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Exploring the structural distribution of genetic 
variation in SARS-CoV-2 with the COVID-3D 
online resource
The emergence of the COVID-19 pandemic has spurred a global rush to uncover basic biological mechanisms to 
inform effective vaccine and drug development. Despite the novelty of the virus, global sequencing efforts have 
already identified genomic variation across isolates. To enable easy exploration and spatial visualization of the 
potential implications of SARS-CoV-2 mutations in infection, host immunity and drug development, we have 
developed COVID-3D (http://biosig.unimelb.edu.au/covid3d/).
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Declared a global pandemic on 
11 March 2020, COVID-19 has 
become the most recent modern-day 

global health challenge, infecting 10 
million people and claiming more than 
500,000 lives within 6 months of being 
reported to the World Health Organization. 
Consequently, the scale of its humanitarian 
and economic impact has driven academic 
and pharmaceutical efforts to develop 
vaccines and antiviral treatments. Current 
efforts include more than 118 active vaccine 
candidates and numerous additional 
endeavors to identify biologics and 
small-molecule treatments.

One further challenge in controlling 
COVID-19 is the accumulation of variation 
across genes. Sources indicate that 
SARS-CoV-2 is mutating at approximately 
two variants per month, but the potential 
effects of the accumulation of these 
variants (Supplementary Fig. 1) on 
molecular diagnostics and the development 
of candidate vaccines and treatments 
remain poorly explored. Fortunately, the 
continual rapid increase in the amount of 
SARS-CoV-2 genome sequence data and 
structural information available provides 
an opportunity to analyze both data sources 
concomitantly, thus presenting a unique 
opportunity to not only understand how 
variants might affect patient outcomes, 
but also anticipate and minimize their 
potential roles in viral escape through early 
incorporation of this information within the 
development pipeline.

To facilitate such an understanding, we 
have developed a comprehensive online 
resource, COVID-3D, to enable analysis 
and interpretation of more than 11,000 
variants detected in circulating SARS-CoV-2 
genomic sequences (Supplementary Fig. 2). 

We have mapped these circulating variants 
and their frequencies to the corresponding 
protein sequences (Supplementary Table 1)  
and structures of the SARS-CoV-2 proteins 
derived from available experimental 
information (Supplementary Table 2), 
thus permitting direct comparison of 
variant clustering between the sequence 
and structural representations, along 
with the identification of coevolutionary 
relationships and potential compensatory 
mutations. Beyond these circulating 
variants, we have identified mutations 
from the longer-circulating related viruses 
BAT RaTG13 and SARS-CoV, to enable 
further investigation of the mutations 
that drove the species jump from RaTG13 
and that increased the infectivity and 
mortality beyond those of SARS-CoV. Our 
interactive three-dimensional viewer enables 
fast and intuitive spatial visualization of 
SARS-CoV-2 variants, highlighting their 
potential effects on protein structure 
and interactions1–7 (Supplementary Figs. 
3–6). This viewer is particularly useful for 
analyzing sites that are currently being 
targeted by potential therapeutics. A built-in 
mutation-analysis tool allows users to 
contrast properties and identify patterns 
in the data, plotting correlations and 
distributions (Supplementary Fig. 7).

To further enhance therapeutic discovery 
efforts, we have included maps of the 
fragment-binding hotspots to capture 
likely drug-binding sites8,9, as well as 
predicted antigenicity maps10,11 on the 
structures, which permit rational selection 
of target sites and compound design, 
specifically avoiding already circulating 
variants (Supplementary Fig. 4). Finally, 
combining this structural information 
with evolutionary and population variation 

analysis can further aid in identifying sites 
that are relatively less likely to accommodate 
mutations in the future. To facilitate this 
analysis, COVID-3D also allows users to go 
from analyzing a protein pocket to virtual 
screening in several clicks12. In an illustrative 
example, we have used COVID-3D 
to provide insights into the two main 
therapeutic targets: the spike protein and 
main proteinase.

The SARS-CoV-2 spike protein 
binds human angiotensin-converting 
enzyme 2 (ACE2), which mediates cell 
entry. Subsequently, the spike protein’s 
ACE2-receptor-binding domain has been 
the main target of most vaccine programs. 
Measures of selective pressure suggest 
that the spike protein is one of the viral 
proteins most tolerant to the introduction 
of mutations13,14 (Supplementary Table 1). 
Closer inspection (http://biosig.unimelb.edu.
au/covid3d/protein/QHD43416/CLOSED) 
indicates that although SARS-CoV-2 
was discovered only 6 months before the 
time of analysis, substantial variation can 
already be seen across the protein surface, 
including in predicted epitope regions in the 
receptor-binding domain (Fig. 1). Of these 
variants, QHD43416 p.Asp614Gly is present 
in two-thirds of the sequenced strains, 
although its actual importance remains 
unclear, despite initial suggestions that it 
may increase transmissibility15. The residue 
is located far from the ACE2 interface  
(73 Å) and has been predicted to have a 
mildly stabilizing effect on protein stability 
(0.5 kcal mol–1 according to DUET3 and 2.3 
kcal mol–1 according to SDM2 analyses) and 
hence a minimal fitness cost16. However, it 
has been predicted to alter protein dynamics 
and the interactions between the subunits 
(4.4 Å from the interface; –0.5 kcal mol–1 for 
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the closed form versus –0.35 kcal mol–1 for 
the open form, according to mCSM-PPI2 
analysis6), thus potentially affecting the 
equilibrium between open and closed states.

Interestingly, when we examined 
population-specific variants across ACE2, 
we observed several population-specific 
variants across the interface recognized 
by the spike protein (Fig. 1a). Evaluation 
of the consequences of these variants with 
mCSM-PPI6, which has been experimentally 
validated on this protein system17, shows 
potential significant effects on the binding 
affinity of spike protein, thus paving the way 
for further work exploring the influence of 
these variants on COVID-19 severity and 
progression.

Apart from the spike protein, the 
main proteinase (http://biosig.unimelb.
edu.au/covid3d/protein/QHD43415_5/
APO) has also attracted many therapeutic 
development efforts as a target for the 
development of small-molecule inhibitors. 
The main proteinase, however, is not 
particularly intolerant to missense variants 
(Supplementary Table 1), thus potentially 
promoting the emergence of resistant 
variants. The structures show that several 
circulating variants already present in 
the drug-binding site may have effects on 
efficacy (Fig. 2a). Using COVID-3D, we 
leveraged the abundance of SARS-CoV-2 
genomic sequences to calculate measures 
of mutational tolerance, and we identified 

several genes under strong purifying 
selection (Supplementary Table 1). These 
include the genes encoding helicase, RNA 
polymerase, NSP4, NSP9 and ExoN, which 
may serve as novel, promising drug targets 
with few circulating variants seen near the 
druggable pockets (Fig. 2b).

COVID-3D provides an easy-to-use 
bridge between genomic information and 
structural insights to better guide biological 
understanding and treatment efforts. The 
data and code (http://biosig.unimelb.edu.
au/covid3d/code) are freely available via 
the web interface (http://biosig.unimelb.
edu.au/covid3d/). As new structural and 
sequence data become available, COVID-3D 
will be periodically updated to enable 
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Fig. 1 | Population variation across the spike–ace2 complex. a, Lollipop plots of circulating missense variants in the SARS-CoV-2 spike protein and 
population-specific missense variants in human ACe2 illustrate the broad distribution of variants across the proteins. b, When visualized spatially, several 
variants seen at the ACe2–spike interface are predicted to affect the binding affinity. One of the most prevalent circulating SARS-CoV2 spike variants, 
p.Asp614Gly, is located far from the ACe2 interface but close to the spike-trimer interface and is predicted to lead to structural perturbations.
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their integration into ongoing efforts to 
understand and combat SARS-CoV-2. ❐
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Fig. 2 | Visualization of sars-coV-2 circulating variants relative to druggable pockets. a, The gene 
encoding the main proteinase is neutral to the introduction of missense variants, with an overall 
missense tolerance score (MTR) and residual variation intolerance score (RVIS) both indicating that the 
gene is tolerant to genetic variation. Some circulating variants (red sticks) have already been observed 
to lead to alterations near binding sites of known inhibitors (boceprevir shown in yellow) and are likely 
to affect drug binding. Therefore, resistance mutations could be selected for with widespread use. b, The 
gene encoding helicase is among the SARS-CoV-2 genes most intolerant to missense variation, with low 
MTR and RVIS scores. Mapping the fragment-binding hotspots of the protein shows pockets with apolar 
(yellow), hydrogen-bond-donor (blue) and hydrogen-bond-acceptor (red) potential. Although some 
variation has been observed near this region, optimization of interactions to avoid these sites could 
decrease the potential for future resistance.
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