Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Mitochondrial genetic medicine

Abstract

Inherited mitochondrial DNA (mtDNA) diseases were discovered 30 years ago, and their characterization has provided a new perspective on the etiology of the common metabolic and degenerative diseases, cancer, and aging. The maternally inherited mtDNA contains 37 critical bioenergetic genes that are present in hundreds of copies per cell, but the ‘mitochondrial genome’ encompasses an additional 1,000–2,000 nuclear DNA (nDNA) mitochondrial genes. The interaction between these two mitochondrial genetic systems provides explanations for phenomena such as the non-Mendelian transmission of the common ‘complex’ diseases, age-related disease risk and progression, variable penetrance and expressivity, and gene–environment interactions. Thus, mtDNA genetics contributes to the quantitative and environmental components of human genetics that cannot be explained by Mendelian genetics. Because mtDNA is maternally inherited and cytoplasmic, it has fostered the first germline gene therapy, nuclear transplantation. However, effective interventions are still lacking for existing patients with mitochondrial dysfunction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Germline mtDNA heteroplasmy segregation and removal by nuclear transplantation.

Similar content being viewed by others

References

  1. Wallace, D. C. A mitochondrial bioenergetic etiology of disease. J. Clin. Invest. 123, 1405–1412 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pham, T. D. et al. Cristae remodeling causes acidification detected by integrated graphene sensor during mitochondrial outer membrane permeabilization. Sci. Rep. 6, 35907 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Walker, J. E. The ATP synthase: the understood, the uncertain and the unknown. Biochem. Soc. Trans. 41, 1–16 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Wallace, D. C. & Fan, W. Energetics, epigenetics, mitochondrial genetics. Mitochondrion 10, 12–31 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Wallace, D. C., Fan, W. & Procaccio, V. Mitochondrial energetics and therapeutics. Annu. Rev. Pathol. 5, 297–348 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Picard, M. et al. Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming. Proc. Natl. Acad. Sci. USA 111, E4033–E4042 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Couvillion, M. T., Soto, I. C., Shipkovenska, G. & Churchman, L. S. Synchronized mitochondrial and cytosolic translation programs. Nature 533, 499–503 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Giles, R. E., Blanc, H., Cann, H. M. & Wallace, D. C. Maternal inheritance of human mitochondrial DNA. Proc. Natl. Acad. Sci. USA 77, 6715–6719 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pyle, A. et al. Extreme-depth re-sequencing of mitochondrial DNA finds no evidence of paternal transmission in humans. PLoS Genet. 11, e1005040 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brown, W. M., Prager, E. M., Wang, A. & Wilson, A. C. Mitochondrial DNA sequences of primates: tempo and mode of evolution. J. Mol. Evol. 18, 225–239 (1982).

    Article  CAS  PubMed  Google Scholar 

  11. Neckelmann, N., Li, K., Wade, R. P., Shuster, R. & Wallace, D. C. cDNA sequence of a human skeletal muscle ADP/ATP translocator: lack of a leader peptide, divergence from a fibroblast translocator cDNA, and coevolution with mitochondrial DNA genes. Proc. Natl. Acad. Sci. USA 84, 7580–7584 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wallace, D. C. et al. Sequence analysis of cDNAs for the human and bovine ATP synthase beta subunit: mitochondrial DNA genes sustain seventeen times more mutations. Curr. Genet. 12, 81–90 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Wallace, D. C. Mitochondrial DNA variation in human radiation and disease. Cell 163, 33–38 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sorrentino, V., Menzies, K. J. & Auwerx, J. Repairing mitochondrial dysfunction in disease. Annu. Rev. Pharmacol. Toxicol. 58, 353–389 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Gorman, G. S. et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann. Neurol. 77, 753–759 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lightowlers, R. N., Taylor, R. W. & Turnbull, D. M. Mutations causing mitochondrial disease: what is new and what challenges remain? Science 349, 1494–1499 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Elliott, H. R., Samuels, D. C., Eden, J. A., Relton, C. L. & Chinnery, P. F. Pathogenic mitochondrial DNA mutations are common in the general population. Am. J. Hum. Genet. 83, 254–260 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chinnery, P. F., Elliott, H. R., Hudson, G., Samuels, D. C. & Relton, C. L. Epigenetics, epidemiology and mitochondrial DNA diseases. Int. J. Epidemiol. 41, 177–187 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rebolledo-Jaramillo, B. et al. Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA. Proc. Natl. Acad. Sci. USA 111, 15474–15479 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wallace, D. C. et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242, 1427–1430 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Holt, I. J., Harding, A. E., Petty, R. K. & Morgan-Hughes, J. A. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am. J. Hum. Genet. 46, 428–433 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wallace, D. C. et al. Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell 55, 601–610 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Shoffner, J. M. et al. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell 61, 931–937 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Goto, Y., Nonaka, I. & Horai, S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348, 651–653 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Huoponen, K., Vilkki, J., Aula, P., Nikoskelainen, E. K. & Savontaus, M. L. A new mtDNA mutation associated with Leber hereditary optic neuroretinopathy. Am. J. Hum. Genet. 48, 1147–1153 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Johns, D. R., Neufeld, M. J. & Park, R. D. An ND-6 mitochondrial DNA mutation associated with Leber hereditary optic neuropathy. Biochem. Biophys. Res. Commun. 187, 1551–1557 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Fischel-Ghodsian, N., Prezant, T. R., Bu, X. & Oztas, S. Mitochondrial ribosomal RNA gene mutation in a patient with sporadic aminoglycoside ototoxicity. Am. J. Otolaryngol. 14, 399–403 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Hutchin, T. et al. A molecular basis for human hypersensitivity to aminoglycoside antibiotics. Nucleic Acids Res. 21, 4174–4179 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pfeffer, G. & Chinnery, P. F. Diagnosis and treatment of mitochondrial myopathies. Ann. Med. 45, 4–16 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Andreu, A. L. et al. A nonsense mutation (G15059A) in the cytochrome b gene in a patient with exercise intolerance and myoglobinuria. Ann. Neurol. 45, 127–130 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Andreu, A. L. et al. Exercise intolerance due to mutations in the cytochrome b gene of mitochondrial DNA. N. Engl. J. Med. 341, 1037–1044 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Andreu, A. L., Checcarelli, N., Iwata, S., Shanske, S. & DiMauro, S. A missense mutation in the mitochondrial cytochrome b gene in a revisited case with histiocytoid cardiomyopathy. Pediatr. Res. 48, 311–314 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Mancuso, M. et al. Mitochondrial myopathy and complex III deficiency in a patient with a new stop-codon mutation (G339X) in the cytochrome b gene. J. Neurol. Sci. 209, 61–63 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. DiMauro, S. Mitochondrial encephalomyopathies—at fifty years on: the Robert Wartenberg lecture. Neurology 81, 281–291 (2013).

    Article  PubMed  Google Scholar 

  35. Emmanuele, V. et al. A novel mutation in the mitochondrial DNA cytochrome b gene (MTCYB) in a patient with mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes syndrome. J. Child Neurol. 28, 236–242 (2013).

    Article  PubMed  Google Scholar 

  36. Wallace, D.C., Lott, M.T. & Procaccio, V. Mitochondrial medicine: the mitochondrial biology and genetics of metabolic and degenerative diseases, cancer, and aging. in Emery and Rimoin’s Principles and Practice of Medical Genetics Vol. 1 (eds. Rimoin, D. L. et al.) Ch. 11, 1–153 (Churchill Livingstone Elsevier, Philadelphia, 2013).

  37. Wallace, D.C., Lott, M.T. & Procaccio, V. Mitochondrial biology—mitochondrial medicine. in Principles and Practice of Medical Genetics and Genomics (eds. Pyeritz, R. E. et al.) (Elsevier, Philadelphia, 2018).

  38. MITOMAP. A Human Mitochondrial Genome Database. http://www.mitomap.org/ (2018).

  39. Jenuth, J. P., Peterson, A. C., Fu, K. & Shoubridge, E. A. Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat. Genet. 14, 146–151 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Wai, T., Teoli, D. & Shoubridge, E. A. The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat. Genet. 40, 1484–1488 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Cree, L. M. et al. A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nat. Genet. 40, 249–254 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Li, M. et al. Transmission of human mtDNA heteroplasmy in the genome of the Netherlands families: support for a variable-size bottleneck. Genome Res. 26, 417–426 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wilson, I. J. et al. Mitochondrial DNA sequence characteristics modulate the size of the genetic bottleneck. Hum. Mol. Genet. 25, 1031–1041 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Carling, P. J., Cree, L. M. & Chinnery, P. F. The implications of mitochondrial DNA copy number regulation during embryogenesis. Mitochondrion 11, 686–692 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Jokinen, R. & Battersby, B. J. Insight into mammalian mitochondrial DNA segregation. Ann. Med. 45, 149–155 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Floros, V. I. et al. Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos. Nat. Cell Biol. 20, 144–151 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fan, W. et al. A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 319, 958–962 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stewart, J. B. et al. Strong purifying selection in transmission of mammalian mitochondrial DNA. PLoS Biol. 6, e10 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sharpley, M. S. et al. Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell 151, 333–343 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shoffner, J. M. et al. Mitochondrial DNA variants observed in Alzheimer disease and Parkinson disease patients. Genomics 17, 171–184 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Hutchin, T. & Cortopassi, G. A mitochondrial DNA clone is associated with increased risk for Alzheimer disease. Proc. Natl. Acad. Sci. USA 92, 6892–6895 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Santoro, A. et al. Evidence for sub-haplogroup h5 of mitochondrial DNA as a risk factor for late onset Alzheimer’s disease. PLoS One 5, e12037 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chagnon, P. et al. Phylogenetic analysis of the mitochondrial genome indicates significant differences between patients with Alzheimer disease and controls in a French-Canadian founder population. Am. J. Med. Genet. 85, 20–30 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Carrieri, G. et al. Mitochondrial DNA haplogroups and APOE4 allele are non-independent variables in sporadic Alzheimer’s disease. Hum. Genet. 108, 194–198 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. van der Walt, J. M. et al. Analysis of European mitochondrial haplogroups with Alzheimer disease risk. Neurosci. Lett. 365, 28–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Lakatos, A. et al. Association between mitochondrial DNA variations and Alzheimer’s disease in the ADNI cohort. Neurobiol. Aging 31, 1355–1363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. van der Walt, J. M. et al. Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease. Am. J. Hum. Genet. 72, 804–811 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ghezzi, D. et al. Mitochondrial DNA haplogroup K is associated with a lower risk of Parkinson’s disease in Italians. Eur. J. Hum. Genet. 13, 748–752 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Khusnutdinova, E. et al. A mitochondrial etiology of neurodegenerative diseases: evidence from Parkinson’s disease. Ann. NY Acad. Sci. 1147, 1–20 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Fachal, L. et al. No evidence of association between common European mitochondrial DNA variants in Alzheimer, Parkinson, and migraine in the Spanish population. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 168B, 54–65 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Hudson, G. et al. Two-stage association study and meta-analysis of mitochondrial DNA variants in Parkinson disease. Neurology 80, 2042–2048 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chalkia, D. et al. Association between mitochondrial DNA haplogroup variation and autism spectrum disorders. JAMA Psychiatry 74, 1161–1168 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wang, Y., Picard, M. & Gu, Z. Genetic evidence for elevated pathogenicity of mitochondrial DNA heteroplasmy in Autism Spectrum Disorder. PLoS Genet. 12, e1006391 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fuku, N. et al. Mitochondrial haplogroup N9a confers resistance against type 2 diabetes in Asians. Am. J. Hum. Genet. 80, 407–415 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nishigaki, Y. et al. Mitochondrial haplogroup N9b is protective against myocardial infarction in Japanese males. Hum. Genet. 120, 827–836 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Chalkia, D. et al. Mitochondrial DNA associations with East Asian metabolic syndrome. Biochim. Biophys. Acta 1859, 878–892 (2018).

    Article  CAS  Google Scholar 

  67. Latorre-Pellicer, A. et al. Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature 535, 561–565 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Yu, X. et al. Dissecting the effects of mtDNA variations on complex traits using mouse conplastic strains. Genome Res. 19, 159–165 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wallace, D. C. Genetics: mitochondrial DNA in evolution and disease. Nature 535, 498–500 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wallace, D. C. & Chalkia, D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb. Perspect. Biol. 5, a021220 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Craven, L. et al. Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature 465, 82–85 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hyslop, L. A. et al. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature 534, 383–386 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tachibana, M. et al. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature 461, 367–372 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tachibana, M. et al. Towards germline gene therapy of inherited mitochondrial diseases. Nature 493, 627–631 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Kang, E. et al. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature 540, 270–275 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Paull, D. et al. Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature 493, 632–637 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Wolf, D. P., Hayama, T. & Mitalipov, S. Mitochondrial genome inheritance and replacement in the human germline. EMBO J. 36, 2177–2181 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ma, H. et al. Functional human oocytes generated by transfer of polar body genomes. Cell Stem Cell 20, 112–119 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Slone, J., Zhang, J. & Huang, T. Experience from the first live-birth derived from oocyte nuclear transfer as a treatment strategy for mitochondrial diseases. J. Mol. Genet. Med. 11, 1000258 (2017).

    Google Scholar 

  80. Yamada, M. et al. Genetic drift can compromise mitochondrial replacement by nuclear transfer in human oocytes. Cell Stem Cell 18, 749–754 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Barritt, J. A., Brenner, C. A., Malter, H. E. & Cohen, J. Mitochondria in human offspring derived from ooplasmic transplantation. Hum. Reprod. 16, 513–516 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Zhang, J. et al. Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reprod. Biomed. Online 34, 361–368 (2017).

    Article  PubMed  Google Scholar 

  83. Kujoth, G. C. et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309, 481–484 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Vermulst, M. et al. DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice. Nat. Genet. 40, 392–394 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Kang, E. et al. Age-related accumulation of somatic mitochondrial DNA mutations in adult-derived human iPSCs. Cell Stem Cell 18, 625–636 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Schriner, S. E. et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 1909–1911 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Lee, H. Y. et al. Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance. Cell Metab. 12, 668–674 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Woo, D. K. et al. Mitochondrial genome instability and ROS enhance intestinal tumorigenesis in APC(Min/+) mice. Am. J. Pathol. 180, 24–31 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Arnheim, N. & Cortopassi, G. Deleterious mitochondrial DNA mutations accumulate in aging human tissues. Mutat. Res. 275, 157–167 (1992).

    Article  CAS  PubMed  Google Scholar 

  91. Soong, N. W., Hinton, D. R., Cortopassi, G. & Arnheim, N. Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain. Nat. Genet. 2, 318–323 (1992).

    Article  CAS  PubMed  Google Scholar 

  92. Corral-Debrinski, M. et al. Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat. Genet. 2, 324–329 (1992).

    Article  CAS  PubMed  Google Scholar 

  93. Corral-Debrinski, M. et al. Marked changes in mitochondrial DNA deletion levels in Alzheimer brains. Genomics 23, 471–476 (1994).

    Article  CAS  PubMed  Google Scholar 

  94. Coskun, P. E., Beal, M. F. & Wallace, D. C. Alzheimer’s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc. Natl. Acad. Sci. USA 101, 10726–10731 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Coskun, P. E. et al. Systemic mitochondrial dysfunction and the etiology of Alzheimer’s disease and down syndrome dementia. J. Alzheimers Dis. 20(Suppl 2), S293–S310 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Coskun, P. et al. A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim. Biophys. Acta 1820, 553–564 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Horton, T. M. et al. Marked increase in mitochondrial DNA deletion levels in the cerebral cortex of Huntington’s disease patients. Neurology 45, 1879–1883 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Corral-Debrinski, M. et al. Hypoxemia is associated with mitochondrial DNA damage and gene induction. Implications for cardiac disease. J. Am. Med. Assoc. 266, 1812–1816 (1991).

    Article  CAS  Google Scholar 

  99. Ji, F. et al. Mitochondrial DNA variant associated with Leber hereditary optic neuropathy and high-altitude Tibetans. Proc. Natl. Acad. Sci. USA 109, 7391–7396 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Zheng, S. et al. Role of mtDNA haplogroups in COPD susceptibility in a southwestern Han Chinese population. Free Radic. Biol. Med. 53, 473–481 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Sherer, T. B. et al. Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson’s disease. J. Neurochem. 100, 1469–1479 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Cannon, J. R. & Greenamyre, J. T. Neurotoxic in vivo models of Parkinson’s disease recent advances. Prog. Brain Res. 184, 17–33 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Bulstrode, H. et al. Mitochondrial DNA and traumatic brain injury. Ann. Neurol. 75, 186–195 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kilbaugh, T. J. et al. Peripheral blood mitochondrial DNA as a biomarker of cerebral mitochondrial dysfunction following traumatic brain injury in a porcine model. PLoS One 10, e0130927 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Baudouin, S. V. et al. Mitochondrial DNA and survival after sepsis: a prospective study. Lancet 366, 2118–2121 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Gomez, R. et al. Association of mitochondrial allele 4216C with increased risk for complicated sepsis and death after traumatic injury. J. Trauma 66, 850–857 (2009). discussion 857–858.

    Article  PubMed  Google Scholar 

  107. Hendrickson, S. L. et al. Mitochondrial DNA haplogroups influence. AIDS progression. AIDS 22, 2429–2439 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Zhang, Q. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104–107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang, Q., Itagaki, K. & Hauser, C. J. Mitochondrial DNA is released by shock and activates neutrophils via p38 map kinase. Shock 34, 55–59 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Krysko, D. V. et al. Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol. 32, 157–164 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Dan Dunn, J., Alvarez, L. A., Zhang, X. & Soldati, T. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol. 6, 472–485 (2015).

    Article  CAS  Google Scholar 

  112. Nadeau-Vallée, M. et al. A critical role of interleukin-1 in preterm labor. Cytokine Growth Factor Rev. 28, 37–51 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Angelin, A. et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 25, 1282–1293.e7 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ravi, S., Mitchell, T., Kramer, P., Chacko, B. & Darley-Usmar, V. M. Mitochondria in monocytes and macrophages-implications for translational and basic research. Int. J. Biochem. Cell Biol. 53, 202–207 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants 5R01-NS021328-30, 1R01MH108592-01A1, 1R01MN110185-01A1, R01OD010944-05, and DOD W81XWH-16-1-0401 awarded to D.C.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas C. Wallace.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wallace, D.C. Mitochondrial genetic medicine. Nat Genet 50, 1642–1649 (2018). https://doi.org/10.1038/s41588-018-0264-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-018-0264-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing