Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic architecture of subcortical brain structures in 38,851 individuals

Abstract

Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Heritability and Manhattan plot of genetic variants associated with subcortical brain volumes in the European sample.
Fig. 2: Partitioning heritability by functional annotation categories.
Fig. 3: Protein–protein interaction network of 148 genes enriched for common variants influencing the volume of subcortical structures.

Similar content being viewed by others

Data availability

The genome-wide summary statistics that support the findings of this study are available from the CHARGE dbGaP (accession code: phs000930) and ENIGMA (http://enigma.ini.usc.edu/research/download-enigma-gwas-results) websites.

References

  1. Marsden, C. D. The mysterious motor function of the basal ganglia: the Robert Wartenberg Lecture. Neurology 32, 514–539 (1982).

    Article  CAS  PubMed  Google Scholar 

  2. Yin, H. H. & Knowlton, B. J. The role of the basal ganglia in habit formation. Nat. Rev. Neurosci. 7, 464–476 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. McDonald, A. J. & Mott, D. D. Functional neuroanatomy of amygdalohippocampal interconnections and their role in learning and memory. J. Neurosci. Res. 95, 797–820 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Hikosaka, O., Kim, H. F., Yasuda, M. & Yamamoto, S. Basal ganglia circuits for reward value-guided behavior. Annu. Rev. Neurosci. 37, 289–306 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Salzman, C. D. & Fusi, S. Emotion, cognition, and mental state representation in amygdala and prefrontal cortex. Annu. Rev. Neurosci. 33, 173–202 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Floresco, S. B. The nucleus accumbens: an interface between cognition, emotion, and action. Annu. Rev. Psychol. 66, 25–52 (2015).

    Article  PubMed  Google Scholar 

  7. Fabbro, F., Aglioti, S. M., Bergamasco, M., Clarici, A. & Panksepp, J. Evolutionary aspects of self- and world consciousness in vertebrates. Front. Hum. Neurosci. 9, 157 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Alexander, G. E., DeLong, M. R. & Strick, P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. Jahanshahi, M., Obeso, I., Rothwell, J. C. & Obeso, J. A. A fronto–striato–subthalamic–pallidal network for goal-directed and habitual inhibition. Nat. Rev. Neurosci. 16, 719–732 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Shepherd, G. M. Corticostriatal connectivity and its role in disease. Nat. Rev. Neurosci. 14, 278–291 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stratmann, K. et al. Precortical phase of Alzheimer’s disease (AD)-related Tau cytoskeletal pathology. Brain Pathol. 26, 371–386 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Del Tredici, K., Rub, U., De Vos, R. A., Bohl, J. R. & Braak, H. Where does Parkinson disease pathology begin in the brain? J. Neuropathol. Exp. Neurol. 61, 413–426 (2002).

    Article  PubMed  Google Scholar 

  13. Hibar, D. P. et al. Common genetic variants influence human subcortical brain structures. Nature 520, 224–229 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Elliott, L. T. et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 562, 210–216 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Renteria, M. E. et al. Genetic architecture of subcortical brain regions: common and region-specific genetic contributions. Genes Brain Behav. 13, 821–830 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clarke, L. et al. The 1000 Genomes Project: data management and community access. Nat. Methods 9, 459–462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pruim, R. J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hibar, D. P. et al. Novel genetic loci associated with hippocampal volume. Nat. Commun. 8, 13624 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Adams, H. H. et al. Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nat. Neurosci. 19, 1569–1582 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Verhaaren, B. F. et al. Multiethnic genome-wide association study of cerebral white matter hyperintensities on MRI. Circ. Cardiovasc. Genet. 8, 398–409 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Malik, R. et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat. Genet. 50, 524–537 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in approximately 700000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Davies, G. et al. Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nat. Commun. 9, 2098 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 414–430 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Simon-Sanchez, J. et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat. Genet. 41, 1308–1312 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics Consortium. Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell 173, 1705–1715.e16 (2018).

  29. Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Szklarczyk, D. et al. STRINGv10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Deans, M. R. et al. Control of neuronal morphology by the atypical cadherin Fat3. Neuron 71, 820–832 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Takahashi, K. et al. Expression of FOXP2 in the developing monkey forebrain: comparison with the expression of the genes FOXP1, PBX3, and MEIS2. J. Comp. Neurol. 509, 180–189 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Kjaer-Sorensen, K. et al. Pregnancy-associated plasma protein A (PAPP-A) modulates the early developmental rate in zebrafish independently of its proteolytic activity. J. Biol. Chem. 288, 9982–9992 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bayes-Genis, A. et al. Pregnancy-associated plasma protein A as a marker of acute coronary syndromes. N. Engl. J. Med. 345, 1022–1029 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Funayama, A. et al. Serum pregnancy-associated plasma protein A in patients with heart failure. J. Card. Fail. 17, 819–826 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Desbuquois, B., Carre, N. & Burnol, A. F. Regulation of insulin and type 1 insulin-like growth factor signaling and action by the Grb10/14 and SH2B1/B2 adaptor proteins. FEBS J. 280, 794–816 (2013).

    CAS  PubMed  Google Scholar 

  39. Li, J. et al. TXNDC5 contributes to rheumatoid arthritis by down-regulating IGFBP1 expression. Clin. Exp. Immunol. 192, 82–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Matulka, K. et al. PTP1B is an effector of activin signaling and regulates neural specification of embryonic stem cells. Cell Stem Cell 13, 706–719 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Krishnan, N. et al. PTP1B inhibition suggests a therapeutic strategy for Rett syndrome. J. Clin. Invest. 125, 3163–3177 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sebastian-Serrano, A. et al. Tissue-nonspecific alkaline phosphatase regulates purinergic transmission in the central nervous system during development and disease. Comput. Struct. Biotechnol. J. 13, 95–100 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Diaz-Hernandez, M. et al. Tissue-nonspecific alkaline phosphatase promotes the neurotoxicity effect of extracellular tau. J. Biol. Chem. 285, 32539–32548 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vardy, E. R., Kellett, K. A., Cocklin, S. L. & Hooper, N. M. Alkaline phosphatase is increased in both brain and plasma in Alzheimer’s disease. Neurodegener. Dis. 9, 31–37 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Kellett, K. A., Williams, J., Vardy, E. R., Smith, A. D. & Hooper, N. M. Plasma alkaline phosphatase is elevated in Alzheimer’s disease and inversely correlates with cognitive function. Int. J. Mol. Epidemiol. Genet. 2, 114–121 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Searles Quick, V. B., Davis, J. M., Olincy, A. & Sikela, J. M. DUF1220 copy number is associated with schizophrenia risk and severity: implications for understanding autism and schizophrenia as related diseases. Transl. Psychiatry 5, e697 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hsu, S. C. et al. Mutations in SLC20A2 are a major cause of familial idiopathic basal ganglia calcification. Neurogenetics 14, 11–22 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Taglia, I., Bonifati, V., Mignarri, A., Dotti, M. T. & Federico, A. Primary familial brain calcification: update on molecular genetics. Neurol. Sci. 36, 787–794 (2015).

    Article  PubMed  Google Scholar 

  49. Figueiro-Silva, J. et al. Neuronal pentraxin 1 negatively regulates excitatory synapse density and synaptic plasticity. J. Neurosci. 35, 5504–5521 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Abad, M. A., Enguita, M., DeGregorio-Rocasolano, N., Ferrer, I. & Trullas, R. Neuronal pentraxin 1 contributes to the neuronal damage evoked by amyloid-β and is overexpressed in dystrophic neurites in Alzheimer’s brain. J. Neurosci. 26, 12735–12747 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tobaben, S., Varoqueaux, F., Brose, N., Stahl, B. & Meyer, G. A brain-specific isoform of small glutamine-rich tetratricopeptide repeat-containing protein binds to Hsc70 and the cysteine string protein. J. Biol. Chem. 278, 38376–38383 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Fonte, V. et al. Interaction of intracellular β amyloid peptide with chaperone proteins. Proc. Natl Acad. Sci. USA 99, 9439–9444 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mao, C. X. et al. Microtubule-severing protein katanin regulates neuromuscular junction development and dendritic elaboration in Drosophila. Development 141, 1064–1074 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Yu, W. et al. The microtubule-severing proteins spastin and katanin participate differently in the formation of axonal branches. Mol. Biol. Cell 19, 1485–1498 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhu, J., Shang, Y. & Zhang, M. Mechanistic basis of MAGUK-organized complexes in synaptic development and signalling. Nat. Rev. Neurosci. 17, 209–223 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Ingason, A. et al. Expression analysis in a rat psychosis model identifies novel candidate genes validated in a large case-control sample of schizophrenia. Transl. Psychiatry 5, e656 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nithianantharajah, J. et al. Synaptic scaffold evolution generated components of vertebrate cognitive complexity. Nat. Neurosci. 16, 16–24 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Nalls, M. A. et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat. Genet. 46, 989–993 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Guan, J. J. et al. DRAM1 regulates apoptosis through increasing protein levels and lysosomal localization of BAX. Cell Death Dis. 6, e1624 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yu, M., Jiang, Y., Feng, Q., Ouyang, Y. & Gan, J. DRAM1 protects neuroblastoma cells from oxygen-glucose deprivation/reperfusion-induced injury via autophagy. Int. J. Mol. Sci. 15, 19253–19264 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Scarpa, J. R. et al. Systems genetic analyses highlight a TGFβ-FOXO3 dependent striatal astrocyte network conserved across species and associated with stress, sleep, and Huntington’s disease. PLoS Genet. 12, e1006137 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Donlon, T. A. et al. FOXO3 longevity interactome on chromosome 6. Aging Cell 16, 1016–1025 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sears, J. C. & Broihier, H. T. FoxO regulates microtubule dynamics and polarity to promote dendrite branching in Drosophila sensory neurons. Dev. Biol. 418, 40–54 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Peng, K. et al. Knockdown of FoxO3a induces increased neuronal apoptosis during embryonic development in zebrafish. Neurosci. Lett. 484, 98–103 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Santama, N., Er, C. P., Ong, L. L. & Yu, H. Distribution and functions of kinectin isoforms. J. Cell Sci. 117, 4537–4549 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Liu, X. A., Rizzo, V. & Puthanveettil, S. V. Pathologies of axonal transport in neurodegenerative diseases. Transl. Neurosci. 3, 355–372 (2012).

    Article  PubMed  Google Scholar 

  67. Consortium, E. et al. Genome-wide association analysis of genetic generalized epilepsies implicates susceptibility loci at 1q43, 2p16.1, 2q22.3 and 17q21.32. Hum. Mol. Genet. 21, 5359–5372 (2012).

    Article  CAS  Google Scholar 

  68. Martins-de-Souza, D. et al. Proteomic analysis identifies dysfunction in cellular transport, energy, and protein metabolism in different brain regions of atypical frontotemporal lobar degeneration. J. Proteome Res. 11, 2533–2543 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Shulman, J. M. et al. Functional screening in Drosophila identifies Alzheimer’s disease susceptibility genes and implicates Tau-mediated mechanisms. Hum. Mol. Genet. 23, 870–877 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Friede, R. L. & Samorajski, T. Axon caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice. Anat. Rec. 167, 379–387 (1970).

    Article  CAS  PubMed  Google Scholar 

  71. Yuan, A., Rao, M. V., Veeranna & Nixon, R. A. Neurofilaments and neurofilament proteins in health and disease. Cold Spring Harb. Perspect. Biol. 9, a018309 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Bis, J. C. et al. Whole exome sequencing study identifies novel rare and common Alzheimer’s-associated variants involved in immune response and transcriptional regulation. Mol Psychiatry https://doi.org/10.1038/s41380-018-0112-7 (2018).

  73. Marioni, R. E. et al. GWAS on family history of Alzheimer’s disease. Transl. Psychiatry 8, 99 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Psaty, B. M. et al. Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium: design of prospective meta-analyses of genome-wide association studies from 5 cohorts. Circ. Cardiovasc. Genet. 2, 73–80 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Thompson, P. M. et al. The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav. 8, 153–182 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Tsao, C. W. & Vasan, R. S. Cohort Profile: the Framingham Heart Study (FHS): overview of milestones in cardiovascular epidemiology. Int. J. Epidemiol. 44, 1800–1813 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Schmidt, R. et al. Assessment of cerebrovascular risk profiles in healthy persons: definition of research goals and the Austrian Stroke Prevention Study (ASPS). Neuroepidemiology 13, 308–313 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Almasy, L. & Blangero, J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am. J. Hum. Genet. 62, 1198–1211 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Winkler, T. W. et al. Quality control and conduct of genome-wide association meta-analyses. Nat. Protoc. 9, 1192–1212 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Bennett, D. A., Yu, L. & De Jager, P. L. Building a pipeline to discover and validate novel therapeutic targets and lead compounds for Alzheimer’s disease. Biochem. Pharm. 88, 617–630 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Chan, G. et al. CD33 modulates TREM2: convergence of Alzheimer loci. Nat. Neurosci. 18, 1556–1558 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).

    Article  PubMed  Google Scholar 

  86. Roadmap Epigenomics Association et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Article  CAS  Google Scholar 

  87. Eicher, J. D. et al. GRASPv2.0: an update on the Genome-Wide Repository of Associations between SNPs and phenotypes. Nucleic Acids Res. 43, D799–D804 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Zhang, X. et al. Synthesis of 53 tissue and cell line expression QTL datasets reveals master eQTLs. BMC Genomics 15, 532 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Zhang, W. et al. SCAN database: facilitating integrative analyses of cytosine modification and expression QTL. Database 2015, bav025 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Consortium, G. T. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Article  CAS  Google Scholar 

  91. Veyrieras, J. B. et al. High-resolution mapping of expression-QTLs yields insight into human gene regulation. PLoS Genet. 4, e1000214 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Bennett, D. A. et al. Overview and findings from the rush Memory and Aging Project. Curr. Alzheimer Res. 9, 646–663 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bennett, D. A., Schneider, J. A., Arvanitakis, Z. & Wilson, R. S. Overview and findings from the religious orders study. Curr. Alzheimer Res. 9, 628–645 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Replogle, J. M. et al. A TREM1 variant alters the accumulation of Alzheimer-related amyloid pathology. Ann. Neurol. 77, 469–477 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Barnes, L. L., Schneider, J. A., Boyle, P. A., Bienias, J. L. & Bennett, D. A. Memory complaints are related to Alzheimer disease pathology in older persons. Neurology 67, 1581–1585 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. McKeith, I. G. et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the Consortium on DLB International Workshop. Neurology 47, 1113–1124 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Schneider, J. A. et al. Substantia nigra tangles are related to gait impairment in older persons. Ann. Neurol. 59, 166–173 (2006).

    Article  PubMed  Google Scholar 

  98. Zheng, J. et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33, 272–279 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Wangler, M. F., Hu, Y. & Shulman, J. M. Drosophila and genome-wide association studies: a review and resource for the functional dissection of human complex traits. Dis. Model Mech. 10, 77–88 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hu, Y. et al. An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinformatics 12, 357 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Marygold, S. J., Crosby, M. A., Goodman, J. L. & FlyBase, C. Using FlyBase, a database of Drosophila genes and genomes. Methods Mol. Biol. 1478, 1–31 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all of the study participants for contributing to this research. Full acknowledgements and grant support details are provided in the Supplementary Note.

Author information

Authors and Affiliations

Authors

Contributions

C.L.S. drafted the manuscript with contributions from H.H.H.A., D.P.H., C.C.W., T.V.L., A.A.-V., S.Ehrlich., A.K.H., M.W.V., D.J., T.G.M.v.E., C.D.W., M.J.W., S.E.F., K.A.M., P.J.H., B.F., H.J.G., A.D.J., O.L.L., S.Debette, S.E.M., J.M.S., P.M.T., S.S. and M.A.I. M.S., N.J., L.R.Y., T.V.L., G.C., L.A., M.E.R., A.d.B., I.K., M.A., S.A., S.E., R.R.-S., A.K.H., H.J.J., A.Stevens., J.B., M.W.V., A.V.W., K.W., N.A., S.H., A.L.G., P.H.L., S.G., S.L.H., D.K., L.Schmaal, S.M.L., I.A., E.W., D.T.-G., J.C.I., L.N.V., R.B., F.C., D.J., O.C., U.K.H., B.S.A., C.-Y.C., A.A.A., M.P.B., A.F.M., S.K.M., P.A., A.J.Schork., D.C.M.L., T.Y.W., L.Shen, P.G.S., E.J.C.d.G., M.T., K.R.v.E., N.J.A.v.d.W., A.M.M., J.S.R., N.R., W.H., M.C.V.H., J.B.J.K., L.M.O.L., A.Hofman, G.H., M.E.B., S.R., J.-J.H., A.Simmons, N.H., P.R.S., T.W.M., P.Maillard, O.Gruber, N.A.G., J.E.S., H.Lemaître, B.M.-M., D.v.R., I.J.D., R.M.B., I.M., R.K., H.v.B., M.J.W., D.v.‘t.E., M.M.N., S.E.F., A.S.B., K.A.M., N.R.-S., D.J.H., H.J.G., C.M.v.D., J.M.W., C.DeCarli, P.L.D.J. and V.G. contributed to the preparation of data. C.L.S., H.H.H.A., D.P.H., M.J.K., J.L.S., M.S., M.Sargurupremraj, N.J., G.V.R., A.V.S., J.C.B., X.J., M.Luciano., E.H., A.Teumer, S.J.v.d.L., J.Y., L.R.Y., S.L., K.J.Y., G.C., M.E.R., N.J.A., H.J.J., A.V.W., S.H., N.M.S., S.G., D.T.G., J.S., C.-Y.C., L.M.O.L., Q.Y., A.Thalamuthu, I.O.F., D.v.‘t.E., C.Depondt and P.L.D.J. performed the statistical analyses. C.L.S., H.H.H.A., C.C.W., M.J.K., T.V.L., S.L., Y.H., K.J.Y., J.D.E., Q.Y. and A.D.J. carried out the downstream analyses. All authors reviewed the manuscript for intellectual content.

Corresponding authors

Correspondence to Claudia L. Satizabal or M. Arfan Ikram.

Ethics declarations

Competing interests

D.P.H. is currently an employee at Genentech. D.J. has received travel and speaker’s honoraria from Janssen–Cilag, as well as research funding from DFG. R.L.B. is a consultant for Pfizer and Roche. P.A. is a scientific adviser for Genoscreen. T.Y.W. is a consultant and advisory board member for Allergan, Bayer, Boehringer–Ingelheim, Genentech, Merck, Novartis, Oxurion (formerly ThromboGenics) and Roche, and is a co-founder of Plano and EyRiS. A.M.M. has received grant support from Eli Lilly, Janssen, Pfizer and the Sackler Trust. B.M.P. serves on the steering committee of the Yale Open Data Access Project funded by Johnson & Johnson. A.M.-L. is a member of the advisory board for the Lundbeck International Neuroscience Foundation and Brainsway, a member of the editorial board for the American Association for the Advancement of Science and Elsevier, a faculty member of the Lundbeck International Neuroscience Foundation and a consultant for Boehringer Ingelheim. W.J.N. is the founder and scientific lead of Quantib BV, in addition to being a shareholder. M.M.N. is a shareholder of Life & Brain, receives a salary from Life & Brain, has received support from Shire for attending conferences and has received financial remuneration from the Lundbeck Foundation, Robert Bosch Foundation and Deutsches Ärzteblatt for participation in scientific advisory boards. B.F. has received educational speaking fees from Shire and Medice. H.J.G. has received travel grants and speaker’s honoraria from Fresenius Medical Care, Neuraxpharm and Janssen–Cilag, as well as research funding from Fresenius Medical Care.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note and Figs. 1–4

Reporting Summary

Supplementary Tables

Supplementary Tables 1–21

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satizabal, C.L., Adams, H.H.H., Hibar, D.P. et al. Genetic architecture of subcortical brain structures in 38,851 individuals. Nat Genet 51, 1624–1636 (2019). https://doi.org/10.1038/s41588-019-0511-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-019-0511-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing