Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

3D GENOMICS

Expanding the toolbox for 3D genomics

The ability to visualize and study the 3D folding of chromosomes in cells has been propelled forward by several major technological advances in the past two decades. Two new studies now further expand the scientific toolbox for studying chromosome conformation by providing novel methodologies for accurate mapping of genome topology and predicting the topological effects of genomic structural variation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: New methodology for measuring (DLO Hi-C) and modeling (PRISMR) the 3D genome.

References

  1. Denker, A. & de Laat, W. Genes Dev. 30, 1357–1382 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Science 295, 1306–1311 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Bonev, B. & Cavalli, G. Nat. Rev. Genet. 17, 661–678 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Stadhouders, R. et al. Nat. Genet. 50, 238–249 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Jhunjhunwala, S., van Zelm, M. C., Peak, M. M. & Murre, C. Cell 138, 435–448 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gorkin, D. U., Leung, D. & Ren, B. Cell Stem Cell 14, 762–775 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lupiáñez, D. G. et al. Cell 161, 1012–1025 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gröschel, S. et al. Cell 157, 369–381 (2014).

    Article  PubMed  Google Scholar 

  9. Lin, D. et al. Nat. Genet. https://doi.org/10.1038/s41588-018-0111-2 (2018).

  10. Bianco, S. et al. Nat. Genet. https://doi.org/10.1038/s41588-018-0098-8 (2018).

    PubMed  Google Scholar 

  11. Rao, S. S. et al. Cell 159, 1665–1680 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Davies, J. O. et al. Nat. Methods 13, 74–80 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Serra, F. et al. FEBS Lett. 589 (20 Pt. A), 2987–2995 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Zhu, Y. et al. Nat. Commun. 7, 10812 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sanborn, A. L. et al. Proc. Natl Acad. Sci. USA 112, E6456–E6465 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Stadhouders.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stadhouders, R. Expanding the toolbox for 3D genomics. Nat Genet 50, 634–635 (2018). https://doi.org/10.1038/s41588-018-0112-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-018-0112-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing