Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels

Abstract

Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci and colocalization with gene expression in 47 tissues implicated the kidney and liver as the main target organs and prioritized potentially causal genes and variants, including the transcriptional master regulators in the liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A transactivated the promoter of ABCG2, encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a functional variant. Transcriptional coregulation within and across organs may be a general mechanism underlying the observed pleiotropy between urate and cardiometabolic traits.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Trans-ancestry GWAS meta-analysis identifies 183 loci associated with serum urate.
Fig. 2: A GRS for serum urate improves gout risk prediction.
Fig. 3: Serum urate shows widespread genetic correlations with cardiometabolic risk factors and diseases.
Fig. 4: Genes expressed in urate-associated loci are enriched in kidney tissue and pathways.
Fig. 5: Prioritization of p.Thr139Ile at HNF4A and functional study of HNF4A regulation of ABCG2 transcription.
Fig. 6: Colocalization of urate association signals with gene expression in cis in kidney tissues.

Similar content being viewed by others

Data availability

Genome-wide summary statistics for this study are available at the CKDGen Consortium (http://ckdgen.imbi.uni-freiburg.de) and will be made publicly available through the database of Genotypes and Phenotypes accession no. phs000930.v6.p1.

References

  1. Kuo, C. F., Grainge, M. J., Zhang, W. & Doherty, M. Global epidemiology of gout: prevalence, incidence and risk factors. Nat. Rev. Rheumatol. 11, 649–662 (2015).

    PubMed  Google Scholar 

  2. Li, X. et al. Serum uric acid levels and multiple health outcomes: umbrella review of evidence from observational studies, randomised controlled trials, and Mendelian randomisation studies. BMJ 357, j2376 (2017).

    PubMed  PubMed Central  Google Scholar 

  3. Jinno, S., Hasegawa, K., Neogi, T., Goto, T. & Dubreuil, M. Trends in emergency department visits and charges for gout in the United States between 2006 and 2012. J. Rheumatol. 43, 1589–1592 (2016).

    PubMed  PubMed Central  Google Scholar 

  4. Kuo, C. F., Grainge, M. J., Mallen, C., Zhang, W. & Doherty, M. Rising burden of gout in the UK but continuing suboptimal management: a nationwide population study. Ann. Rheum. Dis. 74, 661–667 (2015).

    PubMed  Google Scholar 

  5. Mikuls, T. R., Farrar, J. T., Bilker, W. B., Fernandes, S. & Saag, K. G. Suboptimal physician adherence to quality indicators for the management of gout and asymptomatic hyperuricaemia: results from the UK General Practice Research Database (GPRD). Rheumatology (Oxford) 44, 1038–1042 (2005).

    CAS  Google Scholar 

  6. Yang, Q. et al. Genome-wide search for genes affecting serum uric acid levels: the Framingham Heart Study. Metabolism 54, 1435–1441 (2005).

    CAS  PubMed  Google Scholar 

  7. Vitart, V. et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat. Genet. 40, 437–442 (2008).

    CAS  PubMed  Google Scholar 

  8. Pilia, G. et al. Heritability of cardiovascular and personality traits in 6,148 Sardinians. PLoS Genet. 2, e132 (2006).

    PubMed  PubMed Central  Google Scholar 

  9. Wang, W. et al. Heritability and genome-wide association analyses of serum uric acid in middle and old-aged Chinese twins. Front. Endocrinol. (Lausanne) 9, 75 (2018).

    Google Scholar 

  10. MacCluer, J. W. et al. Heritability of measures of kidney disease among Zuni Indians: the Zuni Kidney Project. Am. J. Kidney Dis. 56, 289–302 (2010).

    PubMed  PubMed Central  Google Scholar 

  11. Rule, A. D. et al. Genome-wide linkage analysis for uric acid in families enriched for hypertension. Nephrol. Dial. Transplant. 24, 2414–2420 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Enomoto, A. et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 417, 447–452 (2002).

    CAS  PubMed  Google Scholar 

  13. Li, S. et al. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet 3, e194 (2007).

    PubMed  PubMed Central  Google Scholar 

  14. Döring, A. et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat. Genet. 40, 430–436 (2008).

    PubMed  Google Scholar 

  15. Dehghan, A. et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 372, 1953–1961 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kolz, M. et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 5, e1000504 (2009).

    PubMed  PubMed Central  Google Scholar 

  17. Yang, Q. et al. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ. Cardiovasc. Genet. 3, 523–530 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tin, A. et al. Genome-wide association study for serum urate concentrations and gout among African Americans identifies genomic risk loci and a novel URAT1 loss-of-function allele. Hum. Mol. Genet. 20, 4056–4068 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Woodward, O. M. et al. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc. Natl Acad. Sci. USA 106, 10338–10342 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Major, T. J., Dalbeth, N., Stahl, E. A. & Merriman, T. R. An update on the genetics of hyperuricaemia and gout. Nat. Rev. Rheumatol. 14, 341–353 (2018).

    CAS  PubMed  Google Scholar 

  21. Köttgen, A. et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat. Genet. 45, 145–154 (2013).

    PubMed  Google Scholar 

  22. Kanai, M. et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat. Genet. 50, 390–400 (2018).

    CAS  PubMed  Google Scholar 

  23. Schaid, D. J., Chen, W. & Larson, N. B. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat. Rev. Genet. 19, 491–504 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. Kamatani, Y. et al. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat. Genet. 42, 210–215 (2010).

    CAS  PubMed  Google Scholar 

  26. Okada, Y. et al. Meta-analysis identifies multiple loci associated with kidney function-related traits in east Asian populations. Nat. Genet. 44, 904–909 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Merriman, T. R. Population heterogeneity in the genetic control of serum urate. Semin. Nephrol. 31, 420–425 (2011).

    CAS  PubMed  Google Scholar 

  28. Roddy, E. & Choi, H. K. Epidemiology of gout. Rheum. Dis. Clin. North Am. 40, 155–175 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. Phipps-Green, A.J. et al. Twenty-eight loci that influence serum urate levels: analysis of association with gout. Ann. Rheum. Dis. 75, 124–130 (2016).

    CAS  PubMed  Google Scholar 

  30. George, R.L. & Keenan, R.T. Genetics of hyperuricemia and gout: implications for the present and future. Curr. Rheumatol. Rep. 15, 309 (2013).

    PubMed  Google Scholar 

  31. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    PubMed  PubMed Central  Google Scholar 

  32. Feig, D. I., Kang, D. H. & Johnson, R. J. Uric acid and cardiovascular risk. N. Engl. J. Med. 359, 1811–1821 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Keenan, T. et al. Causal assessment of serum urate levels in cardiometabolic diseases through a Mendelian randomization study. J. Am. Coll. Cardiol. 67, 407–416 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jordan, D. M. et al. No causal effects of serum urate levels on the risk of chronic kidney disease: a Mendelian randomization study. PLoS Med. 16, e1002725 (2019).

    PubMed  PubMed Central  Google Scholar 

  35. Lyngdoh, T. et al. Serum uric acid and adiposity: deciphering causality using a bidirectional Mendelian randomization approach. PLoS ONE 7, e39321 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. White, J. et al. Plasma urate concentration and risk of coronary heart disease: a Mendelian randomisation analysis. Lancet Diabetes Endocrinol. 4, 327–336 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Benner, C. et al. Prospects of fine-mapping trait-associated genomic regions by using summary statistics from genome-wide association studies. Am. J. Hum. Genet. 101, 539–551 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wakefield, J. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am. J. Hum. Genet. 81, 208–227 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gaulton, K. J. et al. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat. Genet. 47, 1415–1425 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505–1513 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Pao, S. S., Paulsen, I. T. & Saier, M. H. Jr. Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62, 1–34 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Asano, T. et al. The role of N-glycosylation of GLUT1 for glucose transport activity. J. Biol. Chem. 266, 24632–24636 (1991).

    CAS  PubMed  Google Scholar 

  44. Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Prestin, K. et al. Regulation of PDZ domain-containing 1 (PDZK1) expression by hepatocyte nuclear factor-1α (HNF1α) in human kidney. Am. J. Physiol. Renal Physiol. 313, F973–F983 (2017).

    PubMed  Google Scholar 

  46. Maher, J. M. et al. Alterations in transporter expression in liver, kidney, and duodenum after targeted disruption of the transcription factor HNF1α. Biochem. Pharmacol. 72, 512–522 (2006).

    CAS  PubMed  Google Scholar 

  47. Sulem, P. et al. Identification of low-frequency variants associated with gout and serum uric acid levels. Nat. Genet. 43, 1127–1130 (2011).

    CAS  PubMed  Google Scholar 

  48. Togawa, N., Miyaji, T., Izawa, S., Omote, H. & Moriyama, Y. A Na+-phosphate cotransporter homologue (SLC17A4 protein) is an intestinal organic anion exporter. Am. J. Physiol. Cell Physiol. 302, C1652–C1660 (2012).

    CAS  PubMed  Google Scholar 

  49. Kirby, A. et al. Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat. Genet. 45, 299–303 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kraus, M. R. et al. Two mutations in human BICC1 resulting in Wnt pathway hyperactivity associated with cystic renal dysplasia. Hum. Mutat. 33, 86–90 (2012).

    CAS  PubMed  Google Scholar 

  51. Hart, T. C. et al. Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J. Med. Genet. 39, 882–892 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sodini, S. M., Kemper, K. E., Wray, N. R. & Trzaskowski, M. Comparison of genotypic and phenotypic correlations: Cheverud’s conjecture in humans. Genetics 209, 941–948 (2018).

    PubMed  PubMed Central  Google Scholar 

  53. Lindgren, D. et al. Cell-type-specific gene programs of the normal human nephron define kidney cancer subtypes. Cell Rep. 20, 1476–1489 (2017).

    CAS  PubMed  Google Scholar 

  54. Prestin, K. et al. Transcriptional regulation of urate transportosome member SLC2A9 by nuclear receptor HNF4α. Am. J. Physiol. Renal Physiol. 307, F1041–F1051 (2014).

    CAS  PubMed  Google Scholar 

  55. Ketharnathan, S. et al. A non-coding genetic variant maximally associated with serum urate levels is functionally linked to HNF4A-dependent PDZK1 expression. Hum. Mol. Genet. 27, 3964–3973 (2018).

    CAS  PubMed  Google Scholar 

  56. Marable, S. S., Chung, E., Adam, M., Potter, S. S. & Park, J. S. Hnf4a deletion in the mouse kidney phenocopies Fanconi renotubular syndrome. JCI Insight 3, 97497 (2018).

    PubMed  Google Scholar 

  57. Matsuo, H. et al. ABCG2 dysfunction causes hyperuricemia due to both renal urate underexcretion and renal urate overload. Sci. Rep. 4, 3755 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. Daigo, K. et al. Proteomic analysis of native hepatocyte nuclear factor-4α (HNF4α) isoforms, phosphorylation status, and interactive cofactors. J. Biol. Chem. 286, 674–686 (2011).

    CAS  PubMed  Google Scholar 

  59. Chandra, V. et al. Multidomain integration in the structure of the HNF-4α nuclear receptor complex. Nature 495, 394–398 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhu, Q. et al. T130I mutation in HNF-4α gene is a loss-of-function mutation in hepatocytes and is associated with late-onset Type 2 diabetes mellitus in Japanese subjects. Diabetologia 46, 567–573 (2003).

    CAS  PubMed  Google Scholar 

  61. Heinz, L. X. et al. The death domain-containing protein Unc5CL is a novel MyD88-independent activator of the pro-inflammatory IRAK signaling cascade. Cell Death Differ. 19, 722–731 (2012).

    CAS  PubMed  Google Scholar 

  62. Saxena, R. et al. Large-scale gene-centric meta-analysis across 39 studies identifies type 2 diabetes loci. Am. J. Hum. Genet. 90, 410–425 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kooner, J. S. et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat. Genet. 43, 984–989 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Van Gennip, A. H., Van Bree-Blom, E. J., Grift, J., DeBree, P. K. & Wadman, S. K. Urinary purines and pyrimidines in patients with hyperammonemia of various origins. Clin. Chim. Acta 104, 227–239 (1980).

    CAS  PubMed  Google Scholar 

  65. Pattaro, C. et al. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat. Commun. 7, 10023 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. van Meurs, J. B. et al. Common genetic loci influencing plasma homocysteine concentrations and their effect on risk of coronary artery disease. Am. J. Clin. Nutr. 98, 668–676 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Raffler, J. et al. Genome-wide association study with targeted and non-targeted NMR metabolomics identifies 15 novel loci of urinary human metabolic individuality. PLoS Genet. 11, e1005487 (2015).

    PubMed  PubMed Central  Google Scholar 

  68. Beer, N. L. et al. The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum. Mol. Genet. 18, 4081–4088 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Abecasis, G. R. et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

    PubMed  Google Scholar 

  71. Fuchsberger, C., Taliun, D., Pramstaller, P. P. & Pattaro, C. GWAtoolbox: an R package for fast quality control and handling of genome-wide association studies meta-analysis data. Bioinformatics 28, 444–445 (2012).

    CAS  PubMed  Google Scholar 

  72. Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. Nat. Rev. Genet. 11, 499–511 (2010).

    CAS  PubMed  Google Scholar 

  73. Haller, T., Kals, M., Esko, T., Mägi, R. & Fischer, K. RegScan: a GWAS tool for quick estimation of allele effects on continuous traits and their combinations. Brief. Bioinform. 16, 39–44 (2015).

    CAS  PubMed  Google Scholar 

  74. Zhan, X., Hu, Y., Li, B., Abecasis, G. R. & Liu, D. J. RVTESTS: an efficient and comprehensive tool for rare variant association analysis using sequence data. Bioinformatics 32, 1423–1426 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    PubMed  PubMed Central  Google Scholar 

  76. Aulchenko, Y. S., Struchalin, M. V. & van Duijn, C. M. ProbABEL package for genome-wide association analysis of imputed data. BMC Bioinformatics 11, 134 (2010).

    PubMed  PubMed Central  Google Scholar 

  77. Chen, M. H. & Yang, Q. GWAF: an R package for genome-wide association analyses with family data. Bioinformatics 26, 580–581 (2010).

    PubMed  Google Scholar 

  78. Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44, 821–824 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Li, Y., Willer, C. J., Ding, J., Scheet, P. & Abecasis, G. R. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 34, 816–834 (2010).

    PubMed  PubMed Central  Google Scholar 

  80. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Devlin, B., Roeder, K. & Wasserman, L. Genomic control, a new approach to genetic-based association studies. Theor. Popul. Biol. 60, 155–166 (2001).

    CAS  PubMed  Google Scholar 

  82. Higgins, J. P. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002).

    PubMed  Google Scholar 

  83. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R Package. J. Stat. Softw. 33, 1–22 (2010).

    Google Scholar 

  85. Pattaro, C. et al. The Cooperative Health Research in South Tyrol (CHRIS) study: rationale, objectives, and preliminary results. J. Transl. Med. 13, 348 (2015).

    PubMed  PubMed Central  Google Scholar 

  86. Noce, D. et al. Sequential recruitment of study participants may inflate genetic heritability estimates. Hum. Genet. 136, 743–757 (2017).

    PubMed  Google Scholar 

  87. Mägi, R. et al. Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Hum. Mol. Genet. 26, 3639–3650 (2017).

    PubMed  PubMed Central  Google Scholar 

  88. Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    PubMed  PubMed Central  Google Scholar 

  89. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Zheng, J. et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33, 272–279 (2017).

    CAS  PubMed  Google Scholar 

  91. O’Connor, L. J. & Price, A. L. Distinguishing genetic correlation from causation across 52 diseases and complex traits. Nat. Genet. 50, 1728–1734 (2018).

    PubMed  PubMed Central  Google Scholar 

  92. Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).

    CAS  PubMed  Google Scholar 

  93. Frey, B. J. & Dueck, D. Clustering by passing messages between data points. Science 315, 972–976 (2007).

    CAS  PubMed  Google Scholar 

  94. Bodenhofer, U., Kothmeier, A. & Hochreiter, S. APCluster: an R package for affinity propagation clustering. Bioinformatics 27, 2463–2464 (2011).

    CAS  PubMed  Google Scholar 

  95. Wuttke, M. et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat. Genet. 51, 957–972 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Sheffield, N. C. et al. Patterns of regulatory activity across diverse human cell types predict tissue identity, transcription factor binding, and long-range interactions. Genome Res. 23, 777–788 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Arnold, M., Raffler, J., Pfeufer, A., Suhre, K. & Kastenmüller, G. SNiPA: an interactive, genetic variant-centered annotation browser. Bioinformatics 31, 1334–1336 (2015).

    PubMed  Google Scholar 

  99. Dong, C. et al. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum. Mol. Genet. 24, 2125–2137 (2015).

    CAS  PubMed  Google Scholar 

  100. Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Li, J. et al. Performance evaluation of pathogenicity-computation methods for missense variants. Nucleic Acids Res. 46, 7793–7804 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Gillies, C. E. et al. An eQTL landscape of kidney tissue in human nephrotic syndrome. Am. J. Hum. Genet. 103, 232–244 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Lonsdale, J. et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    CAS  Google Scholar 

  104. Ko, Y. A. et al. Genetic-variation-driven gene-expression changes highlight genes with important functions for kidney disease. Am. J. Hum. Genet. 100, 940–953 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Khan, A. et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 46, D1284 (2018).

    PubMed  Google Scholar 

  106. Sandelin, A., Alkema, W., Engström, P., Wasserman, W. W. & Lenhard, B. JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res. 32, D91–D94 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Xie, Y. et al. Functional cyclic AMP response element in the breast cancer resistance protein (BCRP/ABCG2) promoter modulates epidermal growth factor receptor pathway- or androgen withdrawal-mediated BCRP/ABCG2 transcription in human cancer cells. Biochim. Biophys. Acta 1849, 317–327 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Lee, C. & Huang, C. H. LASAGNA-Search 2.0: integrated transcription factor binding site search and visualization in a browser. Bioinformatics 30, 1923–1925 (2014).

    CAS  PubMed  Google Scholar 

  109. Vesuna, F., Winnard, P. Jr. & Raman, V. Enhanced green fluorescent protein as an alternative control reporter to Renilla luciferase. Anal. Biochem. 342, 345–347 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Di Domizio (Eurac Research) and J. Knaus (University of Freiburg) for IT assistance, and T. Johnson (GlaxoSmithKline) for sharing his code and for the discussion about fine-mapping a credible set and the colocalization analysis. This research was conducted using the UKBB Resource (application no. 20272). Study-specific acknowledgements and funding sources are listed in the Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute, the National Institutes of Health (NIH) or the US Department of Health and Human Services.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

A.Tin, J.M., V.L.H.K., Y.L., M.Wuttke, H.K., K.B.S., C.Q., M.Gorski, M.Scholz, A.M.H., A.Teumer, C.P., O.M.W., V.V. and A.Köttgen wrote the manuscript. A.Tin, J.M., M.Wuttke, M.Gorski, C.F., A.Teumer, C.P., O.M.W., V.V. and A.Köttgen designed the study. A.S.B., A.M.H., A.Teumer, A.P., A.P.J.D.V., A.B.Z., A.D.G., A.Metspalu, A.A.H., A.Tönjes, A.Köttgen, A.P., A.Krajčoviechová, A.R., A.C., B.Ponte, B.K.K., B.J., B.W.J.H.P., B.M.P., C.H., C.A.B., C.N.S., C.G., C.J.O.D., C.M.V.D., C.P., D.T., D.C., D.M., E.B., E.I., F.K., G.S., G.E., G.W., G.B., G.N.N., G.W.M., H.S., H.Schmidt, I.R., J.M.G., J.F.W., J.G.W., J.S.K., J.O.C., J.Thiery, J.Tremblay, J.B.W., J.C.C., J.C., K.-U.E., K.L.M., K.Stefansson, K.Ho, K.M., K.Strauch, M.A.I., M.E.K., M.C., M.P., M.L., M.Scholz, M.H.D.B., M.Waldenberger, M.Stumvoll, M.K.E., M.K., M. Kähönen, M.B., M.R., N.G.M., O.D., O.T.R., O.P., P.G., P.P.P., P.V., P.V.D.H., Q.Y., R.C., R.Rettig, R.S., R.D.M., R.J.C., R.T.G., R.J.F.L., S.A.P., S.H.W., S.J.L.B., T.B.H., T.L., T.Perls, T.J.R., U.V., V.Giedraitis, V.Gudnason, W.Z., W.Kiess, W.M., W.Koenig, Y. L. and Y.M. managed an individual contributing study. A.S.B., A.M.H., A.Tin, A.P., A.P.J.D.V., A.B.Z., A.V.S., A.Teumer, A.G.U., A.Tönjes, A.Köttgen, A.P., A.H., A.Körner, A.Krajčoviechová, A.R., A.Mahajan, A.Y.C., A.G., B.K.K., B.J., B.N., B.Prins, B.W.J.H.P., B.K., B.M.P., C.H., C.A.B., C.N.S., C.Q., C.M., C.F., C.G., C.J.O.D., C.P., D.F.G., D.R., D.M., D.O.M.-K., E.I., E.P.B., E.Catamo, F.K., G.S., G.B., G.G., G.N.N., G.D., G.W.M., H.S., H.C., H.J., H.H., I.R., I.M.N., I.J., I.M.H., J.F.W., J.G.W., J.J., J.Tremblay, J.B.W., J.M., J.C., K.-U.E., K.L.M., K.E., K.B.S., K.Susztak, K.M.R., K.Ho, K.N., K.Strauch, L.M.R., L.-P.L., L.A.L., L.J.O.C., M.L., M.E.K., M.Ciullo, M.L., M.Scholz, M.H.D.B., M.La Bianca, M.M.-N., M.L.Biggs, M.Gorski, M.N., M.Wuttke, M.Waldenberger, M.H.P., M.K.E., M.Kähönen, M.A.N., M.R., N.G.M., N.V., N.H.-K., N.B., O.D., O.T.R., O.D.W., O.P., P.S., P.H., P.K.J., P.V.D.H., Q.Y., R.C., R.Rettig, R.M.L., R.N., R.D.M., R.J.F.L., S.G., S.C.F., S.M.T., S.S., S.A.P., S.H.W., S.D.G., S.-J.H., S.M.K., S.J.L.B., T.B.H., T.N., T.L., T.S.B., T.M., T.L.E., T.J.R., U.T., U.V., V.V., W.H., W.M., W.Koenig, Y.L. and Z.Y. critically reviewed the manuscript. A.V.S., A.Teumer, A. Tin, A.Köttgen, A.H., A.Mahajan, A.Y.C., A.D., A.G., B.J., B.N., B.Prins, B.K., C.A.B., C.N.S., C.Q., C.H.L.T., C.F., C.P., D.N., D.F.G., E.H., E.S., F.R., G.S., G.B., G.D., H.K., I.M.N., I.M.H., J.J., J.Tremblay, J.M., J.L., K.B.S., K.Susztak, K.A.R., K.Horn, K.M.R., L.M.R., L.-P.L., L.A.L., M.L., M.Brumat, M.E.K., M.P.C., M.Scholz, M.Gögele, M.L.Biggs, M.Kanai, M.A., M.Cocca, M.Gorski, M.N., M.Wuttke, M.H.P., M.A.N., M.R., N.S.J., N.P., N.V., N.M., P.P.M., P.H., P.J.V.D.M., P.K.J., P.V.D.H., Q.Y., R.N., R.Rueedi, R.J.C., S.G., S.M.T., S.S., S.A.P., S.-J.H., T.C., T.N., T.S.B., T.L.E., T.H., V.V., W.Z., W.M., Y.S., Y.X., Y.K., Y.L. and Y.O. carried out the statistical methods and analysis. A.P.J.D.V., A.B.Z., A.Teren, A.Metspalu, A.Tönjes, A.K., A.C., B.Ponte, B.J., B.H.S., B.W.J.H.P., C.A.B., C.M., C.P., D.R., D.C., D.J.P., E.P.B., F.K., G.W., H.C., H.J., I.R., I.O., J.F.W., J.G.W., J.S.K., J.Ä., J.Tremblay, J.B.W., J.C.C., K.D., K.N., K.M., M.Ciullo, M.K.E., M.K., M.Kähönen, M.R., N.G.M., N.H.-K., O.T.R., O.P., P.S., P.V., R.S., R.D.M., R.T.G., S.A., S.P., S.A.P., S.H.W., S.V., T.Poulain, T.L., T.J.R., V.Gudnason, W.H. and W.M. recruited the participants. A.V.S., A.K., A.H., A.Y.C., A.G., B.L., B.Prins, C.A.B., C.N.S., C.Q., C.M.S., D.B., D.O.M.-K., E.H., E.Campana, E.S., F.R., G.E., G.P., H.K., I.M.H., J.F.W., J.J., J.Tremblay, J.M., K.L.M., K.B.S., K.Susztak, K.Horn, L.-P.L., M.L., M.E.K., M.P.C., M.Scholz, M.Cocca, M.Gorski, M.Wuttke, M.H.P., N.S.J., N.P., P.P.M., P.H., P.J.V.D.M., R.N., R.M., R.Rueedi, R.J.C., S.G., S.S., S.A.P., S.D.G., S.B., T.C., T.N., W.Z., W.M., Y.S., Y.X., Y.L., Y. M. and Z.Y. carried out the bioinformatics analysis. A.Tin, A.Teumer, A.G.U., A.K., A.G., B.J., C.A.B., C.N.S., C.Q., C.G., C.J.O.D., C.P., H.J., H.K., I.M.H., J.Tremblay, J.M., K.L.M., K.E., K.B.S., K.D., K.Susztak, K.Horn, K.Ho, L.J.O.C., M.L., M.Scholz, M.Gorski, M.Wuttke, M.R., N.V., O.M.W., P.H, P.V.D.H., S.G., S.S., S.A.P., S.-J.H., V.V., V.L.H.K., W.H., W.Koenig, Y.X. and Y.L. interpreted the results. A.B.Z., A.Teumer, A.G.U., A.Köttgen, A.C., A.D., B.H.S., B.W.J.H.P., C.H., C.A.B., C.N.S., C.F., C.M.V.D., D.B., D.R., D.T., D.J.P., D.O.M.-K., E.I., E.S., F.R., F.K., G.E., G.W.M., H.C., J.F.W., J.G.W., J.S.K., J.Ä., J.Tremblay, J.C.C., K.L.M., L.-P.L., L.A.L., M.E.K., M.Waldenberger, M.H.P., M.K.E., M.K., M.Kähönen, M.A.N., N.A., N.M., O.T.R., P.S., P.H., P.K., P.V.D.H., R.B., R.T.G., S.M.T., S.P., S.D.G., S.V., T.L., T.M., U.V., W.H., W.M., W.Koenig, and Y.M. carried out the genotyping. V.H.K., R.L. and O.M.W. carried out the functional study.

Corresponding authors

Correspondence to Adrienne Tin or Anna Köttgen.

Ethics declarations

Competing interests

D.O.M.-K. works as a part-time clinical research consultant for METABOLON. B.W.J.H.P. has received research funding (unrelated to the work reported in this article) from Jansen Research and Boehringer Ingelheim. K.B.S is full-time employee of GlaxoSmithKline. G.S., D.F.G., I.J., H.H., P.S., U.T. and K.Stefansson are full time employees of deCODE genetics and Amgen. A.Y.C. is an employee of Merck & Co. W.Koenig received modest consultation fees for advisory board meetings from Amgen, DalCor Pharmaceuticals, Kowa, Novartis, Pfizer and Sanofi, and modest personal fees for lectures from Amgen, AstraZeneca, Novartis, Pfizer and Sanofi. D.C. is scientific consultant for Bio4Dreams. W.M. is employed by Synlab Services GmbH and holds shares of Synlab Holding Deutschland GmbH. M.A.N.’s participation in this project is supported by a consulting contract between Data Tecnica International, the National Institute on Aging and NIH, and consults or has consulted during this time for Lysosomal Therapeutics, Neuron23, Illumina, the Michael J. Fox Foundation and the University of California Healthcare. O.P. is an owner of Gen-info. K.Ho has disclosed a research and financial relationship with Sanofi Genzyme. B.M.P. serves on the Data and Safety Monitoring Board of a clinical trial funded by the manufacturer (Zoll Lifecor) and on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. A.S.B. received grants from MSD, Pfizer, Novartis, Biogen and Bioverativ and personal fees from Novartis. F.R. is a scientific consultant for ePhood. M.Scholz consults for and received grant support not related to this project from Merck Serono. A.Köttgen received grant support not related to this project from Grünenthal. The other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note and Figs. 1–8

Reporting Summary

Supplementary Dataset

Regional association plots of 183 genome‐wide significant loci from trans‐ethnic meta‐analysis.

Supplementary Tables

Supplementary Tables 1–22

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tin, A., Marten, J., Halperin Kuhns, V.L. et al. Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nat Genet 51, 1459–1474 (2019). https://doi.org/10.1038/s41588-019-0504-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-019-0504-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing