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Understanding cellular responses to genetic perturbation is central to
numerous biomedical applications, fromidentifying genetic interactions
involved in cancer to developing methods for regenerative medicine.
However, the combinatorial explosionin the number of possible multigene
perturbations severely limits experimental interrogation. Here, we present
graph-enhanced gene activation and repression simulator (GEARS), a
method that integrates deep learning with a knowledge graph of gene-
generelationships to predict transcriptional responses to both single

and multigene perturbations using single-cell RNA-sequencing data from
perturbational screens. GEARS is able to predict outcomes of perturbing
combinations consisting of genes that were never experimentally
perturbed. GEARS exhibited 40% higher precision than existing approaches
in predicting four distinct genetic interaction subtypes in acombinatorial
perturbation screen and identified the strongestinteractions twice as well as
prior approaches. Overall, GEARS can predict phenotypically distinct effects

of multigene perturbations and thus guide the design of perturbational

experiments.

The transcriptional response of a cell to genetic perturbation reveals
fundamental insights into how the cell functions. Transcriptional
responses can describe diverse functionality ranging from how gene
regulatory machinery helps maintain cellularidentity to how modulat-
ing gene expression canreverse disease phenotypes' ™. This has implica-
tions for biomedical research, especially in developing personalized
therapeutics. For instance, validating drug targets through genetic
perturbation studies increases the likelihood of successful clinical
trials®. Additionally, identifying synergistic gene pairs can enhance the
effectiveness of combination therapies®®. Because complex cellular
phenotypes are known to be produced by geneticinteractions between
small sets of genes, identifying such interactions could facilitate pre-
cise cell engineering’*. While recent advancements have enabled
scientists tomore rapidly sample perturbation outcomes experimen-
tally”™™", computational approaches that predict perturbation effects
areindispensable for prioritizing experimental perturbations due to
the combinatorial explosion of potential multigene combinations.
However, existing computational methods for predicting pertur-
bational outcomes present their own limitations. The predominant

approach for single-gene perturbation outcome prediction relies on
inferring transcriptional relationships between genesinthe formofa
gene regulatory network®* >, This is limited either by the difficulty in
accurately inferring a network from gene expression datasets or by
the incompleteness of networks derived from public databases® 7.
Moreover, existing predictive models built using such networks linearly
combine the effects of individual perturbations, which renders them
incapable of predicting non-additive effects of multigene perturba-
tions, such as synergy®’. More recent work uses deep neural networks
trained on datafrom large perturbational screens to skip the network
inference step and directly map geneticrelationshipsintoalatent space
for perturbation outcome prediction?®**. However, these methods still
require that each geneinthe combination be experimentally perturbed
before the effect of perturbing the combination can be predicted.
Here, we present graph-enhanced gene activationand repression
simulator (GEARS), a computational method that integrates deep
learning with aknowledge graph of gene-gene relationships to simu-
late the effects of a genetic perturbation. The incorporation of bio-
logical knowledge gives GEARS the ability to predict the outcomes of
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Fig.1| GEARS combines prior knowledge with deep learning to predict
postperturbation gene expression. a, Problem formulation: given unperturbed
gene expression (green) and applied perturbation (red), predict the gene
expression outcome (purple). Each box corresponds to anindividual gene.
Arrows indicate change in expression. b, GEARS model architecture. (i) For
eachgeneintheunperturbed state, GEARS initializes a gene embedding vector
(green) and a gene perturbation embedding vector (red) (ii). These embedding

operator

MLP layer MLP layer state

vectors are assigned as node features in the gene relationship graph and the
perturbation relationship graph (iii). A GNN is used to combine information
between neighbors in each graph. Each resulting gene embedding is summed
with the perturbation embedding of each perturbationin the perturbation set
(iv). The output is combined across all genes using the cross-gene layer and fed
into gene-specific output layers (v). The final result is postperturbation gene
expression; MLP, multilayer perceptron.

perturbingsingle genes or combinations of genes for which thereareno
prior experimental perturbation data. GEARS outperformed existing
approachesin predicting the outcomes of both one-gene and two-gene
perturbations drawn from seven distinct datasets. GEARS could also
detect five different genetic interaction subtypes and generalize to
new regions of perturbational space by predicting phenotypes that
were unlike what was seen during training. Thus, GEARS can directly
impact the design of future perturbational experiments.

Results
Knowledge-informed deep learning of perturbation effects
GEARS is a deep learning-based model that predicts the gene expres-
sion outcome of combinatorially perturbing a set of one or more genes
(perturbation set). Given unperturbed single-cell gene expression
alongwiththe perturbation set being applied (Fig.1a), the outputis the
transcriptional state of the cell following the perturbation (Methods).
GEARS introduces a new approach of representing each gene
and its perturbation using distinct multidimensional embeddings

(arbitrary vectors of numbers used to represent ameaningful concept;
Fig.1b and Supplementary Note 1)>**. Each gene’s embedding is tuned
through the course of training to represent key traits of that gene. Split-
ting the representation into two multidimensional components gives
GEARS additional expressivity for capturing gene-specific heterogene-
ity of perturbation response. Each gene’s embedding is sequentially
combined with the perturbation embedding of each geneinthe pertur-
bationset and finally used to predict the postperturbation state for that
gene. This predictionis conditioned on asingle ‘cross-gene’ embedding
vector that captures transcriptome-wide information for each cell.
GEARS is uniquely able to predict the outcomes of perturbation
sets that involve one or more genes for which there are no experi-
mental perturbation data. GEARS does this by incorporating prior
knowledge of gene-gene relationships using a gene coexpression
knowledge graph when learning gene embeddings and a Gene Ontol-
ogy (GO)-derived knowledge graph when learning gene perturba-
tion embeddings (Methods). This relies on two biological intuitions:
(i) genes that share similar expression patterns should likely respond
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similarly to external perturbations, and (ii) genes that are involved
in similar pathways should impact the expression of similar genes
after perturbation (Fig. 1b). Different knowledge graphs, such aslarge
context-specific networks, may prove more suitable depending on the
gene set of interest® (Supplementary Note 2). GEARS functionalizes
this graph-based inductive bias using a graph neural network (GNN)
architecture®.

Predicting single-gene perturbation transcriptional
responses

In the case of single-gene perturbations, GEARS was evaluated on the
perturbation of genes whose data had been held out at the time of
training, and thus those genes had not been seen experimentally per-
turbed during training (Fig. 2a). We used data from two different genetic
perturbation screens consisting of 1,543 (RPE-1 cells) and 1,092 (K562
cells) perturbations, respectively, with each measuring over 170,000
cells (Replogle et al.>*; Supplementary Notes 3and 4). The screens were
runusing the Perturb-seqassay, which combines a pooled screen with
asingle-cell RNA-sequencing readout of the entire transcriptome for
each cell’. GEARS was trained separately on each dataset. In addition
toanexisting deep learning-based model (CPA), we designed two alter-
native baseline models for evaluation of performance. One baseline
model (no perturbation) assumes that the perturbation does not result
inany change in gene expression. The other baseline model firstinfers
agene regulatory network?® and then linearly propagates the effects
of perturbing a gene along this network (adapted from CellOracle?;
Supplementary Notes 6 and 7).

We tested model performance by measuring the mean squared
error (m.s.e.; Fig. 2b) and Pearson correlation (Fig. 2c) between the
predicted postperturbation gene expression and true postperturba-
tion expression for the held-out set (Supplementary Table1). Because
the vast majority of genes do not show substantial variation between
unperturbed and perturbed states, we restricted our m.s.e. analysis
to the harder task of only considering the top 20 most differentially
expressed genes (Supplementary Note 8). GEARS significantly out-
performed all baselines on both datasets with an m.s.e.improvement
of 30-50% (Fig. 2b). When considering all genes using Pearson cor-
relation, GEARS exhibited more than two times better performance
in the case of both cell lines (Fig. 2c). Additionally, GEARS displayed
a clear improvement in capturing the right direction of change in
expression following perturbation (Fig. 2d), which reflects a more
accurate representation of regulatory relationships. We consistently
observed superior performance of GEARS over baselines across metrics
(Supplementary Fig. 1) and across five additional datasets, including
a genome-wide perturbation screen'®'®**~** (Supplementary Table 2
and Supplementary Figs. 2 and 3). Furthermore, GEARS scaled to
large datasets more effectively than conventional gene regulatory
network-based methods (Supplementary Table 3). Beyond transcrip-
tionlevels, GEARS also identified groups of genes thatinduced similar
transcriptional responses to perturbation, even when data for their
perturbation had not been seen during training (Extended Data Fig. 1
and Supplementary Note 9).

Predicting multigene perturbation outcomes

GEARSisdesigned to predict transcriptional outcomes for perturbation
sets consisting of multiple genes. We evaluated performance using a
Perturb-seq dataset (Norman et al.’) containing 131 two-gene perturba-
tions. When evaluating GEARS on two-gene perturbations, we defined
three generalization classes based on how many of the genes we see
experimentally perturbed at the time of training (Fig. 2e). The first case
is when the model has seen each of the two genes in the combination
individually experimentally perturbed in the training data (two-gene
perturbation, zero of two unseen). The other cases, which are progres-
sively harder to predict, are wheneither one of the two perturbed genes
(one of two unseen) or both genes (two of two unseen) have not been

seen individually perturbed at the time of training (Supplementary
Fig. 4 and Supplementary Note 10). GEARS improves performance
by more than 30% across all cases (Fig. 2f), with the highest improve-
ment of 53% observed whenboth perturbed genesin the combination
are unseen. Improvements were also observed across other metrics
(Supplementary Fig. 5) and on a different dataset (Supplementary
Tables2and 4)”.

Model performance was also analyzed on a gene-by-gene basis.
Inthe case of predicting the outcome of perturbing FOSB with CEBPB,
GEARS correctly captured both the right trend and the magnitude
of perturbation across all 20 differentially expressed genes (Fig. 2g)
even though one of the perturbed genes (CEBPB) had not been seen
experimentally perturbed during training. Moreover, the predictions
were different from the transcriptional state observed in the case
of the single-gene perturbation (FOSB) that was seen at the time of
training the model (Supplementary Fig. 6). Similar performance was
observed for several other examples across generalization categories
(Supplementary Fig. 7). We also measured 50% greater enrichment in
the most significant differentially expressed genes as predicted by
GEARS than observed with baseline methods (Fig. 2h, Extended Data
Fig.2 and Supplementary Note 11).

Althoughtheincorporation of knowledge graphs wasinstrumental
inenabling these predictions (Extended Data Fig. 3 and Supplementary
Fig. 8), it also limits the ability of GEARS to predict outcomes for per-
turbing previously unperturbed genes that are not well connected in
this graph (Extended Data Fig. 4 and Supplementary Note 12). GEARS
makes use of a Bayesian formulation to overcome this challenge by
outputting an uncertainty metric that is inversely correlated with
model performance (Supplementary Fig. 9).

Predicting non-additive combinatorial perturbation effects
Inthe case of a two-gene perturbation, if the outcomes of perturbing
the two genes independently are already known, then a naive model
could simply add the perturbational effects to estimate the effect of
the combinatorial perturbation (Fig.3a,b). However, genes are known
tointeract with one another to produce non-additive geneticinterac-
tions after perturbation. For example, two genes that independently
cause a minor loss in cell growth could synergistically interact with
one another following combinatorial perturbation to cause cell death.
We defined five types of genetic interactions (Supplementary
Note15): synergy, suppression, neomorphism, redundancy and epista-
sis (Supplementary Note 16). Whenboth genesinatwo-gene combina-
tion had been individually perturbed, the genetic interaction scores
predicted by GEARS showed a stronger correlation with the ground
truth scores calculated using true expression than existing methods.
Forinstance, the correlation coefficient (R%) was approximately 0.4 for
synergy, neomorphismandredundancy, whereasit was only around 0.0
forthe sameinteractions when predicted by CPA (Extended DataFig. 5).
Toidentify new geneticinteractions, GEARS canrecommend pairs
of genes that are predicted to have strong genetic interactions. To
assess the real-world application of GEARS where the recommended
pairs are then experimentally validated, we calculated performance
metrics based on the top-ranked predictions. Precision@10 measures
the fraction of predicted combinationsin the top tenthat truly exhibit a
specific geneticinteraction subtype, as determined by experimentally
measured gene expression after perturbation (Supplementary Note17).
When compared to baseline methods, GEARS improved precision@10
by more than40% for four of five geneticinteraction subtypes, and the
improvement exceeded 90% for redundancy and epistasis (Fig. 3¢).
Additionally, GEARS demonstrated a twofold increase in accuracy
when predicting the ten strongest interactions for a specific genetic
interaction subtype (top tenaccuracy; Extended DataFig. 6b). Further
validation using an additional dataset confirmed the effectiveness of
GEARS, showinga20%increase inaccuracy across four geneticinterac-
tion subtypes. Moreover, the precision-recall curves for all observed
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Fig.2| GEARS outperforms alternative approachesin predicting
postperturbation gene expression. a, Train-test data split for single-gene
perturbations. b, The m.s.e. in predicted postperturbation gene expression for
single-gene perturbations normalized to the no perturbation case. For each
perturbation, the 20 most differentially expressed (DE) genes were considered;
perturb, perturbation; GRN, gene regulatory network. ¢, Pearson correlation
between mean predicted postperturbation differential gene expression over
controland true values across all genes. d, Fraction of the top 20 differentially
expressed genes where the predicted postperturbation differential expression is
inthe opposite direction of the ground truth. e, Train-test data split categories
for two-gene perturbations. f, Normalized m.s.e. in predicted postperturbation

gene expression for two-gene perturbations. g, Boxes indicate experimentally
measured differential gene expression after perturbing the gene combination
FOSB and CEBPB (n = 85). The red symbol shows the mean change in gene
expression predicted by GEARS when it has only seen FOSB experimentally
perturbed at the time of training. The green dotted line shows mean unperturbed
control gene expression. Whiskers represent the last data point within1.5x
interquartile range. h, Jaccard similarity between model-predicted differentially
expressed genes and true differentially expressed genes. Throughout the figure,
markers correspond to the mean and error bars correspond to 95% confidence
intervals computed over predictions made by five models trained using different
datasplits (n=35).

genetic interaction subtypes exhibited a higher area under the curve
than other methods (Supplementary Fig.12)*. In scenarios where only
onegene hadbeen perturbed previously, GEARS successfully detected
synergistic and suppressive interactions (Supplementary Fig.13).
Different types of genetic interactions canalso be evaluated at the
level of individual genes. For this, the 20 most affected genes wereiden-
tified for each two-gene combination (Supplementary Note 18). Based
on the m.s.e. for these genes, GEARS was able to capture the effects
of different types of genetic interactions more than 40% better than
existingmethods across three of the five geneticinteraction subtypes
(Extended Data Fig. 6a). As an example, GEARS predicted the correct

non-additive effects across almost all of the top ten non-additively
expressed genes following the perturbation of PTPN12 and ZBTB25
(Fig. 3d). This was also observed across other examples belonging to
different geneticinteraction subtypes (Supplementary Fig. 14).

Predicting new biologically meaningful phenotypes

We applied GEARS to the discovery of new phenotypes by predict-
ing the outcomes of all pairwise combinatorial perturbations of 102
genes from the Norman et al. dataset’ (Fig. 4a). To make this predic-
tion, GEARS was trained using the postperturbational gene expression
profiles for both one-gene perturbation outcomes and 128 two-gene
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Fig.3| GEARS accurately predicts non-additive combinatorial effects and
geneticinteraction subtypes. a, lllustration of an additive interaction between
two genes after perturbation. X and Y represent change over the unperturbed
state caused by single-gene perturbations. Zis acombinatorial perturbation of
both genes. b, Definition of geneticinteraction subtypes. ¢, Mean precision@10
in predicting genetic interactions from 131 two-gene combinations (error
barsrepresents.d.). Arandom model performs 1,000 random draws; other

models perform three predictions (n =3).d, Change in gene expression after
perturbing the combination PTPN12and ZBTB25. The gray bars show the true
mean postperturbation gene expression change (n =257). The hatched gray bars
show the true change for each of the two single-gene perturbations performed
individually (PTPNI2 n =164 and ZBTB25 n = 247), which are summed by the
naive additive model. The red bar indicates the prediction made by GEARS (n=3
trained models). Error bars correspond to 95% confidence interval.

perturbation outcomes (Fig. 4b and Supplementary Note 13). The pre-
dicted postperturbation expression captured many distinct pheno-
typic clusters, including those previously identified in Norman et al.’
(Fig. 4c and Supplementary Note 13). Additionally, GEARS predicts a
few new phenotypes, including one cluster showing high expression
of erythroid markers.

To ascertain the biological relevance of this newly predicted
phenotype, which was not observed in the training data, we com-
pared it with data for proerythroblasts from the Tabula Sapiens cell
atlas (Supplementary Fig. 10 and Supplementary Note 14). While this
cluster’s distinct high erythroid marker expression has still not been
experimentally validated, its identification demonstrates the abil-
ity of GEARS to expand the space of postperturbation phenotypes
beyond what is observed in perturbational experiments. Moreo-
ver, we validated the robustness of this prediction by excluding all
phenotypically similar postperturbation outcomes during training
(Supplementary Fig.11).

Mapping combinatorial space of diverse genetic interactions

We extended our analysis to predict genetic interactions among
all possible pairwise combinations of 102 genes (Fig. 5a), following
CRISPRa-based combinatorial gene activation’. By leveraging the pre-
dicted postperturbation gene expression for each of the 5,151 pairwise
combinatorial perturbations, we constructed a geneticinteraction map
that could simultaneously represent five distinct types of geneticinter-
actions: synergy, suppression, neomorphism, redundancy and epista-
sis. The geneticinteraction maprevealed arich and diverse landscape
of geneticinteractions, with many genes exhibiting strong tendencies
toward specific genetic interaction subtypes (Fig. 5b). This effect is
most evident in the interactions between functionally related genes,
which s in line with previous experimental results™'**%, For instance,
genes involved in early erythroid differentiation pathways (PTPN12,
IKZF3 and LHX1) show a consistent trend of strong synergisticinterac-
tions with one another. Moreover, the uniqueness of this geneticinter-
actionmapisinhow it captures amuch broader range of interactions
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Fig.4 | GEARS can predict new biologically meaningful phenotypes.

a, Workflow for predicting all pairwise combinatorial perturbation outcomes
ofaset of genes. b, Low-dimensional representation of postperturbation gene
expression for 102 one-gene perturbations and 128 two-gene perturbations
used to train GEARS. A random selection is labeled. ¢, GEARS predicts

postperturbation gene expression for all 5,151 pairwise combinations of the
102 single genes seen experimentally perturbed. Predicted postperturbation
phenotypes (non-black symbols) are often different from phenotypes seen
experimentally (black symbols). Colors indicate Leiden clusters labeled using
marker gene expression (Supplementary Information).

thana conventional geneticinteraction map, which focuses primarily
onsynergistic or buffering interactions (Supplementary Fig. 15)".

To validate some of these predictions, we used data from a cell
fitness screen that perturbed all pairwise combinations of 92 genes’
(Supplementary Note 19). GEARS performed comparably to a real
Perturb-seq experiment in capturing the strong interaction effects
observed in the cell fitness screen (Extended Data Fig. 7). The distri-
bution of GEARS-predicted genetic interaction scores was signifi-
cantly higher for perturbations showing synergistic cell fitness effects
(P<0.0013, n=123; datawere analyzed by one-sided t-test comparing
the means) and lower for those showing buffering effects (P < 4 x 107,
n=69) thanthose showing approximately additive cell fitness effects.

These findingsincrease our confidence that several strong interactions
captured in the genetic interaction map are biologically meaningful
even though not all predictions have been experimentally validated.
Whentrained to directly predict cell fitness, GEARS also showed strong
performance (R’ between 0.64 and 0.93; Supplementary Figs. 16 and
17 and Supplementary Note 20).

Discussion

Recentadvancementsin high-throughput perturbational screens have
enhanced both the precision with which genes canbe targeted***° and
the scale of information generated”**. However, their scalability is
limited due to cost. As CRISPR-based perturbational screens become
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more widely used in drug discovery, GEARS can serve as a valuable
complement to these experiments. GEARS has the unique ability to
infer a broader range of multigene perturbation outcomes using the
same experimental data as existing methods'**'. Furthermore, GEARS
can guide the design of new screens by identifying perturbations
that maximize information gained and minimize experimental costs
(Extended DataFig.4).

However, for reliable predictions, GEARS must be trained on
the same cell type or experimental condition. Moreover, training
GEARS using combinatorial perturbation data is essential for accu-
rate prediction of multigene perturbations. Various confounding
factors in the data can also influence the accuracy of predictions,
including cell cycle effects, the assumed success of gene editing

experiments and heterogeneity in postperturbation distribution
(Supplementary Note 21).

One of the important strengths of GEARS is detecting emergent
interactions between pairs of genes. This feature enhances the dis-
covery of feasible routes for engineering cell identity, where cells
are guided between transcriptional states that may be significantly
different fromone another. For example, GEARS can aid in the precise
reengineering of immune cells to prevent exhaustion when target-
ing cancer'*** or in the reversal of phenotypes linked to aging® .
Moreover, models like GEARS could predict effective cocktails of tran-
scription factors for reprogramming induced pluripotent stem cells
into individual-specific in vitro models**~°. Therefore, GEARS holds
promise to not only impact the discovery of novel small molecules
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for targeting disease but also aid in designing the next generation of
cell-and gene-based therapeutics.

Online content

Any methods, additional references, Nature Portfolio reporting
summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of
author contributions and competing interests; and statements of
data and code availability are available at https://doi.org/10.1038/
$41587-023-01905-6.
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Methods

Overview of GEARS

GEARS considers a perturbation dataset of Ncells © = {(g/, ?f)}f.vzl, where
g’ € RX is the gene expression vector of cell i with K genes, and
Pl= (Pi, ,P‘,’w) is the set of perturbations of size M performed on cell
i. M =0 corresponds to an unperturbed cell. Each perturbation P in
the set corresponds to theindex of agene. The goal of GEARS isto learn
afunctionfthat mapsanovel perturbationset 2 toits postperturbation
outcome, whichis agene expression vector g.

Specifically, given a perturbation set » = (P, --- , Py;), GEARS first
appliesaGNNencoder fpert : Z — R?that maps each genetic pertur-
bation P € toad-dimensional gene perturbation embedding. Another
GNN-based encoder fgene : Z— R? maps each gene into a gene
embedding. GEARS then combines the set of perturbation embeddings
with each of the gene embeddings using a compositional module. A
cross-gene decoder fy.. : {[Ra;."}f:1 — RK then takes in the set of per-
turbed gene embeddings and maps themto the postperturbationgene
expression vector. The entire network is trained end to end with an
autofocus direction-aware loss (Supplementary Note 22).

Gene coexpression graph encoder

To capture the relative heterogeneity of perturbational response for
eachgene, GEARSrepresentseachgene u € zasalearnableembedding
x8€N€ ¢ rdinstead of ascalar. GEARS first obtains a representation for
each gene that captures coexpression patternsin the cell. For this, we
apply a GNN on a gene coexpression graph Ggene, where edges link
coexpressed genes (nodes). GEARS calculates Pearson correlations p,,,
among genes u,v in the training dataset. For each gene u, we connect
ittothetop H,,. genesthat have the highest p, ,andareabove athresh-
old 6. Next, we apply a GNN parameterized by 8, that augments every
geneu’'sembedding xgeneby integrating |nformat|on from theembed-
dings of its coexpressed genes: h&"® = GNNy, ( x5en ,9gene) eRY,

Incorporating prior knowledge of gene-gene relationships
using the GO graph
GEARS predicts the outcome of perturbing genes never seen perturbed
before by constructing a gene perturbation similarity graph Gpert,
leveraging the pathway information contained in GO®'. We first define
9o as a bipartite graph where an edge links a gene to a pathway GO
term. We denote 2\ as the set of pathways for a gene u.We compute the
Jaccardindex between a pair of genesu,vas J,, = W"”x : this measures
the fraction of shared pathways between the two genes. For each gene
u, we then select the top H,.,, gene v with the highest/, , to construct
Spert- Next, weinitializeall possnble gene perturbations (P,,---,Py) with
Iearnable embeddings (xP¢™", ... ,xP"'y We then feed themintoa GNN
parameterlzed by 6,to augment every perturbation v’s embedding
per by lntegratmg mformatlon from neighboring perturbations in

9pert hper = GNNg, (X ,9pert) € R4,

Modeling combinatorial perturbations across genes

Givenaperturbationset » = (P, --- , Py;), GEARS looks up the perturba-
tionembedding of each element of that set (h,; pert h, pert )- Tomodel
multigene perturbations, we use the ‘sum’ composmonal operator
followed by an MLP:h? = MLP,, (E, . h},’ert .The ‘sum’ operatorallows
extendability to perturbations of any size. Thus, each perturbation
embedding from (h; pert . h; pert Jisapplied to every gene embedding

toobtaina postperturbatlon gene embedding. For gene u, we have
hpost pert _ = MLP, (hgene + h”’)
Opp \ M °

Cross-gene effects and gene-specific decoder

Following application of the perturbations in the embedding space,
GEARS maps the postperturbation gene embeddingtoits correspond-
ing postperturbation gene expression vector. Because each gene has
itsown perturbation pattern, for every gene u, we apply a gene-specific
linear layer parameterized by w, € RY, b, € R to map it to a scalar of

perturbation gene expression effect z, = w,hPS'™Pe™t 4 p e . We

then concatenate the individual effect to a single perturbation effect
vector z € R¥ for the cell. Because the perturbational effect on a gene
can incur secondary effects on other genes, we wanted to use the
transcriptome-wide ‘cross-gene’ information for the cell when predict-
ing final gene expression for each gene. Thus, we added an additional
MLP that generates a cross-gene embedding for the cell
h¢8 = MLPg_ (z) € R?. Conditioned on this cross- gene state, for every
geneu, agene specific decoder parameterized by w & e re+, bcg ER
augments z, to 2, = wo (zu || h¢8) + bS8 e R, where the double bar
notation (||) refers to the vector concatenation operation. Finally,
the predicted perturbation effect vector z € RX is added to the gene
expression of a randomly sampled unperturbed control cell (g to
arrive at the predicted postperturbation gene expression vector
for that cell g = 2 + g This allows GEARS to focus only on learning
perturbation effects.

Autofocus direction-aware loss

GEARS optimizes model parameterstofit the predicted g postpertur-
bation gene expression to true postperturbation gene expression g
using stochastic gradient descent. We designed an autofocus loss that
automatically gives a higher weight to differentially expressed genes
by elevating the exponent of the error. Given a minibatch of Tperturba-
tions, where each perturbation k has T cells and each cell has K genes
with predicted postperturbationgene expression g and true expression
g, thelossisdefined as

(gu - gu)(2+y) .

M=

1
/K

M~
=
M=

1
Lautofocus = 7—

x~
1)
—-

However, this lossis insensitive to directionality. To address this,
GEARS incorporates an additional direction-aware loss

=

M=

617 [sign (g, — g5 — sign (&, — gﬁm)]z.

1 u:

M~
|-

1
L girection = 7—

x~
il
N
T
il
L

The prediction loss function is L = L,of0cus + AL girection» Where A adjusts
the weight for the directionality loss.

Uncertainty

GEARS generates an uncertainty score to measure the confidence of
modelpredictiononanovelperturbation. AGaussian likelihood N (g, 42)
isused to model the postperturbation gene expression value for gene u
under perturbation », where g, is the predicted postperturbationscalar
and &2 is the variance™. We add an additional gene-specific layer to pre-
dict the log variance term s, = log 62 = wichPOSUPErt  punc for each
gene uand learnit through amodified Bayesian neural network loss™

Te K

1
Lyne = TZ T, Z Z exp(—s,)(8y — gu)(2+y)-

=1 =

By encouraginglog variance to be large whentheerrorislarge, thelog
varianceis learned to be a proxy of model uncertainty.

Reporting summary
Furtherinformation onresearch designisavailable in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The following are the Gene Expression Omnibus accession numbers
used: Dixit et al.'>: GSE90063; Adamson et al.’: GSE90546; Norman
et al.”: GSE133344; Jost et al.>>: GSE132080; Tian et al.>*: GSE124703;
Replogle et al.”: GSE146194; Horlbeck et al."”: GSE116198. The data
fromReplogle et al.** are available at https://doi.org/10.25452/figshare.
plus.20022944.
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Code availability

Code to run GEARS is available at https://github.com/snap-stanford/
GEARS. Results can be reproduced using https://github.com/yhr91/
GEARS_misc.
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Extended Data Fig.1| GEARS identifies groups of genes inducing similar
perturbation effect, even when not seen perturbed previously. Each plot
presents alow-dimensional (UMAP) representation of postperturbation gene
expression following genetic perturbations that were held outin the test set.
Each column corresponds to a different split of the experimental datainto
training and test sets. a, Each panel corresponds to true postperturbational
transcriptional state measured using a Perturb-Seq assay. Colors correspond to
distinct clusters identified using Leiden clustering set to a constant resolution
across all panels. The largest cluster is assumed to show minimal perturbation
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effectand is colored grey. b, Each panel corresponds to postperturbation state
predicted by GEARS. Colors correspond to the true labels identified when
clustering the true experimental data, thus each point s labeled the same as
ina. Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI)
were used to compare clustersidentified by GEARS to those observed in true
postperturbation expression for each data split. Average values for each metric
across splits shown on left. ¢, Same as b using a baseline model that predicts

no perturbation effect. d, Same as b using a baseline model that predicts mean
perturbation effect.
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a Measuring statistical enrichment of true differentially expressed genes in set of
differentially expressed genes predicted by GEARS, for a single perturbation
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b Statistical significance of enrichment of true differentially expressed genes
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Extended Data Fig. 2| See next page for caption.
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Extended Data Fig. 2| Identifying significant enrichment for true
differentially expressed genes in GEARS predictions. a, Hypergeometric
distribution used to model the probability of obtaining a random overlap
between the differentially expressed genes predicted by GEARS and the true
significantly differentially expressed genes following a perturbation. In this
example, 142 genes were shared between GEARS and the true prediction.
Ap-valueis calculated for each perturbationin the held out set. b, Box-plot

showing the log (base 10) of the p-value for all held-out perturbations in the
Norman et al. 2019 dataset. To account for multiple hypothesis testing (561 tests),
aBonferroni correction was applied, using a significance threshold of 0.05. A
black dashed line represents the adjusted threshold. GEARS was trained on 5
different data splits (n=5). Number of data points for each bar are listed above it.
Whiskers represent last data point within 1.5x interquartile range below the first
quantile and above the third quantile.
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Extended Data Fig. 3| Model ablation study highlights relative importance
of GEARS components under different generalization conditions. The ‘No
Graph’ condition removes both the gene ontology graph and co-expression
graph; ‘No GO Graph’ removes the gene ontology graph; ‘No Co-Express Graph’
removes the co-expression graph; ‘No Cross-gene’ removes the cross-gene MLP
layer; ‘No Gene-specific Decoder’ removes the gene specific decoder MLP and
uses ashared MLP instead; ‘MSE Loss’ switches from the auto-focus loss to the
regular L2 loss. Four generalization conditions are considered: a, (1/1Unseen)
single-gene perturbations not seen experimentally perturbed at the time of
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training. b-d, (2/2 Unseen) two-gene perturbations in which both genes were

not seen experimentally perturbed individually at the time of training (b), (1/2
Unseen) one of the two genes was not seen experimentally perturbed (c) or (0/2
Unseen) both genes have been seen experimentally perturbed (d). Performance
is measured using the mean squared error in predicted postperturbation gene
expression for the top 20 most differentially expressed genes. For all panels (a-d)
the marker indicates the mean MSE over predictions made by models trained
using 5 different training data splits (n=5). The error bars represent bootstrapped
95% CI.
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Extended Data Fig. 5| See next page for caption.
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Extended Data Fig. 5| Model performance at predicting genetic interaction
(GI) scores. a, Gl scores for the set of combinatorial perturbations that were
defined as expressing a specific Gl subtype phenotype in Norman et al. 2019. The
gray dots correspond to Gl scores computed using true postperturbation gene
expression. The colored dots were computed using predicted postperturbation
gene expression under three different models: GEARS, CPA and Naive

models. The naive model here simply sums together the effects of single-gene
perturbations. The metrics on the y-axis correspond to different Gl scores and
the colored dotted linesindicate the defined thresholds for determining if a

combination is exhibiting a specific Gl subtype phenotype. Both GEARS and
CPA were trained using aleave-one-out testing approach for each of the 131
combinations. The black dashed line represents the minimum and maximum of
all131values and the black solid line represents the mean. b, Scatter plots of Gl
scores for all 131 two-gene combinatorial perturbations from that dataset. The
x-axis shows Gl scores computed using true postperturbation gene expression
and the y-axis shows scores computed using predicted postperturbation gene
expression. The top row shows predictions made by GEARS and the bottom row
shows predictions made by CPA. R2 refers to the coefficient of determination.
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Extended Data Fig. 6 | Model performance in predicting genetic interactions
(Gls). a, Mean Square Error (MSE) in predicting non-additive combinatorial
effects between the additive model which assumes that the effect of the
combination s just the sum of the two known single-gene perturbation outcomes
and GEARS predictions. MSE was measured on the 20 genes with the largest
difference between true postperturbation expression following two-gene
combinatorial perturbation and the additive prediction for that combination. GI
subtypes (x-axis) were labelled without overlap as in Norman et al. 2019 (Synergy

n=30, Suppression n=12, Redundancy n=8, Neomorphism n=13, Epistasis n=9).
Bar plots represent the mean and error bars correspond to 95% Cl. b, Top 10
accuracyin predicting Gls: Model accuracy in predicting the set of 10 strongest
interactions for each Gl subtype as determined using true expression. Marker
represents mean and error bar represents 1SD for the random model which
performs 1000 draws (n=1000). For other models, predictions from 3 trained
models were used (n=3). ¢, Precision and recall in predicting Gls (n=3).
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