Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A genome-wide cross-trait analysis from UK Biobank highlights the shared genetic architecture of asthma and allergic diseases

An Author Correction to this article was published on 02 November 2018

Abstract

Clinical and epidemiological data suggest that asthma and allergic diseases are associated and may share a common genetic etiology. We analyzed genome-wide SNP data for asthma and allergic diseases in 33,593 cases and 76,768 controls of European ancestry from UK Biobank. Two publicly available independent genome-wide association studies were used for replication. We have found a strong genome-wide genetic correlation between asthma and allergic diseases (rg = 0.75, P = 6.84 × 10−62). Cross-trait analysis identified 38 genome-wide significant loci, including 7 novel shared loci. Computational analysis showed that shared genetic loci are enriched in immune/inflammatory systems and tissues with epithelium cells. Our work identifies common genetic architectures shared between asthma and allergy and will help to advance understanding of the molecular mechanisms underlying co-morbid asthma and allergic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Partitioned genetic correlation between asthma and allergic diseases in UK Biobank.
Fig. 2: Circus Manhattan plot of cross-trait meta-analysis.
Fig. 3: GTEx TSEA.

Similar content being viewed by others

References

  1. Johansson, S. G. et al. Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. J. Allergy Clin. Immunol. 113, 832–836 (2004).

    Article  CAS  Google Scholar 

  2. Lenz, H. J. Management and preparedness for infusion and hypersensitivity reactions. Oncologist 12, 601–609 (2007).

    Article  CAS  Google Scholar 

  3. Wallace, D. V. et al. The diagnosis and management of rhinitis: an updated practice parameter. J. Allergy Clin. Immunol. 122, S1–S84 (2008).

    Article  Google Scholar 

  4. Torgerson, D. G. et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nat. Genet. 43, 887–892 (2011).

    Article  CAS  Google Scholar 

  5. Moffatt, M. F. et al. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 363, 1211–1221 (2010).

    Article  CAS  Google Scholar 

  6. Bunyavanich, S. et al. Integrated genome-wide association, coexpression network, and expression single nucleotide polymorphism analysis identifies novel pathway in allergic rhinitis. BMC Med. Genomics 7, 48 (2014).

    Article  Google Scholar 

  7. Ramasamy, A. et al. A genome-wide meta-analysis of genetic variants associated with allergic rhinitis and grass sensitization and their interaction with birth order. J. Allergy Clin. Immunol. 128, 996–1005 (2011).

    Article  CAS  Google Scholar 

  8. Pillai, S. G. et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet. 5, e1000421 (2009).

    Article  Google Scholar 

  9. Leynaert, B., Neukirch, F., Demoly, P. & Bousquet, J. Epidemiologic evidence for asthma and rhinitis comorbidity. J. Allergy Clin. Immunol. 106, S201–S205 (2000).

    Article  CAS  Google Scholar 

  10. Brauer, M. et al. Air pollution from traffic and the development of respiratory infections and asthmatic and allergic symptoms in children. Am. J. Respir. Crit. Care Med. 166, 1092–1098 (2002).

    Article  Google Scholar 

  11. Pariente, P. D., LePen, C., Los, F. & Bousquet, J. Quality-of-life outcomes and the use of antihistamines in a French national population-based sample of patients with perennial rhinitis. Pharmacoeconomics 12, 585–595 (1997).

    Article  CAS  Google Scholar 

  12. Liang, L. et al. An epigenome-wide association study of total serum immunoglobulin E concentration. Nature 520, 670–674 (2015).

    Article  CAS  Google Scholar 

  13. Cotsapas, C. et al. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet. 7, e1002254 (2011).

    Article  CAS  Google Scholar 

  14. Criswell, L. A. et al. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am. J. Hum. Genet. 76, 561–571 (2005).

    Article  CAS  Google Scholar 

  15. Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371–1379 (2013).

    Article  Google Scholar 

  16. Global Lipids Genetics Consortium. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).

    Article  Google Scholar 

  17. Pickrell, J. K. et al. Detection and interpretation of shared genetic influences on 42 human traits. Nat. Genet. 48, 709–717 (2016).

    Article  CAS  Google Scholar 

  18. Lane, J. M. et al. Genome-wide association analyses of sleep disturbance traits identify new loci and highlight shared genetics with neuropsychiatric and metabolic traits. Nat. Genet. 49, 274–281 (2017).

    Article  CAS  Google Scholar 

  19. Hobbs, B. D. et al. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nat. Genet. 49, 426–432 (2017).

    Article  CAS  Google Scholar 

  20. Emdin, C. A. et al. Genetic association of waist-to-hip ratio with cardiometabolic traits, type 2 diabetes, and coronary heart disease. J. Am. Med. Assoc. 317, 626–634 (2017).

    Article  Google Scholar 

  21. Hammerschlag, A. R. et al. Genome-wide association analysis of insomnia complaints identifies risk genes and genetic overlap with psychiatric and metabolic traits. Nat. Genet. 49, 1584–1592 (2017).

    Article  CAS  Google Scholar 

  22. Ober, C. & Yao, T. C. The genetics of asthma and allergic disease: a 21st century perspective. Immunol. Rev. 242, 10–30 (2011).

    Article  CAS  Google Scholar 

  23. Cookson, W. The immunogenetics of asthma and eczema: a new focus on the epithelium. Nat. Rev. Immunol. 4, 978–988 (2004).

    Article  CAS  Google Scholar 

  24. Belsky, D. W. et al. Polygenic risk and the development and course of asthma: an analysis of data from a four-decade longitudinal study. Lancet Respir. Med. 1, 453–461 (2013).

    Article  Google Scholar 

  25. Holgate, S. T. The epidemic of allergy and asthma. Nature 402, B2–B4 (1999).

    Article  CAS  Google Scholar 

  26. Duffy, D. L., Martin, N. G., Battistutta, D., Hopper, J. L. & Mathews, J. D. Genetics of asthma and hay fever in Australian twins. Am. Rev. Respir. Dis. 142, 1351–1358 (1990).

    Article  CAS  Google Scholar 

  27. Hinds, D. A. et al. A genome-wide association meta-analysis of self-reported allergy identifies shared and allergy-specific susceptibility loci. Nat. Genet. 45, 907–911 (2013).

    Article  CAS  Google Scholar 

  28. Ferreira, M. A. et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat. Genet. 49, 1752–1757 (2017).

    Article  CAS  Google Scholar 

  29. Paternoster, L. et al. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nat. Genet. 47, 1449–1456 (2015).

    Article  Google Scholar 

  30. Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).

    Article  CAS  Google Scholar 

  31. Jostins, L. et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    Article  CAS  Google Scholar 

  32. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

    Article  CAS  Google Scholar 

  33. de Bakker, P. I. et al. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum. Mol. Genet. 17, R122–R128 (2008).

    Article  Google Scholar 

  34. Yang, J. et al. Genomic inflation factors under polygenic inheritance. Eur. J. Hum. Genet. 19, 807–812 (2011).

    Article  Google Scholar 

  35. Li, X. et al. The C11orf30-LRRC32 region is associated with total serum IgE levels in asthmatic patients. J. Allergy Clin. Immunol. 129, 575–578.e9 (2012).

    Article  CAS  Google Scholar 

  36. Amaral, A. F. et al. The locus C11orf30 increases susceptibility to poly-sensitization. Allergy 70, 328–333 (2015).

    Article  CAS  Google Scholar 

  37. Anthoni, M. et al. Smad3—signalling and Th2 cytokines in normal mouse airways and in a mouse model of asthma. Int. J. Biol. Sci. 3, 477–485 (2007).

    Article  CAS  Google Scholar 

  38. Struys, E. A. et al. Mutations in the D-2-hydroxyglutarate dehydrogenase gene cause D-2-hydroxyglutaric aciduria. Am. J. Hum. Genet. 76, 358–360 (2005).

    Article  CAS  Google Scholar 

  39. Seko, A., Nagata, K., Yonezawa, S. & Yamashita, K. Down-regulation of Gal 3-O-sulfotransferase-2 (Gal3ST-2) expression in human colonic non-mucinous adenocarcinoma. Jpn. J. Cancer Res. 93, 507–515 (2002).

    Article  CAS  Google Scholar 

  40. Marsh, D. G., Meyers, D. A. & Bias, W. B. The epidemiology and genetics of atopic allergy. N. Engl. J. Med. 305, 1551–1559 (1981).

    Article  CAS  Google Scholar 

  41. Moffatt, M. F. et al. Association between quantitative traits underlying asthma and the HLA-DRB1 locus in a family-based population sample. Eur. J. Hum. Genet. 9, 341–346 (2001).

    Article  CAS  Google Scholar 

  42. Dale, M. & Nicklin, M. J. Interleukin-1 receptor cluster: gene organization of IL1R2, IL1R1, IL1RL2 (IL-1Rrp2), IL1RL1 (T1/ST2), and IL18R1 (IL-1Rrp) on human chromosome 2q. Genomics 57, 177–179 (1999).

    Article  CAS  Google Scholar 

  43. Gudbjartsson, D. F. et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat. Genet. 41, 342–347 (2009).

    Article  CAS  Google Scholar 

  44. McLean, W. H. The allergy gene: how a mutation in a skin protein revealed a link between eczema and asthma. F1000 Med. Rep. 3, 2 (2011).

    Article  Google Scholar 

  45. Lonsdale, J. et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Article  CAS  Google Scholar 

  46. Hackett, N. R. et al. RNA-Seq quantification of the human small airway epithelium transcriptome. BMC Genomics 13, 82 (2012).

    Article  CAS  Google Scholar 

  47. Novak, N., Kraft, S. & Bieber, T. IgE receptors. Curr. Opin. Immunol. 13, 721–726 (2001).

    Article  CAS  Google Scholar 

  48. Wynn, T. A. Type 2 cytokines: mechanisms and therapeutic strategies. Nat. Rev. Immunol. 15, 271–282 (2015).

    Article  CAS  Google Scholar 

  49. Barnes, P. J. Th2 cytokines and asthma: an introduction. Respir. Res. 2, 64–65 (2001).

    Article  CAS  Google Scholar 

  50. Lotem, J. et al. Runx3 at the interface of immunity, inflammation and cancer. Biochim. Biophys. Acta 1855, 131–143 (2015).

    CAS  PubMed  Google Scholar 

  51. Laprise, C. The Saguenay-Lac-Saint-Jean asthma familial collection: the genetics of asthma in a young founder population. Genes Immun. 15, 247–255 (2014).

    Article  CAS  Google Scholar 

  52. Guo, C. et al. Chromatin immunoprecipitation and association study revealed a possible role of Runt-related transcription factor 3 in the ulcerative colitis of Chinese population. Clin. Immunol. 135, 483–489 (2010).

    Article  CAS  Google Scholar 

  53. Esparza-Gordillo, J. et al. A functional IL-6 receptor (IL6R) variant is a risk factor for persistent atopic dermatitis. J. Allergy Clin. Immunol. 132, 371–377 (2013).

    Article  CAS  Google Scholar 

  54. Meijer, H., Reinecke, J., Becker, C., Tholen, G. & Wehling, P. The production of anti-inflammatory cytokines in whole blood by physico-chemical induction. Inflamm. Res. 52, 404–407 (2003).

    Article  CAS  Google Scholar 

  55. Presland, R. B. & Dale, B. A. Epithelial structural proteins of the skin and oral cavity: function in health and disease. Crit. Rev. Oral Biol. Med. 11, 383–408 (2000).

    Article  CAS  Google Scholar 

  56. Ganesan, S., Comstock, A. T. & Sajjan, U. S. Barrier function of airway tract epithelium. Tissue Barriers 1, e24997 (2013).

    Article  Google Scholar 

  57. Wang, Y., Bai, C., Li, K., Adler, K. B. & Wang, X. Role of airway epithelial cells in development of asthma and allergic rhinitis. Respir. Med. 102, 949–955 (2008).

    Article  Google Scholar 

  58. Rackley, C. R. & Stripp, B. R. Building and maintaining the epithelium of the lung. J. Clin. Invest. 122, 2724–2730 (2012).

    Article  CAS  Google Scholar 

  59. Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178–196 (2014).

    Article  CAS  Google Scholar 

  60. Alonso, L. & Fuchs, E. Stem cells of the skin epithelium. Proc. Natl Acad. Sci. USA 100((suppl 1)), 11830–11835 (2003).

    Article  CAS  Google Scholar 

  61. Pawankar, R., Mori, S., Ozu, C. & Kimura, S. Overview on the pathomechanisms of allergic rhinitis. Asia Pac. Allergy 1, 157–167 (2011).

    Article  Google Scholar 

  62. Collins, R. What makes UK Biobank special? Lancet 379, 1173–1174 (2012).

    Article  Google Scholar 

  63. Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  Google Scholar 

  64. Allen, N. E., Sudlow, C., Peakman, T. & Collins, R. UK Biobank data: come and get it. Sci. Transl. Med. 6, 224ed4 (2014).

    Article  Google Scholar 

  65. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).

    Article  CAS  Google Scholar 

  66. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  Google Scholar 

  67. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    Article  CAS  Google Scholar 

  68. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  Google Scholar 

  69. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    Article  CAS  Google Scholar 

  70. Bernstein, B. E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28, 1045–1048 (2010).

    Article  CAS  Google Scholar 

  71. Bhattacharjee, S. et al. A subset-based approach improves power and interpretation for the combined analysis of genetic association studies of heterogeneous traits. Am. J. Hum. Genet. 90, 821–835 (2012).

    Article  CAS  Google Scholar 

  72. Gormley, P. et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat. Genet. 48, 856–866 (2016).

    Article  CAS  Google Scholar 

  73. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

    Article  Google Scholar 

  74. The Wellcome Trust Case Control Consortium. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet. 44, 1294–1301 (2012).

    Article  Google Scholar 

  75. Wallace, C. Statistical testing of shared genetic control for potentially related traits. Genet. Epidemiol. 37, 802–813 (2013).

    Article  Google Scholar 

  76. Dougherty, J. D., Schmidt, E. F., Nakajima, M. & Heintz, N. Analytical approaches to RNA profiling data for the identification of genes enriched in specific cells. Nucleic Acids Res. 38, 4218–4230 (2010).

    Article  CAS  Google Scholar 

  77. Xu, X., Wells, A. B., O’Brien, D. R., Nehorai, A. & Dougherty, J. D. Cell type-specific expression analysis to identify putative cellular mechanisms for neurogenetic disorders. J. Neurosci. 34, 1420–1431 (2014).

    Article  CAS  Google Scholar 

  78. Pasaniuc, B. et al. Fast and accurate imputation of summary statistics enhances evidence of functional enrichment. Bioinformatics 30, 2906–2914 (2014).

    Article  CAS  Google Scholar 

  79. Wang, J., Duncan, D., Shi, Z. & Zhang, B. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res. 41, W77–W83 (2013).

    Article  Google Scholar 

  80. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article  CAS  Google Scholar 

  81. Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  Google Scholar 

  82. Gene Ontology Consortium. Gene Ontology Consortium: going forward. Nucleic Acids Res. 43, D1049–D1056 (2015).

    Article  Google Scholar 

  83. Lee, S. H., Yang, J., Goddard, M. E., Visscher, P. M. & Wray, N. R. Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood. Bioinformatics 28, 2540–2542 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been conducted using the UK Biobank Resource under application number 16549. We would like to thank the participants and researchers from UK Biobank who significantly contributed or collected data. We thank the GABRIEL consortium and the EAGLE consortium for providing GWAS summary statistic data. We also thank W. Cookson and M. Moffatt their clinical advice, and D. Chasman, V. Anttila, S. Gazal, H. Shi, Y. Feng and M. Chen for their statistical advice. This study was supported by grants R01HL060710 (D.C.C.), R56HL134356 (D.C.C.), R01HL114769 (Q.L.), AAF15-0097 (Q.L.) and R00MH101367 (P.H.L.) from the National Heart, Lung, and Blood Institute (NHLBI), the National Institutes of Health, the American Asthma Foundation and the National Institute of Mental Health.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z., L.L., P.H.L., Q.L. and D.C.C. designed the study. Z.Z., M.D.C., W.C. and P.-R.L. performed the statistical analysis. Z.Z., M.D.C., L.L., W.C. and Q.L. wrote the manuscript. All authors helped interpret the data, reviewed and edited the final paper, and approved the submission.

Corresponding author

Correspondence to Liming Liang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–19, Supplementary Tables 1–18 and Supplementary Note

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Lee, P.H., Chaffin, M.D. et al. A genome-wide cross-trait analysis from UK Biobank highlights the shared genetic architecture of asthma and allergic diseases. Nat Genet 50, 857–864 (2018). https://doi.org/10.1038/s41588-018-0121-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-018-0121-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing