Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Biobank-driven genomic discovery yields new insight into atrial fibrillation biology

Abstract

To identify genetic variation underlying atrial fibrillation, the most common cardiac arrhythmia, we performed a genome-wide association study of >1,000,000 people, including 60,620 atrial fibrillation cases and 970,216 controls. We identified 142 independent risk variants at 111 loci and prioritized 151 functional candidate genes likely to be involved in atrial fibrillation. Many of the identified risk variants fall near genes where more deleterious mutations have been reported to cause serious heart defects in humans (GATA4, MYH6, NKX2-5, PITX2, TBX5)1, or near genes important for striated muscle function and integrity (for example, CFL2, MYH7, PKP2, RBM20, SGCG, SSPN). Pathway and functional enrichment analyses also suggested that many of the putative atrial fibrillation genes act via cardiac structural remodeling, potentially in the form of an ‘atrial cardiomyopathy’2, either during fetal heart development or as a response to stress in the adult heart.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Manhattan plot showing known (orange) and novel (red) loci associated with atrial fibrillation.
Fig. 2: Tissues, reconstituted gene sets, and regulatory elements implicated in atrial fibrillation.
Fig. 3: Significance of the expression enrichment for the atrial fibrillation candidate genes.
Fig. 4: Atrial fibrillation is associated with heterogeneous changes in left atrial myosin isoform expression.

Similar content being viewed by others

References

  1. Jin, S. C. et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat. Genet. 49, 1593–1601 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goette, A. et al. EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: definition, characterization, and clinical implication. EP Eur. 18, 1455–1490 (2016).

    Google Scholar 

  3. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu, Y., Zheng, Z., Visscher, P. M. & Yang, J. Quantifying the mapping precision of genome-wide association studies using whole-genome sequencing data. Genome Biol. 18, (2017).

  5. Ge, T., Chen, C.-Y., Neale, B. M., Sabuncu, M. R. & Smoller, J. W. Phenome-wide heritability analysis of the UK Biobank. PLoS Genet. 13, e1006711 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Christophersen, I. E. et al. Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation. Nat. Genet. 49, 946–952 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thorolfsdottir, R. B. et al. A missense variant in PLEC increases risk of atrial fibrillation. J. Am. Coll. Cardiol. 70, 2157–2168 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Gudbjartsson, D. F. et al. Large-scale whole-genome sequencing of the Icelandic population. Nat. Genet. 47, 435–444 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Orr, N. et al. A mutation in the atrial-specific myosin light chain gene (MYL4) causes familial atrial fibrillation. Nat. Commun. 7, 11303 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nielsen, J. B. et al. Genome-wide study of atrial fibrillation identifies seven risk loci and highlights biological pathways and regulatory elements involved in cardiac development. Am. J. Hum. Genet. 102, 103–115 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

  13. Schmidt, E. M. et al. GREGOR: evaluating global enrichment of trait-associated variants in epigenomic features using a systematic, data-driven approach. Bioinformatics 31, 2601–2606 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  15. Wells, A. et al. The anatomical distribution of genetic associations. Nucleic Acids Res. 43, 10804–10820 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Noguchi, S. et al. Mutations in the dystrophin-associated protein γ-sarcoglycan in chromosome 13 muscular dystrophy. Science 270, 819–822 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Brauch, K. M. et al. Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J. Am. Coll. Cardiol. 54, 930–941 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gerull, B. et al. Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy. Nat. Genet. 36, 1162–1164 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Skov, M. W. et al. Association between heart rate at rest and incident atrial fibrillation (from the Copenhagen Electrocardiographic Study). Am. J. Cardiol. 118, 708–713 (2016).

    Article  PubMed  Google Scholar 

  20. Nielsen, J. B. et al. P-wave duration and the risk of atrial fibrillation: results from the Copenhagen ECG Study. Heart Rhythm 12, 1887–1895 (2015).

    Article  PubMed  Google Scholar 

  21. Nielsen, J. B. et al. Risk of atrial fibrillation as a function of the electrocardiographic PR interval: Results from the Copenhagen ECG Study. Heart Rhythm 10, 1249–1256 (2013).

    Article  PubMed  Google Scholar 

  22. Nielsen, J. B. et al. J-shaped association between QTc interval duration and the risk of atrial fibrillation: results from the Copenhagen ECG study. J. Am. Coll. Cardiol. 61, 2557–2564 (2013).

    Article  PubMed  Google Scholar 

  23. Holm, H. et al. A rare variant in MYH6 is associated with high risk of sick sinus syndrome. Nat. Genet. 43, 316–320 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bjornsson, T. et al. A rare missense mutation in MYH6 confers high risk of coarctation of the aorta. Preprint at bioRxiv https://doi.org/10.1101/180794 (2017).

  25. Maron, B. J. & Maron, M. S. Hypertrophic cardiomyopathy. Lancet 381, 242–255 (2013).

    Article  PubMed  Google Scholar 

  26. England, J. & Loughna, S. Heavy and light roles: myosin in the morphogenesis of the heart. Cell. Mol. Life Sci. 70, 1221–1239 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Herron, T. J., Korte, F. S. & McDonald, K. S. Loaded shortening and power output in cardiac myocytes are dependent on myosin heavy chain isoform expression. Am. J. Physiol. Heart Circ. Physiol. 281, H1217–H1222 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Miyata, S., Minobe, W., Bristow, M. R. & Leinwand, L. A. Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circ. Res. 86, 386–390 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Cañón, S. et al. miR-208b upregulation interferes with calcium handling in HL-1 atrial myocytes: Implications in human chronic atrial fibrillation. J. Mol. Cell. Cardiol. 99, 162–173 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Wagner, A. H. et al. DGIdb 2.0: mining clinically relevant drug–gene interactions. Nucleic Acids Res. 44, D1036–D1044 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Teerlink, J. R. et al. Dose-dependent augmentation of cardiac systolic function with the selective cardiac myosin activator, omecamtiv mecarbil: a first-in-man study. Lancet 378, 667–675 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fritsche, L. G. et al. Association of polygenic risk scores for multiple cancers in a phenome-wide study: results from The Michigan Genomics Initiative. Am. J. Hum. Genet. 102, 1048–1061 (2018).

  34. Lubitz, S. A. et al. Association between familial atrial fibrillation and risk of new-onset atrial fibrillation. JAMA 304, 2263–2269 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Oyen, N. et al. Familial aggregation of lone atrial fibrillation in young persons. J. Am. Coll. Cardiol. 60, 917–921 (2012).

    Article  PubMed  Google Scholar 

  36. Roselli, C. et al. Multi-ethnic genome-wide association study for atrial fibrillation. Nat. Genet. https://doi.org/10.1038/s41588-018-0133-9 (2018).

  37. Costantini, D. L. et al. The homeodomain transcription factor Irx5 establishes the mouse cardiac ventricular repolarization gradient. Cell 123, 347–358 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Veerman, C. C. et al. The Brugada Syndrome susceptibility gene HEY2 modulates cardiac transmural ion channel patterning and electrical heterogeneity. Circ. Res. 121, 537–548 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. Int. J. Epidemiol. 42, 968–977 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Carey, D. J. et al. The Geisinger MyCode community health initiative: an electronic health record-linked biobank for precision medicine research. Genet. Med. 18, 906–913 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Preprint at bioRxiv https://doi.org/10.1101/212357 (2017).

  42. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kong, A. et al. Detection of sharing by descent, long-range phasing and haplotype imputation. Nat. Genet. 40, 1068–1075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

  45. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ma, C., Blackwell, T., Boehnke, M. & Scott, L. J., GoT2D investigators. Recommended joint and meta-analysis strategies for case-control association testing of single low-count variants. Genet. Epidemiol. 37, 539–550 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Loh, P.-R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284–290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bycroft, C. et al. Genome-wide genetic data on ~500,000 UK Biobank participants. Preprint at bioRxiv https://doi.org/10.1101/166298 (2017).

  49. Cook, J. P., Mahajan, A. & Morris, A. P. Guidance for the utility of linear models in meta-analysis of genetic association studies of binary phenotypes. Eur. J. Hum. Genet. 25, 240–245 (2017).

    Article  PubMed  Google Scholar 

  50. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. So, H.-C., Gui, A. H. S., Cherny, S. S. & Sham, P. C. Evaluating the heritability explained by known susceptibility variants: a survey of ten complex diseases. Genet. Epidemiol. 35, 310–317 (2011).

    Article  PubMed  Google Scholar 

  52. Fehrmann, R. S. N. et al. Gene expression analysis identifies global gene dosage sensitivity in cancer. Nat. Genet. 47, 115–25 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Lage, K. et al. A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat. Biotechnol. 25, 309–316 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Bult, C. J. et al. Mouse genome informatics in a new age of biological inquiry. in Proc. IEEE International Symposium on Bio-Informatics and Biomedical Engineering 29–32 (IEEE, Piscataway, New Jersey, USA, 2000).

  55. Croft, D. et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 39, D691–D697 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Raychaudhuri, S. et al. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet. 5, e1000534 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wen, X., Pique-Regi, R. & Luca, F. Integrating molecular QTL data into genome-wide genetic association analysis: probabilistic assessment of enrichment and colocalization. PLoS Genet. 13, e1006646 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Herron, T. J. et al. Ca2+-independent positive molecular inotropy for failing rabbit and human cardiac muscle by alpha-myosin motor gene transfer. FASEB J. 24, 415–424 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yamazaki, M., Filgueiras-Rama, D., Berenfeld, O. & Kalifa, J. Ectopic and reentrant activation patterns in the posterior left atrium during stretch-related atrial fibrillation. Prog. Biophys. Mol. Biol. 110, 269–277 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ferreira, M. A. et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat. Genet. 49, 1752–1757 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhou, S. H., Helfenbein, E. D., Lindauer, J. M., Gregg, R. E. & Feild, D. Q. Philips QT interval measurement algorithms for diagnostic, ambulatory, and patient monitoring ECG applications. Ann. Noninvasive Electrocardiol 14(Suppl.), S3–S8 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lindauer, J., Gregg, R., Helfenbein, E., Shao, M. & Zhou, S. Global QT measurements in the Philips 12-lead algorithm. J. Electrocardiol. 38, 90 (2005).

    Article  Google Scholar 

  65. Benonisdottir, S. et al. Epigenetic and genetic components of height regulation. Nat. Commun. 7, 13490 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Denny, J. C. et al. Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat. Biotechnol. 31, 1102–1110 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Nord-Trøndelag Health Study (the HUNT Study) is a collaboration between the HUNT Research Centre (Faculty of Medicine, Norwegian University of Science and Technology (NTNU)), Nord-Trøndelag County Council, the Central Norway Health Authority, and the Norwegian Institute of Public Health. The K.G. Jebesen Center for Genetic Epidemiology is financed by Stiftelsen Kristian Gerhard Jebsen, the Faculty of Medicine and Health Sciences Norwegian University of Science and Technology (NTNU), and the Central Norway Regional Health Authority. This research has been conducted using the UK Biobank Resource under application number 24460. J.B.N. was supported by grants from the Danish Heart Foundation (16-R107-A6779) and the Lundbeck Foundation (R220-2016-1434). T.J.H. was supported by an American Heart Association Scientist Development Grant (0735464Z). J.A.S. was supported by National Institutes of Health grant R01-HL124232. C.J.W. was supported by National Institutes of Health grants R35-HL135824, R01-HL127564, R01-HL117626-02-S1, and R01-HL130705. To the best of our knowledge, this manuscript complies with all relevant ethical regulations.

Author information

Authors and Affiliations

Authors

Contributions

J.B.N., R.B.T., L.G.F., W.Z., M.W.S., S.E.G., S.M., E.M.S., G.S., I.S., M.L., B.N.W., R.D., P.S., U.T., and X.W. performed the computational analyses. M.R.M., M.E.G., A.H.S., O.L.H., H.D., J.H.C., J.D.B., D.O.A., U.T., A.B., C.O., A.G.H., W.H., S.K., C.M.B., and T.M.T. conducted data acquisition. T.J.H., M.Y., R.D.C., J.K., J.A.S., and J.J. performed wet lab experiments. O.L.H., F.E.D., M.B., S.L., H.M.K., H.H., D.J.C., D.F.G., K.S., B.M., G.R.A., K.H., and C.J.W. designed and supervised the study. All authors contributed to manuscript preparation and read, commented on, and approved the manuscript.

Corresponding authors

Correspondence to Gonçalo R. Abecasis, Kristian Hveem or Cristen J. Willer.

Ethics declarations

Competing interests

R.B.T., G.S., D.O.A., P.S., U.T., D.F.G., H.H., and K.S. are employed by deCODE genetics/Amgen, Inc., Reykjavik, Iceland. A.G.H. is employed by Novo Nordisk A/S, Bagsværd, Denmark. S.M., J.H.C., J.D.B., A.B., C.O., F.E.D., G.R.A., and T.M.T. are employed by Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA. D.J.C. is employed by Geisinger Health System, Danville, Pennsylvania, USA.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1 Quantile–quantile plots for genome-wide single-variant association analyses for the six contributing study cohorts.

Markers are stratified by minor allele frequency below versus above 0.01. A genomic control factor of 1.38 was applied to the deCODE association results. Dots indicate observed P values (–log10 (P value)) compared with those expected by chance under the null hypothesis (no association). The black line indicates the identity (no association) with corresponding 95% confidence intervals.

Supplementary Figure 2 Enrichment of atrial fibrillation–associated risk variants in regulatory elements across 127 Roadmap Epigenomics tissue groups.

A total of 785 combinations of regulatory features and tissues were examined. P values and fold enrichment were estimated using GREGOR. The most statistically significant findings comprised an overlap with H3K27 in right atrium and left ventricle along with H3K4me1 and DNase sites in fetal heart.

Supplementary Figure 3 Heat map showing the effects of atrial fibrillation (AF) variants on electrocardiogram (ECG) traits in sinus rhythm ECGs, excluding AF cases.

Sinus rhythm ECG measurements were available for 62,974 Icelandic individuals without diagnosis of AF. Each column shows the estimated effect of the AF risk allele on various ECG traits. The effect of each variant, annotated with the locus gene names, is scaled with the log AF odds ratio. Novel variants are marked with an asterisk. Red represents a positive effect of the AF risk allele on the ECG variable, and blue represents negative effect. The effect is shown only for significant associations after adjusting for multiple testing with a false discovery rate procedure for each variant. Non-significant associations are white in the heat map. Sixty of 111 variants with at least one association are shown. P values and effect estimates were obtained using BOLT-LMM. For readability, selected highly correlated lead-specific time duration ECG variables (P interval, r2 > 0.51; PR segment, r2 > 0.46; QRS duration, r2 > 0.47; and T duration, r2 > 0.16) have been omitted from the plot. A complete set of association results is provided in Supplementary Table 12. PRint, PR interval; PRseg, PR segment; QRSdur, QRS interval duration; Pamp, P-wave amplitude; Parea, P-wave area; Pdur, P-wave duration; Ramp, R-wave amplitude; Tamp, T-wave amplitude.

Supplementary Figure 4 Relationship between left atrium pressure and duration of atrial fibrillation (AF) following burst pacing of rabbit hearts.

This is an extended version of Fig. 4b showing all individual data points. Heart failure (HF) hearts (n = 4) developed long-lasting AF (>60 s) when intra-atrial pressure was increased to 10 cm H2O. Control hearts (n = 4) did not develop long-lasting AF until intra-atrial pressure was increased to 30 cm H2O. Each individual measurement (represented by a dot) is superimposed on box plots showing the median (horizontal black lines), interquartile range (upper and lower box boarders), and interquartile range × 1.5 (vertical black lines) of AF duration.

Supplementary Figure 5 Western blotting for MYH7 expression (β-MyHC protein) indicates MYH7 expression exclusively in the remodeled heart failure left atrium.

Uncropped version of Fig. 4c.

Supplementary Figure 6 Immunostaining and confocal microscopy reveal heterogeneous MYH7 expression in the heart failure left atrium.

Green represents MYH7 expression (β-myosin), and red represents actin filaments.

Supplementary Figure 7 Association between atrial fibrillation polygenic risk score (n = 142 markers) and 1,494 ICD-based traits in UK Biobank participants of white British ancestry.

Association tests were performed using a logistic regression adjusted for sex and birth year. The horizontal dotted red line represents a P-value threshold of significance based on Bonferroni correction (P < 0.05/1,494 = 3.3 × 10–5). Some labels have been omitted on the left plot (see Supplementary Table 15 for details on association results).

Supplementary Figure 8 Polygenic risk score distributions for atrial fibrillation–associated variants stratified by age of onset of disease.

Results are based on the HUNT Study only. White dots represent the median, black boxes represent interquartile ranges, black whiskers are the interquartile range times 1.5, and the colored areas show the probability density of the data. The horizontal red dotted line represents the median score for controls.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Note

Reporting Summary

Supplementary Tables

Supplementary Tables 1–16

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nielsen, J.B., Thorolfsdottir, R.B., Fritsche, L.G. et al. Biobank-driven genomic discovery yields new insight into atrial fibrillation biology. Nat Genet 50, 1234–1239 (2018). https://doi.org/10.1038/s41588-018-0171-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-018-0171-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing