_
BG

I_L
6_

B1

R_
IL

M
_L

5_
B1

P_
IL

M
_L

5_
B1

P_
IL

M
_L

2_
B1

P_
IL

M
_L

6_
B1

R_
BG

I_L
7_

B1

R_
IL

M
_L

2_
B1

R_
IL

M
_L

4_
B1

Fig. 2 | SNR enables assessment and diagnosis of data quality. a, Concept of 
calculating SNR. SNR was established to characterize the ability of a platform, 
a laboratory or a batch to distinguish the intrinsic differences among distinct 
biological sample groups (‘signal’) from variations in technical replicates of the 
same sample group (‘noise’). b, Examples of good and bad batches with their SNR 
values and corresponding PCA scatter plots. c, SNR values across 21 RNA-seq 
batches to measure data quality. Batches were ordered by SNR values. Dots 
represent SNR values based on any 11 of the 12 libraries (SNR11) in each batch.  
A dot in dark red represents SNR11 value that increased over 6 dB compared  
to its standard SNR (12-sample SNR), when one library in this batch was excluded 
(the library ID was labeled), whereas a dot in orange represents SNR11 value  

that decreased or increased less than 6 dB compared to its standard SNR.  
d, Quality flags of RNA-seq batches in terms of the number of sequencing reads 
(N read), percentage of Q30 (Q30), percentage of reads that were mapped to 
contamination species (for example, virus, bacteria and fungi) (Contamination), 
percentage of reads that were mapped to rRNA or mtRNA (rRNA & mtRNA), 
percentage of reads that were mapped to the human genome (Mapping ratio), 
gene body (5′–3′) bias (5′–3′ bias), percentage of mapped reads that were located 
in intergenic region in human genome (Intergenic region), Pearson correlation 
coefficient of technical replicates (Correlation), SNR and Final quality flag. 
Batches were ordered by SNR values. Protocol, Platform and Lab information of 
each batch is shown by the color legend.
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digital PCR (ddPCR). Similar results were observed when comparing 
the fold changes between ddPCR and reference datasets in the afore-
mentioned DEGs (Fig. 3c and Supplementary Table 9). Note that the 
level of the correlation coefficients depends on the level of the intrinsic 
biological differences between sample pairs under comparison. The 
differences among the Quartet RNA reference materials were relatively 
small compared to those of the MAQC samples A and B, resulting in 
relatively lower concordance20 between the reference datasets and the 
RT–qPCR or ddPCR data for the Quartet reference materials.

Moreover, we used a liquid chromatography with tandem mass 
spectrometry (LC–MS/MS)-based proteomics dataset (batch code: 
NVG_QEHFX)32,40 for cross-omics validation of the RNA reference data-
sets (Supplementary Table 10). When all detected genes and proteins 
were considered, the correlation between RNA-seq and proteomics was 
modest (R = 0.45–0.57) (Supplementary Fig. 10), which was similar to 
what was reported in previous studies (R = 0.36–0.60)41,42. However, we 
found that, for DEGs, there was a much higher concordance between 
RNA and protein data. When using DEGs that were detected by both 
RNA and protein measurements, the correlation increased to 0.94–0.96 
(Fig. 3d and Supplementary Fig. 10). Thus, the protein-coding genes 
in the reference datasets that were differently expressed in the three 
sample pairs were successfully validated by the corresponding dif-
ferential protein abundances. In addition, our findings indicated that 
the RNA reference datasets might also help benchmark proteomics 
technologies.

Reference-dependent quality metrics
To benchmark RNA-seq data based on the aforementioned reference 
datasets, we developed three reference-dependent quality metrics. 
Specifically, we introduced the ‘relative correlation’ (RC) metric (that is, 
the Pearson correlation coefficient between the ratios of a test dataset 
for a given pair of samples and the corresponding ratio-based refe
rence datasets, representing the trend of numerical consistency of 
the ratio-based expression profiles). We then introduced the ‘RMSE’ 
metric (that is, root mean square error (RMSE) of differences of ratios 
between a test dataset for a given pair of samples and the corresponding 
ratio-based reference datasets, representing the magnitude of average 
distances of ratio-based expression profiles). Moreover, we introduced 
the ‘MCC of DEGs’ (MCC) metric (that is, Matthews correlation coeffi
cient (MCC) to measure the consistency of DEGs detected from a test 
dataset for a given pair of samples with those from the high-confidence 
DEGs in the reference datasets). Based on their definitions, higher  
values of RC and MCC of DEGs indicate a better fit between the  
test dataset and the reference dataset, whereas lower values of  
RMSE indicate a better fit. All three metrics were able to clearly  
demonstrate differences in data quality among the 21 batches of  
data, including the 13 high-quality and eight low-quality batches of 
data (Supplementary Fig. 11a).

One might argue that the lower RC, higher RMSE or lower MCC 
values of the eight pre-defined low-quality batches might have resulted 
from their exclusion during the construction of the reference data-
sets. To determine whether it was the case or not, we performed a 
30-times cross-validation test. In brief, in each round, we randomly 
selected 13 batches from the 21 batches to ‘train’ the reference data-
sets. Reference-dependent quality metrics were then calculated, and 

the remaining eight batches were used as a ‘validation’ set. The results 
showed that the ‘train’ and ‘validation’ metrics were highly correlated 
(R = 1) (Supplementary Fig. 11b), demonstrating that the quality metrics  
were not dependent on whether the batches were included in the  
construction of the reference datasets or not. Instead, the three  
metrics objectively reflected the intrinsic quality of a dataset, indicat-
ing that they were suitable for performance evaluation of future data-
sets. The cutoff values of RC, RMSE and MCC values were set to 0.89, 
0.38 and 0.54, respectively, which were expressed as the (mean − s.d.) 
of RC and MCC and the (mean + s.d.) of RMSE across validation sets  
in the 30-times cross-validation analysis (Supplementary Fig. 11b  
and Supplementary Table 3).

Furthermore, we compared characteristics between the two  
categories of quality metrics, including reference-independent  
quality metric (SNR) and reference-dependent quality metrics (RC, 
RMSE and MCC). In most cases, high-quality batches showed higher 
values of SNR, RC and MCC and lower values of RMSE, and vice versa, 
except for one batch (L5_B3) (Supplementary Fig. 11a). In this batch, 
a high SNR value (16.1) with low reference-dependent quality metrics 
(RC = 0.784, RMSE = 0.735 and MCC = 0.480) was observed. In fact, 
a customized library preparation kit designed for removing several 
highly expressed RNAs (for example, RN7S genes) was used in this batch 
(L5_B3), leading to overall differences between expression profiles from 
this batch and the reference datasets. Moreover, the complementarity 
between reference-independent and reference-dependent quality 
metrics was observed, indicating that both categories of quality metrics  
should be included in comprehensive performance assessment.

Finally, we calculated a total quality score by summarizing the 
two categories of quality metrics. Considering the high correlation 
among the three reference-dependent metrics (RC, MCC and RMSE) 
(absolute R ≥ 0.92) (Supplementary Fig. 11a), we used RC to represent 
the reference-dependent metric score for calculating the total quality 
score. The total quality score was expressed as the geometrical mean 
of SNR and RC for measuring the overall quality of a dataset for the 
intra-batch proficiency.

Ratio-based expressions improve cross-batch reproducibility
In large-scale projects, expression profiles are usually measured 
across multiple batches and pooled together for downstream analysis. 
Cross-batch reproducibility is, therefore, crucial. Multi-batch RNA-seq 
datasets derived from the Quartet RNA reference materials allowed us 
for objective performance assessment of cross-batch reproducibility at 
multiple levels, including cross-time, cross-laboratory, cross-platform 
and cross-protocol.

In this study, after pooling batches of data from the PolyA and/or 
RiboZero protocol(s) together without batch corrections, the impact 
of batch effects on obscuring the differentiation of biologically dis-
tinct groups could be clearly seen in a PCA plot with a diminished SNR 
value of below 5 (0–4.6) (Fig. 4a). Non-experimental factors, rather 
than intrinsic biological groups (D5, D6, F7 and M8), exhibited the 
largest differences. When PCA was based solely on the MAQC samples 
without the Quartet samples, batch effects could not be observed from 
PC1 due to the overwhelming biological differences between the two 
MAQC samples. However, indications of batch effects were appreciable 
from PC2 (Supplementary Fig. 12). When ratio-based expressions were 

Fig. 3 | Construction and validation of ratio-based transcriptome-wide 
reference datasets. a, Workflow for constructing Quartet RNA reference 
datasets. Reference datasets were constructed according to the following steps: 
(1) identifying detectable genes; (2) calculating ratio-based expression based 
on reliably detectable genes that were differentially expressed; (3) assessing 
the homogeneity and stability of RNA reference materials; (4) assessing 
the uncertainty of ratio-based reference datasets; and (5) identifying high-
confidence DEGs. b–d, Scatter plots of log2 fold changes (FCs) of gene expression 
between reference DEGs and RT–qPCR (b), ddPCR (c) and proteomics data (d). 

Pearson correlation coefficient across three sample pairs was calculated. Genes/
proteins that were considered as differentially expressed in both methods 
shown in x axis and y axis were used for plotting. x axis: average log2FC from 
13 high-quality RNA-seq batches reference DEGs. y axis: for the RT–qPCR and 
proteomics data, a gene or a protein was considered as a DEG/DEP when the t-test 
two-sided P < 0.05 and FC ≥2 or ≤0.5; for ddPCR data, genes that were identified 
as DEGs based on RT–qPCR were used. Average log2FC of RT–qPCR (n = 3), ddPCR 
(n = 2) and proteomics (n = 3) data from DEGs/DEPs were used for plotting. DEP, 
differentially expressed protein.
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used, which referred to converting expression profiles to gene-wise 
relative scale within each batch using D6 as the denominator, the SNR 
value increased to around 20 (18.3–22.3). Meanwhile, all libraries from 

the PolyA and RiboZero protocols of the same sample group were 
grouped together based on ratio-based expressions (Fig. 4b). Similar 
results were observed when an alternative gene quantification tool 
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(for example, RSEM) or a normalization method (for example, normal-
ized counts) was used to quantify and compare relative expressions 
(Supplementary Figs. 13 and 14). These findings indicate the critical 
importance of detecting and correcting batch effects in multi-batch 
studies. Notably, ratio-based expressions were effective in mitigating 
such batch effects.

We then compared pairwise cross-batch performance to  
investigate integrability at different levels. When different batches 
of libraries are compared against each other, they could be classified 
into five different scenarios with increasing degree of differences, 
including intra-batch, cross-time, cross-laboratory, cross-platform of 
sequencing and cross-protocol levels. We compared the consistency 
between datasets from different levels of comparison using three  
quality metrics: SNR, RC and Pearson correlation coefficients.

SNR values were calculated for the five scenarios of comparisons. 
Compared to intra-batch SNR values (median SNR = 20.7), SNR values 
dropped to −0.4–1.2 (median SNR) at cross-time, cross-laboratory, 
cross-platform or cross-protocol comparisons when absolute expres-
sions (log2FPKM) of the two datasets were merged to calculate the SNR 
value. In this case, it is essentially impossible to distinguish different 
sample types under the influence of ‘batch effects’. Thus, expression 
profiles from two batches of libraries could not be integrated directly at 
the absolute expression level. However, when ratio-based expressions 
were used, SNR values maintained as high as 12.3–14.8 (median SNR) 
(Fig. 4c). This finding again reinforced the previous notion that ratio- 
based expressions are much more resistant to batch effects (Fig. 4b).

Similar results were obtained for performance based on RC values. 
Compared to intra-batch RC (median RC: 0.946), RC values dropped to 
0.543–0.772 (median RC) when absolute expressions of two datasets 
were compared. However, they maintained at 0.933–0.949 (median 
RC) when ratio-based expressions of the two datasets were considered 
(Fig. 4d).

Additionally, the median correlation of absolute expressions 
was as high as 0.965 for intra-batch technical replicates and 0.938 
between different groups in the same batch. It dropped to 0.814–0.927 
for cross-batch technical replicates. What is worse, correlations of 
technical replicates for the same sample from difference batches were 
significantly lower than correlations between different sample groups 
from the same batch (P < 0.001), highlighting the critical impact of 
batch effects (Fig. 4e). On the contrary, correlations of ratio-based 
expressions of technical replicates (0.319 –0.401) were consistently 
higher than those of different groups (0.072–0.093) under the dif-
ferent levels of cross-batch comparisons (Fig. 4f), demonstrating the 
differentiating power at the ratio-based expression level.

Our findings support the important roles of reference materials  
in assessing cross-batch reproducibility and their effectiveness in 
removing batch effects. It should be noted that we could clearly 
observe/monitor batch effects based on multi-batch datasets of 

Quartet RNA reference materials (Fig. 4a,b), whereas it is impossible 
with the MAQC reference materials due to their substantial differences 
(Fig. 1b). Thus, the Quartet reference materials can provide more pre-
cise assessment of measurement performance based on their small  
but biologically relevant intrinsic differences, highlighting their  
critical roles in assessing cross-batch reproducibility.

Biological differences between the Quartet twins
It was noticed that the two LCLs corresponding to the two monozygotic 
twin daughters (D5 and D6) exhibited consistently large differences 
in gene expression in all batches of data (Supplementary Figs. 6 and 
15), although one might have expected that the expression profiles 
from the two identical twins would show the highest similarity among 
all six pairs of the Quartet sample groups. Here, we used ratio-based 
expression profiles of the 13 high-quality batches and applied a 
weighted gene co-expression network analysis (WGCNA) approach43 
to discern the underlying biological forces behind the differences in 
transcriptome between the two cell lines. Genes were grouped with 
strong co-expression patterns across the sample set into eight modules  
(Fig. 5a). D5 samples were distinct from D6 samples in the PC1 space 
based on transcriptomic expression for most modules (seven of eight 
modules), including the largest module (turquoise module) with 2,368 
highly co-expressed genes (Fig. 5a,b). Functional analysis showed that 
the turquoise module genes were enriched in Gene Ontology (GO) 
terms, such as cell cycle and B cell proliferation (Fig. 5b). Moreover, a 
1,777-gene module (blue module), which showed dispersity between D5 
and other three groups (D6, F7 and M8) in the PC1 space, was enriched 
in B-cell-mediated immunity. These results imply that differential  
processes of B cell subtype selection and effects of cell culture might 
have occurred among the Quartet RNA reference materials (Fig. 5b).

On the contrary, when we applied WGCNA analysis on the log2F-
PKM values (Supplementary Fig. 16), the two largest modules (tur-
quoise and blue) were grouped according to protocols and/or batches. 
Only for the third (brown) and fourth (yellow) largest modules, the 
samples were grouped based on donors with genes enriched in B cell 
activation and immune responses. These results imply that biological  
signals of relationships among the Quartet cell lines were largely 
masked at the raw FPKM level, highlighting the negative impact of 
batch effect in absolute profile data.

To identify B cell subtypes corresponding to the Quartet  
RNA reference materials, we examined the expression levels of B cell 
surface membrane immunoglobulins (SmIg) on the Quartet cell lines. 
Four types of SmIg were measured, including IgD, IgM, IgG and IgA, 
which were biomarkers of the developmental stages of B cells. Notably, 
the IgA expression pattern of the immortalized cell lines from the two 
monozygotic twin daughters (D5 and D6) exhibited substantial differ-
ences in that IgA was highly expressed in D5 but almost undetectable in 
D6 (Fig. 5c). Additionally, the expression level of IgG was much higher 

Fig. 4 | Performance evaluation of cross-batch reproducibility. a,b, Scatter 
plots of PCA on RNA-seq data before batch correction (a) and after correction 
(b) from replicates of the Quartet RNA reference materials (marked in colors) 
in the 21 batches (marked in shapes). Expressions in log2FPKM were used as 
before batch-correction datasets. Ratio-based expressions (which referred to 
converting expression profiles to gene-wise relative-scale profiles within each 
batch) were used to correct batch effects. Ratio-based expressions were obtained 
by subtracting log2FPKM by the mean of log2FPKM of the three replicates of 
D6 in the same batch. We used a multi-batch RNA-seq dataset, including 168 
RNA-seq libraries from the RiboZero protocol and 84 RNA-seq libraries from 
the PolyA protocol. Plots were color-coded by sample groups and shaped by 
batches. c,d, Box plots of SNR values (c) and relative correlation with reference 
datasets (RC) values (d) for comparisons indicated at the x axis. When each batch 
of libraries was compared against each other, they could be classified into five 
different scenarios with increasing degree of differences, including intra-batch, 
cross-time, cross-laboratory, cross-platform of sequencing and cross-protocol 

levels. Intra-batch SNR values were calculated using 12 samples in the same batch, 
whereas SNR values of cross-batch were calculated by combining expression 
data from all combinations of two batches (n = 24). e,f, Violin plots of Pearson 
correlation coefficients based on expression profiles before (e) and after (f) 
batch correction for comparisons indicated at the x axis. D5, F7 and M8 samples 
were used to calculate pairwise correlations, whereas D6 samples were used 
as denominators for calculating ratio-based expressions for correcting batch 
effects. The number of combinations (n) used to derive statistics in c–f in each 
box were as follows: c: intra-batch, n = 21; cross-time, n = 7; cross-laboratory, 
n = 62; cross-platform, n = 43; cross-protocol, n = 98; d: intra-batch, n = 63; cross-
time, n = 21; cross-laboratory, n = 186; cross-platform, n = 129; cross-protocol, 
n = 294; e and f: intra-batch intra-sample, n = 189; intra-batch cross-sample, 
n = 567; cross-time intra-sample, n = 189; cross-time cross-sample, n = 378; cross-
laboratory intra-sample, n = 1,674; cross-laboratory cross-sample, n = 3,348; 
cross-protocol intra-sample, n = 1,161; cross-protocol cross-sample, n = 2,322; 
cross-platform intra-sample, n = 2,646; cross-platform cross-sample, n = 5,292.
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in the M8 group compared to the other three groups (Fig. 5c). We fur-
ther performed immunophenotypic analysis of the four immortalized  
cell lines. In agreement with the SmIg findings from RNA-seq, the IgA+ 
cells were mainly present in the cell line from D5, whereas a lower 
percentage of IgA+ cells was found in other cell lines (Fig. 5d and 

Supplementary Fig. 17). Furthermore, the percentage of IgG+ cells 
was higher in M8 compared to the other three groups (Fig. 5d).

We hypothesized that the major factors driving transcriptomic 
expression characteristics were probably related to the processes for 
immortalizing cell lines (for example, B cell subtype selection during 
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Fig. 5 | Biological differences between immortalized B-LCLs of the Quartet 
monozygotic twins. a, Expression profiles from co-expression modules using 
data from 13 batches with high quality. Color-coded module membership 
was displayed in the color bars to the left of the dendrograms. Ratio-based 
expressions were obtained by subtracting log2FPKM by the mean of log2FPKM 
of the three replicates of D6 in the same batch. The heat map was colored using 
z-scored ratio-based expression profiles. b, Distances of samples in PC1 space and 
list of GO terms enriched with genes in each corresponding module. Enriched GO 

terms were generated based on hypergeometric test using clusterProfiler64, with 
a Benjamini–Hochberg correction and an adjusted P value cutoff of 0.05. PC plots 
were colored by sample groups. Bar plots were colored based on the number 
of genes included in GO terms. c, The normalized expression level (median 
fluorescence intensity, MFI) of B cell surface membrane SmIg IgD, IgM, IgG and 
IgA in immortalized B-LCLs. d, Left: representative flow cytometric dot plots 
show the IgD+ cells, IgM+ cells, IgG+ cells and IgA+ cells in immortalized B-LCLs. 
Right: expression levels of IgA, IgG, IgM or IgD in the four immortalized cell lines.
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EBV infection and cell culture)44. To validate this hypothesis, we further  
conducted RNA-seq experiments based on whole-blood samples  
of the four donors. Expression profiles of whole-blood samples  
from D6 and F7 donors looked different (Supplementary Fig. 18a) and 
were not grouped together as what we observed based on expression 

profiles from the cell lines (Supplementary Fig. 15). On the other 
hand, the twin daughters grouped close to each other and showed the  
highest similarity in expression profiles among the Quartet samples 
in the PCA plot (Supplementary Fig. 18b). The intrinsic biological 
differences between the Quartet monozygotic twins enhanced our 
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Fig. 6 | Recommended group–replicate combinations for using the Quartet 
RNA reference materials for quality control. a,b, Distribution of SNR (a) and 
relative correlations with reference datasets (RC) (b) under different group–
replicate combinations of Quartet RNA reference materials used for assessing 
intra-batch proficiency. c, Distribution of SNR values for ratio-based expression 
using different numbers of samples and/or replicates as the denominator for 
the calculation of the ratio-based expressions. x axis represents the enumerated 

number and groups of Quartet reference materials. Titles of subpanel represent 
the number of sample groups (G) and replicates (R) used for calculating SNR (a), 
RC (b) and denominators for applying the ratio-based method (c). For example, 
‘G2R2’ represents four libraries comprising two sample groups (G) with two 
replicates (R) per group. The recommended combinations are marked with 
asterisks (*).
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understanding of the Quartet RNA reference materials and could be 
used as another layer of built-in truth to increase the quality control 
utilities of the Quartet RNA reference materials45.

Recommended group–replicate combinations
An important question is what group–replicate combinations would 
constitute an appropriate choice for applying Quartet RNA reference 
materials for quality control in routine transcriptomic profiling. Thus, 
the replicate number and group number of Quartet RNA reference 
materials that could be used were enumerated. The results revealed 
that a minimum of three sample groups and two replicates per batch 
were required for reaching SNR with high sensitivity for distinguishing 
data quality of different batches. The use of only two sample groups was 
not enough for distinguishing quality difference of datasets (Fig. 6a).  
Meanwhile, it was revealed that a minimum of two replicates per  
sample type were required for obtaining RC with high consistency with 
the ground truth (Fig. 6b). Under the same number of replicates and 
groups, the impact of group combinations (D5, D6, F7 or M8) was minor.

Furthermore, the number and groups of reference materials that 
could be used as a reference (denominator) in ratio-based profiling 
within each batch were enumerated. SNR increased markedly at the ratio 
(relative) level compared to the absolute level even when only one single  
replicate was used, with a median SNR value greater than 14 (Fig. 6c),  
and the SNR values further increased when more replicates and/or more 
sample groups were added to calculate average expression values as 
the denominator. Moreover, the SNR values obtained using only one 
sample to calculate the denominator varied greatly, whereas SNR 
values based on the mean of more replicates and/or sample groups as 
the denominator were more stable. Given the same number of samples 
as the denominator, a higher number of sample groups helped further 
increase SNR.

These results provided a solid foundation to determine the 
optimal number of samples and/or replicates to be used for perfor-
mance assessment and ratio-based transcriptomic profiling using 
the Quartet RNA reference materials. When RC with the reference 
datasets was used for intra-batch performance assessment (Fig. 6b)  
and when multiple-sample groups/replicates were used as the 
denominator for ratio-based cross-batch effect correction (Fig. 6c), 
the use of two sample groups appears sufficient in many settings. 
However, when reference-dataset-free SNR was used for intra-batch 
performance assessment (Fig. 6a), multiple groups of reference 
materials (≥3) are required. SNR has been shown to be more sensitive 
in assessing and diagnosing data quality issues. Moreover, SNR is a 
reference-independent quality metric, enabling assessment beyond 
the boundaries of the reference datasets. Hence, for proficiency test 
purposes, multi-group references are needed to implement compre-
hensive quality assessment.

Discussion
We generated well-characterized, high-quality, homogenous and stable  
Quartet RNA reference materials and constructed corresponding refe
rence datasets from reliable transcriptomic data, which can be a useful 
tool for objectively assessing data quality and improving the reliability  
of transcriptomic profiling, specifically within a clinical setting.  
Notably, the Quartet RNA reference materials have been approved by 
China’s State Administration for Market Regulation as the First Class 
of National Reference Materials and are extensively being used for 
proficiency testing and method validation.

The Quartet RNA reference materials exhibit several advantages.  
First, they are a part of multi-omics reference materials, with matched 
DNA, RNA, proteins and metabolites generated from the same 
immortalized cell lines. This study design allows for cross-omics 
validation and will help reliably understand the biological traits of 
the reference materials. Second, the suite of reference materials is 
from a four-member Quartet family including two monozygotic twin 

daughters and their father and mother. Genomic and phenotypic 
characteristics are involved in the four RNA samples, acting as built-in 
‘truth’. The reference datasets based on intrinsic biological differences 
among the Quartet RNA reference materials have been constructed and 
can be used as ‘ground truth’ for quality assessment (Fig. 3). Expression 
characteristics affected by genetic relationships of the four reference 
materials will be further studied45. Third, the RNA reference materials 
are derived from cell lines from four individuals. The small intrinsic 
biological differences among the Quartet RNA reference materials 
enable precise assessment at inter-patient level, rather than inter-tissue 
level, which are closer to clinical scenarios of subtle differences among 
study groups (Fig. 1c). Fourth, the RNA samples are produced in large 
amounts in one batch and are renewable through cell culture. By mini-
mizing batch effects that may be introduced during cell culture and 
RNA extraction, the Quartet RNA reference materials are sufficient 
for performing standard RNA-seq experiments over 10,000 to 50,000 
times and provide a material basis for long-term quality monitoring. 
Based on comprehensive assessments, the Quartet RNA reference 
materials are homogenous and long-term stable at the storage tempera-
ture of −80 °C. The publicly available Quartet RNA reference materials 
can also be used for further evaluation of emerging technologies as well 
as new areas of interest that are beyond gene expression levels, such as 
AS, RNA editing, gene fusion and epitranscriptomics. In addition, the 
Quartet RNA reference materials comprise high-quality total RNAs, 
including not only full-length RNAs but also small RNA molecules  
such as miRNAs, enabling further quality assessment of small RNA 
profiling technologies.

Quality metrics derived from the Quartet RNA reference materials  
and reference datasets can be used for proficiency testing and external  
quality assessment. Previous quality metrics were focused on biases 
from library preparation or on detecting outliers in expression  
profiles4,17,21,46–49. It has been previously demonstrated that ‘lab 
effects’ strongly affect the detection of DEGs, highlighting the impor-
tance of assessing data quality in detecting DEGs20. In this study, we  
developed comprehensive quality metrics for assessing the reliability  
of differential expression, including discriminating power across  
different biological groups (SNR) and reproducibility of identify-
ing DEGs (RC, RMSE and MCC), which are reference independent  
and reference dependent, respectively. In addition, distributions  
of these quality control measures were obtained from multiple 
real-world RNA-seq datasets, providing practical cutoffs to decide 
whether the proficiency of a test dataset is acceptable.

The Quartet RNA reference materials can be used for monitoring 
and correcting batch effects. Batch effects are notorious technical  
variations irrelevant to study factors and are challenging to deal  
with, especially when they are confounded with biological factors of 
interest50,51. Our results demonstrate that the presence of batch effects 
without correction can lead to misclassification of samples (Fig. 4a), but 
we found that these batch effects can be mitigated by using ratio-based 
expressions (Figs. 4b,c,f and 6c), if one or more common reference 
materials are profiled across batches. Our companion work found that 
using ratio-based data analysis by scaling the absolute feature values 
of study samples relative to those of concurrently measured reference 
sample(s) on a feature-by-feature basis could effectively mitigate the 
widespread problems of batch effects in epigenomics, transcriptomics, 
proteomics and metabolomics datasets52,53. This ratio-based method 
is equally effective even for study design of completely unbalanced 
distributions of samples in different groups between different batches. 
In practice, the imbalance in samples across batches is almost inevitable 
because of hidden biological subpopulation variabilities50,51.

In addition, the advantages of ratio-based expression profiles 
remain in identifying DEGs, which were extensively explored in our 
companion work53. A straightforward method (that is, fold change rank-
ing with a non-stringent t-test P value cutoff) can be applied to perform 
differential analysis in ratio-based profiles. The effectiveness of the 
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DEG method was previously shown in microarray15,54 and RNA-seq18,20 
data in absolute expressions.

The Quartet RNA reference materials can act as valuable tools 
for quality control in large-scale, longitudinal and multi-center pro-
jects. Many large-scale consortium projects with comprehensive and 
coordinated efforts help accelerate understanding of the molecular 
basis of transcriptome by producing RNA-seq data with a large sam-
ple size36,55–57. However, the broad variety of platforms, protocols and 
laboratory proficiencies58–60 has created the need for comprehensive 
reference materials. At the starting point of a large-scale project, we 
recommend that researchers conducting RNA-seq experiments using 
the Quartet RNA reference materials in each laboratory assess and 
ensure intra-batch proficiency and cross-batch reproducibility before 
analyzing precious study samples. Meanwhile, researchers can use the 
Quartet RNA reference samples routinely along with study samples to 
monitor and correct batch effects.

The combinations of sample groups and number of replicates for 
the application of the Quartet RNA reference materials are context 
dependent. For proficiency test and external quality assessment pur-
poses, where the frequency of reference usage could be as low as a few 
times per year, it is recommended to apply multiple groups of samples 
with multiple replicates per group. Users can apply a minimum of 
three sample groups and two replicates for quality assessment (Fig. 6). 
Users can apply a total of 12 samples, comprising the four Quartet RNA 
reference materials with three replicates for each RNA sample group, 
to implement full quality assessment mentioned in the study and 
remove batch effect in a robust way (Fig. 6a,b). For batch effect removal 
purposes in large cohort studies, where the Quartet RNA reference 
materials are expected to be routinely used along with study samples, 
and where additional cost associated with profiling reference samples 
becomes an issue, it is recommended to apply fewer sample groups and 
fewer replicates per batch. Users can even apply four sample groups 
or as few as two sample groups without replicates as a cost-effective 
choice of references for monitoring and correcting batch effects  
(Fig. 6c). In this case, we suggest the use of a total of four profiles 
from each replicate of the four Quartet RNA reference materials as  
the denominator per batch of 96 libraries for ratio-based expression 
profiling, reaching a high SNR while maintaining a reasonable addi-
tional cost (4 / (96 − 4) = 4.3%) per batch of 92 study samples.

To facilitate the adoption of multi-omics reference materials, refer-
ence datasets and quality metrics from the Quartet Project, we devel-
oped a Quartet Data Portal (http://chinese-quartet.org/) for access to 
the Quartet resources and for enhancing the quality consciousness 
of the community40. Researchers can request the multi-omics refer-
ence materials, datasets and reference datasets from the data portal. 
Additionally, researchers can upload RNA-seq data of their own, auto-
matically analyze and evaluate data quality and/or share data with the 
community. With the growing use of the Quartet reference materials, 
we hope to generate and collect diverse datasets and further upgrade 
the reference datasets.

Although many advantages of using the Quartet RNA reference 
materials were obvious and are listed above, several limitations of the 
Quartet samples should also be noted. First, only around 55–58% of 
the 58,395 annotated genes were reliably detected (detected in more 
than four high-quality batches) in the Quartet RNA reference materials, 
limiting quality assessment and ratio-based scaling to these detectable 
genes. This is not a serious issue when using Quartet RNA reference 
materials for proficiency testing and external quality assessment. 
However, this could become a limitation when the Quartet RNA refer-
ence materials are to be used for profiling along with study samples for 
reporting ratio-based profiling data. Ratio-based scaling may success-
fully mitigate batch effects from genes when they are expressed in both 
the study samples and reference material(s). If a gene is expressed only 
in study samples but not in reference materials, its expression may not 
be successfully corrected. In such a scenario, a fudge factor may be used 

for making the ratio calculation possible. The limitations of ratio-based 
scaling are also extensively discussed in our accompanying papers52,53. 
Second, a single analysis pipeline was used in this study, which may 
introduce bias in transcriptomic quantification and characterization 
of the reference datasets. Although previous studies compared the 
performance of different RNA-seq analysis tools and found overall good 
reproducibility for different tool combinations in terms of differential 
expression calls after proper filtering processes61–63, bioinformatics 
tools will be further evaluated and used for characterizing the refer-
ence datasets. Third, the datasets were generated by high-throughput 
short-read sequencing technologies. It is likely that, with further bench-
marking and widespread adoption of reference materials, additional 
reagents, protocols and instruments will be evaluated.

In summary, the Quartet RNA reference materials and reference 
datasets are unique resources to improve quality of RNA-seq data. 
Inclusion of the Quartet RNA reference materials in RNA-seq batches 
coupled with reference datasets will make RNA-seq more reproducible, 
accurate and comparable, especially within clinical settings.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
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Methods
Cell lines
Human subjects, establishment of the EBV-transformed B-LCLs, expan-
sion and cryopreservation of the cells, cell culture and cell quality con-
trol are described in an accompanying paper by Zheng et al.52. In brief, 
four healthy volunteers from a quartet family in Taizhou, Jiangsu, China 
were enrolled, and their peripheral blood samples were collected. The 
study was approved by the institutional review board of the School 
of Life Sciences, Fudan University (BE2050). Peripheral blood mono
nuclear cells were isolated; the naive B cells were sorted and infected 
with EBV by centrifugation at 400g for 1 h; and the immortalized cell 
lines were cultured in an incubator. About 1.0 × 1011 cells were harvested 
for each cell line in the same batch to ensure that multi-omics reference  
materials were extracted from the same batch of cultured cells.  
About 2.0 × 109 cells per cell line were used for generating Quartet RNA 
reference materials.

RNA extraction and quality assessment
TRIzol reagent was added to resuspend the cells. Total RNA was extracted  
using an RNeasy Maxi Kit (Qiagen, cat. no. 75162) including on-column 
DNase-I digest, according to the manufacturer’s instructions.

RIN values were obtained for assessing RNA quality with a  
Bioanalyzer 2100 (Agilent Technologies) using RNA 6000 Nano assay 
(Agilent Technologies) and a Qsep 100 system (BiOptic). RNA con-
centrations, OD280/260, OD260/230 and 28/18S were assessed by a 
NanoDrop ND-2000 spectrophotometer (Thermo Fisher Scientific). 
Over 5 mg of RNA was obtained per cell line. RNAs were then aliquoted 
into more than 1,000 tubes per sample group with 5 μg of RNA per tube.

As a part of the Quartet Project, multi-omics reference materials 
(DNA, RNA, protein and metabolite) were established simultaneously 
from the same batch of cultured EBV-immortalized B-LCLs from the 
Quartet family members. The Quartet multi-omics reference materials 
are available to the public. Users can request reference materials via 
the Quartet Data Portal (http://chinese-quartet.org/).

RNA stability assessment
Bottle-opening and freeze–thaw stability. RNAs were stored in 0.5-ml 
tubes at −80 °C for over 1 h until completely frozen. Frozen samples 
were thawed at 4 °C for approximately 0.5 h until completely thawed 
(freeze–thaw 1). We then opened the tubes and took 1-μl aliquots per 
tube out for further analysis (bottle-opening 1). The remaining RNAs 
were immediately re-frozen at −80 °C. This cycle was repeated for  
20 times. RIN values were assessed at the 0, 1, 2, 3, 4, 5, 6, 8, 10, 14, 16, 
18 and 20 times of opening and freeze–thaw to evaluate the integrity 
of RNA. Three replicates per sample group were assessed during each 
assessment.

Short-term stability. The stability of Quartet RNA reference materials  
at room temperature (22–25 °C) and 4 °C was assessed. First, four groups  
of the Quartet RNA reference materials were assessed for up to 4 d. 
RIN values were assessed at 0 h, 6 h, 24 h and 4 d to evaluate the overall 
quality of RNA during storage. Second, considering the same trends 
and similar results across the four Quartet RNA reference materials, 
we used two RNA reference materials (F7 and M8) for up to 14 d. RIN 
values were assessed at 0, 2, 4, 5, 6, 7, 8, 10, 12 and 14 d, separately. Three 
replicates per sample group were assessed during each assessment.

Long-term stability. The stability of RNA reference materials at  
storage of −80 °C was monitored for up to 20 months. RIN values were 
assessed at 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17 and 20 months. 
Three replicates per sample group were assessed at each timepoint. 
The MAQC RNA reference materials, including A sample (Universal 
Human Reference RNA, Agilent Technologies) and B sample (Human 
Brain Reference RNA, Thermo Fisher Scientific)15, were used as controls 
at each timepoint.

Library construction and sequencing
According to the Quartet Project study design, 12 tubes of RNA 
samples were sent to each laboratory, including four groups of the  
Quartet RNA reference materials with triplicates per group. Library 
preparation, library quality control and sequencing were conducted 
in a fixed order (D5-1, D6-1, F7-1, M8-1, D5-2, D6-2, F7-2, M8-2, D5-3, D6-3, 
F7-3 and M8-3) in each laboratory to eliminate confounding factors, 
such as experimental sample processing order with sample group.

RNA-seq library preparation and high-throughput sequencing 
were conducted by each laboratory. In brief, libraries were constructed 
by PolyA selection or ribosomal RNA depletion (RiboZero) methods. 
The libraries were sequenced on Illumina NovaSeq (ILM) or MGI 
DNBSEQ-T7 (BGI) platforms with paired-end (PE) reads of 100–150 base 
pairs (bp). A total of 252 Quartet RNA-seq libraries from 21 batches were 
generated. Additionally, we simultaneously generated 20 batches of 
RNA-seq datasets using MAQC reference materials as controls. Detailed 
information on RNA-seq library construction and sequencing is shown 
in Supplementary Table 2.

Four RNA libraries from whole blood of the Quartet donors were 
constructed by the RiboZero method (TruSeq RNA Library Prep Kit) and 
sequenced on an Illumina HiSeq 4000 platform with 150-bp PE reads.

Alignment and gene quantification
Preliminary processing of raw fastq reads was performed using fastp 
version 0.19.6 to remove adapter sequences65. Read alignment and 
quantification were conducted using HISAT version 2.1, SAMtools 
version 1.3.1, StringTie version 1.3.4 and Ballgown version 2.14.1 
(ref. 66). Reference human genome build 38 (https://genome-idx.
s3.amazonaws.com/hisat/grch38_snptran.tar.gz) and gene model from 
Ensembl (http://ftp.ensembl.org/pub/release-93/gtf/homo_sapiens/
Homo_sapiens.GRCh38.93.gtf.gz) were used for read mapping and 
gene quantification. log2 transformation was then conducted based 
on FPKM values. To avoid infinite values, a value of 0.01 was added to 
the FPKM value of each gene before log2 transformation. Expression 
profiles based on detected genes were used for further analysis. A gene 
was considered detectable (expressed) in a biological group within a 
batch if ≥3 reads were mapped onto it in at least two of the three repli-
cates. One replicate of MAQC B samples (library ID: R_ILM_L2_B1_B_3) 
was not included in further analysis due to low quality.

Moreover, we applied the RSEM tool for gene quantification to 
evaluate the impact of pipeline on assessing the reliability of RNA-seq 
data by comparing with the results from StringTie. Specifically, two 
batches of RNA-seq datasets from Quartet RNA reference materials 
were used, including one high-quality batch (R_ILM_L8_B1) and one 
low-quality batch (R_ILM_L4_B1) based on prior performance evalua-
tion. Read alignment and quantification was conducted using Bowtie2 
version 2.5.1 (ref. 67) and RSEM version 1.2.28 (ref. 68). Parameters were 
set by default according to the recommended pipeline from RSEM 
(https://github.com/deweylab/RSEM). The same reference genome and 
gene model were used. Expression matrix of FPKM values was obtained.

Quality control analysis of sequencing data at pre-alignment 
and post-alignment level was conducted using FastQC version 0.11.5  
(ref. 69), FastQ Screen version 0.12.0 (ref. 70), Qualimap version 2.0.0 
(ref. 71) and MultiQC version 1.8 (ref. 72).

Validation of analysis pipeline based on MAQC reference 
materials
The bioinformatics pipeline was validated using published data from 
the MAQC RNA reference materials15,20. Specifically, we downloaded  
the published RNA-seq fastq files through the Gene Expression  
Omnibus (GEO) (GSE47774), analyzed the dataset using the bio
informatics pipeline used in this study and generated an expression 
matrix of FPKM values as the dataset for validating the reliability of 
our pipeline. Meanwhile, the expression matrix of count values of the 
same dataset was obtained from the R/Bioconductor package seqc 
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version 1.28.0 (ref. 20), which could be used as positive control dataset. 
Data were normalized to counts per million (CPM). A value of 0.01 was 
added to the FPKM or CPM value of each gene, and log2 transformation 
was then conducted. Moreover, the expression profiles of the MAQC 
RNA reference materials from TaqMan assay were obtained through 
the GEO (GSE5350)15, which were used as the ‘ground truth’. Gene ID 
was mapped to Ensembl gene ID using the R/Bioconductor package 
biomaRt version 2.50.1. A total of 725 genes were mapped to Ensembl 
gene ID and were detected both in the RNA-seq and TaqMan data. 
Pearson and Spearman correlation coefficients based on log2 ratios 
(A/B) were further computed.

Ratio-based expression
Ratio-based expression data were obtained within each batch on a 
gene-by-gene basis. Specifically, ratio-based expressions were calcu-
lated based on log2FPKM values. For each gene, the mean of expression 
profiles of replicates of reference sample(s) (for example, D6) was first 
calculated and then subtracted from the log2FPKM values of that gene 
in each study.

DEGs
Differential expression analyses were implemented using the limma 
version 3.50.0 (ref. 73) and edgeR version 3.36.0 (ref. 74) packages 
according to guidelines from the limma package. A gene was consid-
ered differentially expressed in a batch between two sample groups if 
two-sided P < 0.05 and fold change ≥2 or ≤0.5 using the limma package 
for upregulation or downregulation, respectively.

Identification and quantification of alternative splicing
The alignment results based on the HISAT2 were used to identify AS 
events using SplAdder toolkit75 with the default parameters. Six types 
of AS events were quantified using percent spliced in values, including  
exon skip, intron retention, alternative 3′ splice site, alternative 5′ 
splice site, cassette exon and coordinated mutually exclusive exons.

Construction of reference datasets
We constructed the reference datasets of ratio-based expression based 
on the following steps: (1) identifying detectable genes; (2) calculating 
ratio-based expression based on reliable genes that were differentially 
expressed and with low uncertainty; (3) assessing the homogeneity and 
stability; (4) assessing the uncertainty of ratio-based reference data-
sets; and (5) calculating high-confidence DEGs in reference datasets.

First, detectable genes were identified. A gene was considered 
expressed in a sample in each batch if more than three reads were 
mapped to it in at least two of the three replicates. If a gene was detected 
in all the 13 batches in a sample group (D5, D6, F7 and M8), it was con-
sidered expressed in that sample group.

Second, ratio-based expressions were calculated. We used the 
expression profiles of three replicates of D6 in the same batch as the 
denominators and derived the ratio-based expressions for the three 
sample pairs (D5/D6, F7/D6 and M8/D6). The reference ratio-based 
expressions between each pair of samples for a gene were provided in 
the format of an average by summarizing from the 13 fold changes cal-
culated from each of the 13 high-quality RNA-seq datasets. To improve 
the reliability of the reference values, genes were included if they satis
fied the following criteria: (1) detectable across the two groups of 
each sample pair; (2) limma-based73 two-sided P < 0.05 in at least four 
batches in each sample pair; and (3) not significantly different between 
PolyA and RiboZero protocols (Student’s t-test two-sided P > 0.05 or 
fold change <2 and >0.5).

Third, the homogeneity and stability were assessed using RNA-seq 
datasets. The Quartet RNA reference materials were considered to 
be homogenous and stable, as can be seen from the corresponding 
reference datasets. Additionally, uncertainties of reference materials 
were assessed.

Finally, high-confidence DEGs in the reference datasets (reference  
DEGs) were identified. A gene was considered as a reference DEG 
between two sample types if it was concordantly discovered as an 
upregulated or downregulated gene (two-sided P < 0.05 and fold 
change ≥2 or ≤0.5) in more than six of the 13 high-quality batches.

Homogeneity assessment based on RNA-seq datasets
The homogeneity of the Quartet RNA reference materials was assessed 
using RNA-seq data. We randomly selected 17 tubes (units) of each 
Quartet RNA reference material and named them as N1–N17. Under 
the same condition, nine replicates in the N1 tube and one replicate in 
tubes N2–N17 of each material were assessed to represent within-unit 
(n = 9) and between-unit (n = 16) characteristics. A total of 25 RNA-seq 
experiments per reference material were conducted.

RNA-seq libraries were constructed by ribosomal RNA depletion 
methods (VAHTS Universal V6 RNA-seq Library Prep Kit for Illumina) 
and sequenced on the Illumina NovaSeq platform with 150-bp PE reads. 
Alignment, quantification and quality control were conducted using 
the same analysis pipeline and parameters described above.

The within-unit and between-unit variances were then calculated 
using the ANOVA method37,39. Ratio-based expressions were obtained 
by subtracting log2FPKM by the mean of log2FPKM of the three  
replicates of D6 in the same batch and used. A gene was considered  
to be homogeneous when a cutoff of false discovery rate (FDR)- 
adjusted ANOVA-based two-sided P > 0.05 was used. Only between-unit 
homogeneity is studied, because within-unit homogeneity might be 
negligible in the case of intrinsically homogeneous materials, such 
as solutions76.

Long-term stability assessment based on RNA-seq datasets
We assessed the long-term stability of the reference materials of 15 
batches of RNA-seq datasets that were generated from up to 26 months. 
Ratio-based expressions were obtained by subtracting the mean log2F-
PKM of the three replicates of D6 in the same batch from the log2FPKM 
values. According to ISO Guide 35 (2017)37 and SAC JJF-1343 (2012)39, 
long-term stability assessment was conducted based on regression 
analysis. For each gene, the observed slope b1 and uncertainty of slope 
b1 ((b1)) was calculated. If |b1| < s(s(b1)) × t0.95,n−2, the expression of the 
gene is stable, and vice versa, where t0.95,n−2 is critical t value for a confi-
dence level of 95% and n − 2 degrees of freedom.

Uncertainty assessment of reference datasets
According to ISO Guide 35 (2017)37, ISO/IEC Guide 93-3 (2008)38 and 
SAC JJF-1343 (2012)39, the source of uncertainties can be classified 
into characterization uncertainties (uchar), sample inhomogeneities 
(between-bottle variation, ubb) and instabilities (us). These values  
were then combined to form the combined uncertainties (uc) with  
a simple additive measurement model using an equal weight of  
the three uncertainty sources, as recommended37–39. The expanded 
uncertainties (U) were further computed by multiplying uc with an 
expansion factor.

First, characterization uncertainty of genes in the reference data-
sets was evaluated using 13 fold changes (log2 scale) from each of 13 
high-quality RNA-seq datasets. Relative uncertainty of characterization 
was used as characterization uncertainty (uchar), which can be expressed 
as equation (1) as follows:

uchar =
√

∑n
i=1 (xi− ̄x)2

(n−1)×n
̄x (1)

where n is number of measurements in the sample; xi is measurement 
value of ith time; and ̄x  is average value of x across n times.

Second, sample inhomogeneity ubb was evaluated using RNA-seq 
datasets. ubb can be expressed as equation as equations (2) and (3):
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When s21 > s22,

ubb =√
s21 − s22

n (2)

When s21 < s22,

ubb =√
s22
n × 4

√
2
vs22

(3)

where s21  is between-unit variation; s22 is within-unit variation; vs22  
is degree of freedom of s22; and n is number of between-unit 
measurements.

Third, long-term instability (us) was evaluated based on RNA  
quality RIN across 20 months, which can be expressed as equation (4)

us = t ×
√√√√
√

∑n
i=1 ( yi − b0 − b1xi)

2

(n − 2) × ∑n
i=1(xi − ̄x)2

(4)

where b0 and b1 are the intercept and slope of linear regression  
line between xi (month) and y (RIN); t is time (month); and n is  
number of observations. Short-term instability might be negligible, 
because reference materials are recommended to be transported 
using dry ice.

Fourth, a combined uncertainty (uc) should consider all uncer-
tainty described above, which can be expressed as equation (5):

uc = √uchar
2 + u2

bb + u2
s (5)

Finally, an extended uncertainty (U) can be expressed as  
equation (6):

U = k × uc (6)

where k is a constant value. Here, k = 2 was applied for 95% confidence 
level.

Performance metrics
Performance metrics, including SNR, RC with reference datasets,  
RMSE of differences with reference datasets and MCC of DEGs, were 
developed to evaluate the quality of RNA-seq data at expression level 
before a total score was calculated.

SNR. SNR is a measurement used in science and engineering. SNR 
is defined as the ratio of the power of a signal to the power of noise 
and is often expressed in decibels (https://en.wikipedia.org/wiki/
Signal-to-noise_ratio). In this study, the average distances representing 
the intrinsic ‘differences’ among distinct biological sample groups are 
regarded as the signal, whereas the average distances among technical 
replicates of the same sample group are regarded as noise.

To identify an effective way to calculate the SNR values, we  
evaluated the performances of SNR values calculated by five different  
algorithms depending on whether the sample–sample ‘distance’ 
(signal or noise) is calculated based on the original feature space or  
the dimensionality-reduced space and how the distance was calcu-
lated. For the original feature space, the distance was calculated in 
three different ways: Euclidean distance or (1 − Pearson correlation 
coefficient) with all features considered simultaneously as a vector 
to represent a sample (abbreviated as OriAll_EucDist or OriAll_1-Cor, 
respectively) and the median of the Euclidean distances across all  
features when each single feature is separately used to represent a  
sample (OriSingle_MedianEucDist). For the dimensionality-reduced 
space, the Euclidean distance was calculated using the coordinates of 

a sample in the PC space from either t-distributed stochastic neighbor 
embedding (tSNE) or PCA, abbreviated as ReducedDim_tSNE and 
ReducedDim_PCA, respectively. The numbers of PCs used in calculating 
SNR were then determined. We decided to use the first two components 
in PCA to calculate SNR values in correspondence with visualization 
in PCA plots.

Therefore, SNR is defined as equation (7):

SNR = 10 × log10 (
m×( n

2
)

( m
2
)×n×n

×∑m−1
x=1 ∑

m
y=x+1 ∑

n
i=1 ∑

n
j=1 ∑

2
p=1 Wp(PCp,i,x−PCp, j,y)

2

∑m
x=1 ∑

n
i=1 ∑

n
j=i+1 ∑

2
p=1 Wp(PCp,i,x−PCp, j,x)

2 )
(7)

where m is the number of sample groups, and n is the number of repli-
cates in each sample group. Wp represents the pth PC of variances. 
PCp,i,x,PCp, j,x and PCp, j,y represent the pth component values of replicate 
i and replicate j in sample group x or sample group y, respectively.

A standard sample set consisted of 12 tubes with each represent-
ing one of the three replicates of the four RNA reference materials. 
Therefore, a typical SNR in the study was the ratio of the average 
distances between different biological groups (9 × 12/2 = 54) to the 
average distances between technical replicates of the same groups 
(2 × 3 × 4/2 = 12). The distribution of intra-batch SNR values from 21 
RNA-seq datasets was used to identify a threshold of 12 (mean − s.d.), 
indicative of high discriminating power.

RC. RC with reference datasets was calculated based on the Pearson 
correlation coefficient between the ratio-based expression levels of a 
dataset for a given pair of groups and the corresponding reference fold 
change values. It is referred to as the ‘relative correlation with reference  
datasets’ metric, representing the numerical consistency of the ratio- 
based expression profiles. To improve reliability, the mean of the three 
replicates of each sample group was calculated before performing 
ratio-based expression analysis. Fold changes were transformed using 
log2 scaling.

RMSE. RMSE was calculated using fold changes between a test dataset 
for a given pair of samples and the corresponding ratio-based reference 
datasets, representing the average distances of ratio-based expres-
sion profiles. Fold changes were transformed using log2 scaling. It 
was implemented using the rmse function from the Metrics package77.

MCC. MCC is a widely used statistic in the field of bioinformatics and 
machine learning, which combines test sensitivity and specificity20,78. In 
this study, we used MCC to measure the consistency of DEGs detected 
from a dataset for a given pair of samples with those from the reference 
DEGs or ‘MCC of DEGs’. Reference DEGs and non-DEGs as true-positive 
(TP) and true-negative (TN) sets were integrated by consensus  
voting. When DEGs and non-DEGs of a given dataset were identified, 
the number of TP, TN, false positive (FP) and false negative (FN) could 
be calculated. MCC is computed using equation (8):

MCC = TP × TN − FP × FN
√(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(8)

Total quality score
The total quality score is calculated to measure the overall quality of a 
dataset generated from a laboratory for its effectiveness in quantifying 
the transcriptomic differences among the four Quartet RNA reference 
materials by summarizing reference dataset-independent quality 
measurement (SNR) and reference dataset-dependent quality meas-
urement (RC). The total quality score is expressed as the geometrical 
mean of SNR and RC.
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Cross-validation of reference-based quality metrics
To examine if the lower RC, higher RMSE or lower MCC and MCC for the 
low-quality batches were caused by their exclusion from creating the 
reference datasets, we performed 30 times of cross-validation test. In 
brief, in one cross-validation, we randomly selected 13 batches from 
the 21 batches to create (‘train’) the reference datasets, which were 
then used to calculate quality measurements for all the 21 batches. Both 
high-quality and low-quality batches might be randomly included or 
excluded from ‘training the reference datasets’, either as training or 
validation sets.

Co-expression analysis
Co-expression network was constructed using the R package WGCNA 
version 1.71 (ref. 43) using absolute expression and ratio-based expres-
sion profiles of 13 batches with high quality, respectively. Genes with the 
highest variations (n = 10,000) were used for conducting co-expression 
network. Modules were then identified with a dynamic tree-cutting 
algorithm with a minimum module size of 50. Modules were named in 
color. Thirteen (13) modules were identified based on absolute expres-
sions, including turquoise (n = 4,633), blue (n = 933), brown (n = 753), 
yellow (n = 728), green (n = 527) and so on. Moreover, eight modules 
were identified based on ratio-based expressions, including turquoise 
(n = 2,368), blue (n = 1,777), brown (n = 1,508), yellow (n = 741), green 
(n = 477), red (n = 229), black (n = 177) and pink (n = 133). PCA and func-
tional analysis of each module were conducted.

Functional enrichment analyses of each module were conducted 
based on GO terms and were conducted with the R/Bioconductor 
package clusterProfiler version 4.2.2, with a Benjamini–Hochberg 
correction and an adjusted P value cutoff of 0.05 (ref. 64).

RT–qPCR
Primers of 83 genes were designed using online Primers-BLAST of the 
National Center for Biotechnology Information based on the RNA 
sequences, and the PCR method of reference gene (C1ORF43) was 
established previously. Primers were synthesized by Beijing Liuhe 
Huada Gene Technology Co. Ltd. Sequences of primers are listed in 
Supplementary Table 8.

RT–qPCR reactions were performed in two steps. First, reverse 
transcription was carried out using 2 μl of RNA mixed with 4 μl of 5× 
PrimeScript IV cDNA Synthesis Mix (Takara, code no. 6215A) containing 
PrimeScript IV RTase, RNase Inhibitor, Oligo dT Primer, dNTP Mixture 
buffer and 1 μl of random 6mers and nuclease-free water up to 20-μl 
final reaction volume. This reaction mixture was incubated at 30 °C 
for 10 min and then for 15 min at 42 °C and finally for 5 min at 95 °C for 
termination. Second, cDNA obtained in the previous step was used as 
template for qPCR. The qPCR reactions were carried out using UltraS-
YBR Mixture (Low ROX) (CWBIO, CW2601M) containing 2 μl of cDNA 
and 0.4 μl of each forward and reverse primers (final concentration 
of 200 nM) in a 20-μl final volume reaction. The qPCR was performed 
on a Roche 480 qPCR System using the following cycling conditions: 
10 min at 95 °C, followed by 45 cycles of 15 s at 95 °C and 1 min at 60 °C. 
Three replicates per sample per gene were conducted for eliminating 
random variations.

The comparative cycle threshold (Ct) method (ΔΔCt method) was 
used to calculate the fold differences for the three sample pairs (D5/D6, 
F7/D6 and M8/D6) with housekeeping gene C1ORF43 as endogenous 
control. For the qPCR data, a gene is called DEG when the Student’s 
t-test P value < 0.05 and fold change ≥2 or ≤0.5.

ddPCR
DEGs identified in reference datasets and RT–qPCR were further vali-
dated using ddPCR. The same sequences of primers used for RT–qPCR 
were used for ddPCR (Supplementary Table 8). The ddPCR reaction 
was performed in a QX200 Droplet Digital PCR System (Bio-Rad) 
according to the manufacturer’s instructions. Each test was prepared 

in a total of 20-μl volume of the reaction mixture, comprising 10 μl of  
EvaGreen Supermix (Bio-Rad), 2 µl of forward and reverse primers, 2 μl 
of cDNA templates and 6 μl of RNase-free ddH2O. Samples and 70 μl 
of droplet generation oil were then placed into a Droplet Generator 
(Bio-Rad). Droplets (40 μl) were transferred to a 96-well PCR plate. The 
PCR reactions were performed using the following cycling conditions: 
pre-denature for one cycle at 95 °C for 5 min; denature for 40 cycles at 
95 °C for 30 s; and anneal and extend for 40 cycles at 60 °C for 1 min. 
After the cycles, a signal stabilization step of 4 °C for 5 min and 90 °C 
for 5 min was conducted. The signals were read by a Droplet Reader 
(Bio-Rad). Each reaction was performed in duplicate.

Flow cytometry
Immortalized B-lymphoblastoid cells were centrifuged at 500g for 
10 min at room temperature. Flick or aspirate to remove supernatant, 
and wash cells with 2 ml of PBS at 500g for 5 min at room temperature. 
For the sample stain, 1 × 106 cells were resuspended in 100 μl of PBS with 
2% FBS (FACS buffer) and stained with antibody cocktail for 15 min at 
room temperature in the dark. After surface staining, cells were washed 
twice with 2 ml of PBS at 500g for 5 min at room temperature. After the 
final wash, cells were resuspended in 250 μl of 1% paraformaldehyde 
(PFA).

The following antibodies were used for cell surface staining: PE 
mouse anti-human IgA (Miltenyi Biotec, 130-114-002, clone IS11-8E10), 
PE-Cy7 mouse anti-human IgD (BD Biosciences, 561314, clone IA6-2), 
Alexa Fluor 700 mouse anti-human IgG (BD Biosciences, 561296, clone 
G18-145) and Brilliant Violet 605 (BV605) mouse anti-human IgM (BD 
Biosciences, 562977, clone G20-127). PE mouse anti-human IgA was 
verified by the vendor, Miltenyi Biotec, including specificity, sensitivity 
and fixation. PE-Cy7 mouse anti-human IgD, AF700 mouse anti-human 
IgG and BV605 mouse anti-human IgM were validated by our previous 
study by flow cytometry79. Flow cytometric analyses were performed on 
CytoFLEX LX (Beckman Counter), and data were analyzed with FlowJo 
version 10.7.2 software (BD Biosciences).

The representative gating strategy for flow cytometry experi-
ments assessing LCLs is shown in Supplementary Fig. 17. For the exclu-
sion of non-single events, cross-check the forward scatter (FSC) signal 
for its area (A) versus height (H) and width (W) characteristics. Immor-
talized B-lymphoblastoid cells were gated on the FSC-A versus SSC-A 
dot plot. Furthermore, IgD+ cells, IgM+ cells, IgG+ cells and IgA+ cells 
in LCLs were identified based on their expression levels of surface 
membrane immunoglobulins.

LC–MS/MS-based proteomics
MS-based data-dependent acquisition (DDA) proteomics dataset from 
Quartet protein reference materials was used for cross-omics valida-
tion. Detailed description of sample preparation and data generation 
was provided by Zheng et al.52. In brief, large quantities of Quartet 
peptide reference materials (lot: 20200616) were generated from the 
same generation of LCLs used in Quartet RNA reference materials. 
LC–MS/MS-based proteomics data (4 groups × 3 replicates) were then 
generated in a laboratory (code: NVG) using a Q Exactive HF-X mass 
spectrometer (Thermo Fisher Scientific).

Peptide and protein identification and quantification were con-
ducted using Proteome Discoverer 2.2 (PD 2.2, Thermo Fisher Scien-
tific) based on the human reference database UniProt (http://www.
uniprot.org). Proteins with at least one unique peptide with 1% FDR at 
the peptide level were retained for further analysis. Protein quantifica-
tion was normalized using the fraction of total (FOT). The fraction of 
total was multiplied by 105 for ease of presentation.

Biological classifications from published datasets
We used publicly available datasets to examine the extent of biological 
differences with four ‘intrinsic’ biological classification groups from 
published datasets34–36. Expression profiles in FPKM of four subtypes 
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of TNBCs with different therapeutic actions were downloaded from 
previous publication34, including basal-like and immune-suppressed 
(n = 124), luminal androgen receptor (n = 75), immunomodulatory 
subtype (n = 77) and mesenchymal-like subtype (n = 60). Expression 
profiles in FPKM of the four molecular subtypes of breast cancer were 
downloaded from the Genomic Data Commons (GDC) Data Portal35, 
including luminal A (n = 420), luminal B (n = 174), basal-like (n = 140) and 
Her2-enriched (n = 65). Expression profiles in FPKM from four cancer 
types with distinct tissue types were also downloaded from the GDC 
Data Portal35, including brain cancer (n = 74), breast cancer (n = 77), 
kidney cancer (n = 67) and lung cancer (n = 66). Expression profiles 
in count from four normal tissue types were obtained from GTEx ver-
sion 8, including brain (n = 100), breast (n = 100), kidney (n = 89) and 
lung (n = 100)36. Count data were normalized to CPM using the limma 
version 3.50.0 (ref. 73) package. Three samples from each clinical 
subtype or biological group were randomly selected for differential 
expression analysis to eliminate the effect of number of samples used 
for analysis. To eliminate selection biases, this process was repeated 
20 times. A gene was considered as a DEG when t-test P < 0.05 and fold 
change ≥2 or ≤0.5.

Statistical analysis
All statistical analyses were performed using R statistical software 
version 4.1.2 (https://www.r-project.org). PCA was conducted with the 
univariance scaling, using the prcomp function. Hierarchical clustering 
analysis (HCA) was performed using the R package pheatmap version 
1.0.12 (https://rdrr.io/cran/pheatmap/). Data visualization was imple-
mented using the R package ggplot2 version 3.3.5 (https://ggplot2.
tidyverse.org/), GGally version 2.1.2 (http://ggobi.github.io/ggally/) 
and ggsci version 2.9 (https://github.com/nanxstats/ggsci).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The raw sequence data and gene expression data reported in this paper 
have been deposited in the Genome Sequence Archive (GSA) (acces-
sion number: HRA001859)80 and the Open Archive for Miscellaneous 
Data (OMIX) (accession number: OMIX002254)81 of the China National 
Center for Bioinformation. Moreover, we developed the Quartet Data 
Portal (http://chinese-quartet.org) for the community to access and 
share the Quartet multi-omics resources.

Code availability
The source codes for the data analyses are available at Zenodo82,83.
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