Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The bipartite TAD organization of the X-inactivation center ensures opposing developmental regulation of Tsix and Xist

Abstract

The mouse X-inactivation center (Xic) locus represents a powerful model for understanding the links between genome architecture and gene regulation, with the non-coding genes Xist and Tsix showing opposite developmental expression patterns while being organized as an overlapping sense/antisense unit. The Xic is organized into two topologically associating domains (TADs) but the role of this architecture in orchestrating cis-regulatory information remains elusive. To explore this, we generated genomic inversions that swap the Xist/Tsix transcriptional unit and place their promoters in each other’s TAD. We found that this led to a switch in their expression dynamics: Xist became precociously and ectopically upregulated, both in male and female pluripotent cells, while Tsix expression aberrantly persisted during differentiation. The topological partitioning of the Xic is thus critical to ensure proper developmental timing of X inactivation. Our study illustrates how the genomic architecture of cis-regulatory landscapes can affect the regulation of mammalian developmental processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genomic inversion of the Xist/Tsix loci switches their promoters into each other’s original TADs.
Fig. 2: Genomic inversion of the Xist/Tsix loci along with Xite and Jpx leads to topological changes within the Xic.
Fig. 3: Xite structural element is important for TAD boundary position and insulation.
Fig. 4: Xist/Tsix inversions lead to ectopic Xist expression, Xist RNA coating and X-linked gene silencing in male mESCs.
Fig. 5: Xist/Tsix inversions affect the initiation of XCI and the expression dynamics of Xist and Tsix during differentiation of female mESCs.

Similar content being viewed by others

Data availability

Data have been deposited in the NCBI GEO under the accession number GSE111205. Reagents, cell lines and other data supporting the findings of this study are available from the corresponding author upon request.

Code availability

Our custom pipeline for 5C data processing, 5C-Pro, is available at https://github.com/bioinfo-pf-curie/5C-Pro. Custom codes used in this study will be provided upon request.

References

  1. de Laat, W. & Duboule, D. Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 502, 499–506 (2013).

    PubMed  Google Scholar 

  2. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Phillips-Cremins, J. E. et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153, 1281–1295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhan, Y. et al. Reciprocal insulation analysis of Hi-C data shows that TADs represent a functionally but not structurally privileged scale in the hierarchical folding of chromosomes. Genome Res. 27, 479–490 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Vietri Rudan, M. et al. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep. 10, 1297–1309 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Le Dily, F. et al. Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation. Genes Dev. 28, 2151–2162 (2014).

    PubMed  PubMed Central  Google Scholar 

  9. Shen, Y. et al. A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116–120 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Symmons, O. et al. Functional and topological characteristics of mammalian regulatory domains. Genome Res. 24, 390–400 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Van Bortle, K. et al. Insulator function and topological domain border strength scale with architectural protein occupancy. Genome Biol. 15, R82 (2014).

    PubMed  PubMed Central  Google Scholar 

  12. Li, Y. et al. Characterization of constitutive CTCF/cohesin loci: a possible role in establishing topological domains in mammalian genomes. BMC Genomics 14, 553 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sofueva, S. et al. Cohesin-mediated interactions organize chromosomal domain architecture. EMBO J. 32, 3119–3129 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944 e22 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Guo, Y. et al. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162, 900–910 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lupianez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012–1025 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456–E6465 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. de Wit, E. et al. CTCF binding polarity determines chromatin looping. Mol. Cell 60, 676–684 (2015).

    PubMed  Google Scholar 

  19. Narendra, V. et al. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science 347, 1017–1021 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tang, Z. et al. CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription. Cell 163, 1611–1627 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lupianez, D. G., Spielmann, M. & Mundlos, S. Breaking TADs: how alterations of chromatin domains result in disease. Trends Genet. 32, 225–237 (2016).

    CAS  PubMed  Google Scholar 

  22. Rastan, S. Non-random X-chromosome inactivation in mouse X-autosome translocation embryos–location of the inactivation centre. J. Embryol. Exp. Morphol. 78, 1–22 (1983).

    CAS  PubMed  Google Scholar 

  23. Rastan, S. & Robertson, E. J. X-chromosome deletions in embryo-derived (EK) cell lines associated with lack of X-chromosome inactivation. J. Embryol. Exp. Morphol. 90, 379–388 (1985).

    CAS  PubMed  Google Scholar 

  24. Heard, E., Avner, P. & Rothstein, R. Creation of a deletion series of mouse YACs covering a 500 kb region around Xist. Nucleic Acids Res. 22, 1830–1837 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, J. T., Strauss, W. M., Dausman, J. A. & Jaenisch, R. A 450 kb transgene displays properties of the mammalian X-inactivation center. Cell 86, 83–94 (1996).

    CAS  PubMed  Google Scholar 

  26. Galupa, R. & Heard, E. X-chromosome inactivation: new insights into cis and trans regulation. Curr. Opin. Genet. Dev. 31, 57–66 (2015).

    CAS  PubMed  Google Scholar 

  27. Nesterova, T. B. et al. Pluripotency factor binding and Tsix expression act synergistically to repress Xist in undifferentiated embryonic stem cells. Epigenetics Chromatin 4, 17 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Navarro, P. et al. Molecular coupling of Xist regulation and pluripotency. Science 321, 1693–1695 (2008).

    CAS  PubMed  Google Scholar 

  29. Sousa, E. J. et al. Exit from naive pluripotency induces a transient X chromosome Inactivation-like state in males. Cell Stem Cell 22, 919–928 e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee, J. T. Regulation of X-chromosome counting by Tsix and Xite sequences. Science 309, 768–771 (2005).

    CAS  PubMed  Google Scholar 

  31. Debrand, E., Chureau, C., Arnaud, D., Avner, P. & Heard, E. Functional analysis of the DXPas34 locus, a 3′ regulator of Xist expression. Mol. Cell Biol. 19, 8513–8525 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee, J. T., Davidow, L. S. & Warshawsky, D. Tsix, a gene antisense to Xist at the X-inactivation centre. Nat. Genet. 21, 400–404 (1999).

    CAS  PubMed  Google Scholar 

  33. Mise, N., Goto, Y., Nakajima, N. & Takagi, N. Molecular cloning of antisense transcripts of the mouse Xist gene. Biochem. Biophys. Res. Commun. 258, 537–541 (1999).

    CAS  PubMed  Google Scholar 

  34. Tian, D., Sun, S. & Lee, J. T. The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell 143, 390–403 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Barakat, T. S. et al. RNF12 activates Xist and is essential for X chromosome inactivation. PLoS Genet. 7, e1002001 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Furlan, G. et al. The Ftx noncoding locus controls X chromosome inactivation independently of its RNA products. Mol. Cell 70, 462–472 e8 (2018).

    CAS  PubMed  Google Scholar 

  37. Augui, S., Nora, E. P. & Heard, E. Regulation of X-chromosome inactivation by the X-inactivation centre. Nat. Rev. Genet. 12, 429–442 (2011).

    CAS  PubMed  Google Scholar 

  38. Pollex, T. & Heard, E. Recent advances in X-chromosome inactivation research. Curr. Opin. Cell Biol. 24, 825–832 (2012).

    CAS  PubMed  Google Scholar 

  39. van Bemmel, J. G., Mira-Bontenbal, H. & Gribnau, J. Cis- and trans-regulation in X inactivation. Chromosoma 125, 41–50 (2016).

    PubMed  Google Scholar 

  40. Hughes, J. R. et al. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat. Genet. 46, 205–212 (2014).

    CAS  PubMed  Google Scholar 

  41. Davies, J. O. et al. Multiplexed analysis of chromosome conformation at vastly improved sensitivity. Nat. Methods 13, 74–80 (2016).

    CAS  PubMed  Google Scholar 

  42. Dostie, J. et al. Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 16, 1299–1309 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Merkenschlager, M. & Nora, E. P. CTCF and cohesin in genome folding and transcriptional gene regulation. Annu. Rev. Genom. Hum. Genet. 17, 17–43 (2016).

    CAS  Google Scholar 

  44. Ogawa, Y. & Lee, J. T. Xite, X-inactivation intergenic transcription elements that regulate the probability of choice. Mol. Cell 11, 731–743 (2003).

    CAS  PubMed  Google Scholar 

  45. Stavropoulos, N., Rowntree, R. K. & Lee, J. T. Identification of developmentally specific enhancers for Tsix in the regulation of X chromosome inactivation. Mol. Cell Biol. 25, 2757–2769 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Barakat, T. S. et al. The trans-activator RNF12 and cis-acting elements effectuate X chromosome inactivation independent of X-pairing. Mol. Cell 53, 965–978 (2014).

    CAS  PubMed  Google Scholar 

  47. Sun, S. et al. Jpx RNA activates Xist by evicting CTCF. Cell 153, 1537–1551 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Carmona, S., Lin, B., Chou, T., Arroyo, K. & Sun, S. LncRNA Jpx induces Xist expression in mice using both trans and cis mechanisms. PLoS Genet. 14, e1007378 (2018).

    PubMed  PubMed Central  Google Scholar 

  49. Giorgetti, L. et al. Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 157, 950–963 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Spencer, R. J. et al. A boundary element between Tsix and Xist binds the chromatin insulator Ctcf and contributes to initiation of X-chromosome inactivation. Genetics 189, 441–454 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Jegu, T., Aeby, E. & Lee, J. T. The X chromosome in space. Nat. Rev. Genet. 18, 377–389 (2017).

    CAS  PubMed  Google Scholar 

  52. Engreitz, J. M. et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341, 1237973 (2013).

    PubMed  PubMed Central  Google Scholar 

  53. Brockdorff, N. & Turner, B. M. Dosage compensation in mammals. Cold Spring Harb. Perspect. Biol. 7, a019406 (2015).

    PubMed  PubMed Central  Google Scholar 

  54. Brons, I. G. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195 (2007).

    CAS  PubMed  Google Scholar 

  55. Guo, G. et al. Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 136, 1063–1069 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Franke, M. et al. Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature 538, 265–269 (2016).

    CAS  PubMed  Google Scholar 

  57. Rodriguez-Carballo, E. et al. The HoxD cluster is a dynamic and resilient TAD boundary controlling the segregation of antagonistic regulatory landscapes. Genes Dev. 31, 2264–2281 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Johnston, C. M., Newall, A. E., Brockdorff, N. & Nesterova, T. B. Enox, a novel gene that maps 10 kb upstream of Xist and partially escapes X inactivation. Genomics 80, 236–244 (2002).

    CAS  PubMed  Google Scholar 

  59. Chureau, C. et al. Ftx is a non-coding RNA which affects Xist expression and chromatin structure within the X-inactivation center region. Hum. Mol. Genet. 20, 705–718 (2011).

    CAS  PubMed  Google Scholar 

  60. Hofmann, A. & Heermann, D. W. The role of loops on the order of eukaryotes and prokaryotes. FEBS Lett. 589, 2958–2965 (2015).

    CAS  PubMed  Google Scholar 

  61. Kent, W. J. et al. The human genome browser at UCSC. Genome Res 12, 996–1006 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Pillet, N., Bonny, C. & Schorderet, D. F. Characterization of the promoter region of the mouse Xist gene. Proc. Natl Acad. Sci. USA 92, 12515–12519 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gontan, C. et al. RNF12 initiates X-chromosome inactivation by targeting REX1 for degradation. Nature 485, 386–390 (2012).

    CAS  PubMed  Google Scholar 

  64. Doetschman, T. et al. Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330, 576–578 (1987).

    CAS  PubMed  Google Scholar 

  65. Norris, D. P. et al. Evidence that random and imprinted Xist expression is controlled by preemptive methylation. Cell 77, 41–51 (1994).

    CAS  PubMed  Google Scholar 

  66. Masui, O. et al. Live-cell chromosome dynamics and outcome of X chromosome pairing events during ES cell differentiation. Cell 145, 447–458 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Sanjana, N. E. et al. A transcription activator-like effector toolbox for genome engineering. Nat. Protoc. 7, 171–192 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Servant, N. et al. HiTC: exploration of high-throughput ‘C’ experiments. Bioinformatics 28, 2843–2844 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hnisz, D. et al. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 351, 1454–1458 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Smith, E. M., Lajoie, B. R., Jain, G. & Dekker, J. Invariant TAD boundaries constrain cell-type-specific looping interactions between promoters and distal elements around the CFTR Locus. Am. J. Hum. Genet. 98, 185–201 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Crane, E. et al. Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523, 240–244 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).

    PubMed  PubMed Central  Google Scholar 

  76. Geiss, G. K. et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol. 26, 317–325 (2008).

    CAS  PubMed  Google Scholar 

  77. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  PubMed  Google Scholar 

  78. Mudge, J. M. & Harrow, J. Creating reference gene annotation for the mouse C57BL6/J genome assembly. Mamm. Genome 26, 366–378 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS  PubMed  Google Scholar 

  80. McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Borensztein, M. et al. Xist-dependent imprinted X inactivation and the early developmental consequences of its failure. Nat. Struct. Mol. Biol. 24, 226–233 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Chaumeil, J., Augui, S., Chow, J. C. & Heard, E. Combined immunofluorescence, RNA fluorescent in situ hybridization, and DNA fluorescent in situ hybridization to study chromatin changes, transcriptional activity, nuclear organization, and X-chromosome inactivation. Methods Mol. Biol. 463, 297–308 (2008).

    CAS  PubMed  Google Scholar 

  83. Engreitz, J. M. et al. RNA-RNA interactions enable specific targeting of noncoding RNAs to nascent pre-mRNAs and chromatin sites. Cell 159, 188–199 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen, C. K. et al. Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing. Science 354, 468–472 (2016).

    CAS  PubMed  Google Scholar 

  85. Zeng, P. Y., Vakoc, C. R., Chen, Z. C., Blobel, G. A. & Berger, S. L. In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation. Biotechniques 41, 696–698 (2006).

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Heard laboratory for their technical input and critical discussions; D. Noordermeer for critical discussion and advice on Capture-C data analysis and interpretation; A. Chow from the Guttman laboratory for RAP-DNA cell culture; members of the Bourc’his laboratory; C. Reyes and A. Rapinat from the Nanostring platform and J. M. Telenius, M. Oudelaar and D. Downes from the Hughes and Higgs laboratories. This work was supported by an ERC Advanced Investigator award (ERC-2014-AdG no. 671027), Labelisation La Ligue, FRM (grant no. DEI20151234398), ANR DoseX 2017, Labex DEEP (no. ANR-11-LBX-0044), part of the IDEX Idex PSL (no. ANR-10-IDEX-0001-02 PSL) and ABS4NGS (no. ANR-11-BINF-0001) to E.H.; NWO-ALW Rubicon (no. 825.13.002) and Veni (no. 863.15.016) fellowships to J.G.v.B.; Région Ile-de-France (DIM Biothérapies) and Fondation pour la Recherche Médicale (no. FDT20160435295) fellowships to R.G.; Sir Henry Wellcome Postdoctoral Fellowship (no. 201369/Z/16/Z) to J.J.Z.; MRC Clinician Scientist Fellowship (no. MR/R008108) to J.D.; Wellcome Trust Strategic Award (no. 106130/Z/14/Z) to J.R.H.; New York Stem Cell Foundation and California Institute of Technology funds to M.G. (M.G. is a New York Stem Cell Foundation—Robertson Investigator); Novartis Foundation and European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 759366 ‘BioMeTre’) to L.G.; LabEx and EquipEx (nos. ANR-10-IDEX-0001-02 PSL, ANR-11-LBX-0044 and ‘INCa-DGOS-4654’ SIRIC11-002) to the Nanostring platform of Institut Curie; Equipex (no. ANR-10-EQPX-03), France Génomique Consortium from the Agence Nationale de la Recherche (‘Investissements d’Avenir’ program; no. ANR-10-INBS-09-08) and Canceropole Ile-de-France and by the SiRIC-Curie program—SiRIC grant (no. INCa-DGOS-4654) to the ICGex Next Generation Sequencing platform of the Institut Curie.

Author information

Authors and Affiliations

Authors

Contributions

J.G.v.B., J.G. and E.H. conceived the study, with support from R.G., L.G. and E.P.N. J.G.v.B., N.S. (lead), R.G., A.J.S., Y.Z., E.d.W. and L.G. (equal) conducted the formal analysis. J.G.v.B and R.G. led the investigation. C.G., A.J.S., C.P., E.P.N., J.J.Z. and S.L. supported the investigation. J.D., Y.Z., L.G., J.D., J.R.H. and D.R.H. provided resources. J.G.v.B. and E.H. wrote and prepared the original draft, with support from E.P.N., R.G. and C.G and input from all authors. R.G. and E.H. led the revision and editing of the article, with support from J.G.v.B. J.G.v.B. and R.G. provided data visualization. J.G.v.B., R.G. and E.H. supervised the study, with support from J.D., D.G., S.B., M.G., J.R.H., D.R.H. and J.G. The funding was acquired by E.H., J.G.v.B. and J.G.

Corresponding authors

Correspondence to Joke G. van Bemmel or Edith Heard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Supplementary Notes 1–8

Reporting Summary

Supplementary Tables 1–8

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Bemmel, J.G., Galupa, R., Gard, C. et al. The bipartite TAD organization of the X-inactivation center ensures opposing developmental regulation of Tsix and Xist. Nat Genet 51, 1024–1034 (2019). https://doi.org/10.1038/s41588-019-0412-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-019-0412-0

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research