Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A PARTHENOGENESIS allele from apomictic dandelion can induce egg cell division without fertilization in lettuce

Abstract

Apomixis, the clonal formation of seeds, is a rare yet widely distributed trait in flowering plants. We have isolated the PARTHENOGENESIS (PAR) gene from apomictic dandelion that triggers embryo development in unfertilized egg cells. PAR encodes a K2-2 zinc finger, EAR-domain protein. Unlike the recessive sexual alleles, the dominant PAR allele is expressed in egg cells and has a miniature inverted-repeat transposable element (MITE) transposon insertion in the promoter. The MITE-containing promoter can invoke a homologous gene from sexual lettuce to complement dandelion LOSS OF PARTHENOGENESIS mutants. A similar MITE is also present in the promoter of the PAR gene in apomictic forms of hawkweed, suggesting a case of parallel evolution. Heterologous expression of dandelion PAR in lettuce egg cells induced haploid embryo-like structures in the absence of fertilization. Sexual PAR alleles are expressed in pollen, suggesting that the gene product releases a block on embryogenesis after fertilization in sexual species while in apomictic species PAR expression triggers embryogenesis in the absence of fertilization.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Deletion mutant seed-head phenotypes.
Fig. 2: Structural characteristics of the PAR locus and LD analysis.
Fig. 3: Identification of the PAR gene by CRISPR–Cas9 mutagenesis.
Fig. 4: Comparative transcriptomics of female gametophytic cell types of Apo, LOP and Sex T. officinale.
Fig. 5: Microsynteny between Taraxacum and Pilosella PAR regions and the structure of the PAR and sex alleles.
Fig. 6: Complementation and transformation experiments in the Taraxacum CRISPR–Cas9 LOP mutant and sexual lettuce.
Fig. 7: A model of the possible function of PAR in Taraxacum spp. as a repressor of an unknown gene that suppresses the embryo developmental program in the egg cell.

Similar content being viewed by others

Data availability

Transcriptome data of 27 laser-assisted microdissected female gametophyte tissue samples of T. officinale are deposited in the ENA SRA database under accession no. PRJEB40645. Illumina HiSeq2500 paired end sequencing datasets of T. richardsianum, T. albidum, T. brevicorniculatum, T. brachyglossum, T. gratum, T. cylleneum, and T. koksaghyz are deposited in the ENA SRA database under accession no. PRJEB40739. The T. officinale ONT PromethION sequence reads, and the Illumina NovaSeq6000 reads from the overlap library are deposited in the ENA SRA database under accession no. PRJEB48186.

Code availability

Automated Human Readable Descriptions: https://github.com/groupschoof/AHRD

References

  1. Nogler, G. A. Embryology of Angiosperms 475–518 (Springer Berlin, 1984). https://doi.org/10.1007/978-3-642-69302-1_10

  2. Van Dijk, P. J. & Ellis, T. H. N. The full breadth of Mendel’s genetics. Genetics 204, 1327–1336 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mendel, G. Über einige aus künstlicher Befruchtung gewonnenen Hieracium-Bastarde. Verhandlungen des. naturforschenden Vereines Br. ünn 8, 26–31 (1870).

    Google Scholar 

  4. Bicknell, R., Catanach, A., Hand, M. & Koltunow, A. Seeds of doubt: Mendel’s choice of Hieracium to study inheritance, a case of right plant, wrong trait. Theor. Appl. Genet. 129, 2253–2266 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Van Dijk, P. J. and Vijverberg, K. Regnum Vegetabile vol. 143 (Koeltz Scientific Books, 2005).

  6. Mogie, M. The Evolution of Asexual Reproduction in Plants (Chapman & Hall, 1992).

  7. van Dijk, P. J. Ecological and evolutionary opportunities of apomixis: insights from Taraxacum and Chondrilla. Philos. Trans. R. Soc. London B Biol. Sci. 358, 1113–1121 (2003).

  8. Spillane, C., Curtis, M. D. & Grossniklaus, U. Apomixis technology development—virgin births in farmers’ fields? Nat. Biotechnol. 22, 687–691 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Vielle Calzada, J. P., Crane, C. F. & Stelly, D. M. Apomixis: the asexual revolution. Science 274, 1322–1323 (1996).

    Article  Google Scholar 

  10. Van Dijk, P. J., Rigola, D. & Schauer, S. E. Plant breeding: surprisingly, less sex is better. Curr. Biol. 26, R122–R124 (2016).

    Article  PubMed  Google Scholar 

  11. Ozias-Akins, P. & van Dijk, P. J. Mendelian genetics of apomixis in plants. Annu. Rev. Genet. 41, 509–537 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, J. et al. Sequencing papaya X and Y h chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc. Natl Acad. Sci. USA 109, 13710–13715 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bachtrog, D. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 14, 113–124 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Charlesworth, D., Charlesworth, B. & Marais, G. Steps in the evolution of heteromorphic sex chromosomes. Heredity 95, 118–128 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Muller, H. J. The relation of recombination to mutational advance. Mutat. Res. 1, 2–9 (1964).

    Article  Google Scholar 

  16. Felsenstein, J. The evolutionary advantage of recombination. Genetics 78, 737–756 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kondrashov, A. S. Deleterious mutations and the evolution of sexual reproduction. Nature 336, 435–440 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Nuzhdin, S. V. & Petrov, D. A. Transposable elements in clonal lineages: lethal hangover from sex. Biol. J. Linn. Soc. 79, 33–41 (2003).

    Article  Google Scholar 

  19. Arkhipova, I. & Meselson, M. Deleterious transposable elements and the extinction of asexuals. BioEssays 27, 76–85 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Van Dijk, P., de Jong, H., Vijverberg, K. & Biere, A. Lost Sex 475–493 (Springer Netherlands, 2009). https://doi.org/10.1007/978-90-481-2770-2_22

  21. Hand, M. L. & Koltunow, A. M. G. The genetic control of apomixis: asexual seed formation. Genetics 197, 441–450 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Van Dijk, P. J. & Bakx-Schotman, J. M. T. Formation of unreduced megaspores (diplospory) in apomictic dandelions (Taraxacum officinale, s.l.) is controlled by a sex-specific dominant locus. Genetics 166, 483–492 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vijverberg, K., Ozias-Akins, P. & Schranz, M. E. Identifying and engineering genes for parthenogenesis in plants. Front. Plant Sci. 10, 128 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Van Dijk, P. J., Camp, R. O., Den & Schauer, S. E. Genetic dissection of apomixis in dandelions identifies a dominant parthenogenesis locus and highlights the complexity of autonomous endosperm formation. Genes 11, 961 (2020).

  25. Vijverberg, K., Milanovic-Ivanovic, S., Bakx-Schotman, T. & van Dijk, P. J. Genetic fine-mapping of DIPLOSPOROUS in Taraxacum (dandelion; Asteraceae) indicates a duplicated DIP-gene. BMC Plant Biol. 10, 154 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Van Dijk, P. J., Rigola, D., Prins, M. W. & Van Tunen, A. J. Diplospory gene (Patent application no. WO2017039452 A1) (2017).

  27. Englbrecht, C. C., Schoof, H. & Böhm, S. Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genom. 5, 39 (2004).

    Article  Google Scholar 

  28. Kagale, S. & Rozwadowski, K. Small yet effective: the ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif. Plant Signal. Behav. 5, 691–694 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang, J. et al. PlantEAR: functional analysis platform for plant EAR motif-containing proteins. Front. Genet. 9, 590 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. De La Torre, A. R., Li, Z., Van De Peer, Y. & Ingvarsson, P. K. Contrasting rates of molecular evolution and patterns of selection among gymnosperms and flowering plants. Mol. Biol. Evol. 34, 1363–1377 (2017).

    Article  Google Scholar 

  31. Catanach, A. S., Erasmuson, S. K., Podivinsky, E., Jordan, B. R. & Bicknell, R. Deletion mapping of genetic regions associated with apomixis in Hieracium. Proc. Natl Acad. Sci. USA 103, 18650–18655 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bräuning, S., Catanach, A., Lord, J. M., Bicknell, R. & Macknight, R. C. Comparative transcriptome analysis of the wild-type model apomict Hieracium praealtum and its loss of parthenogenesis (lop) mutant. BMC Plant Biol. 18, 206 (2018).

  33. Piosik, Zenkteler, E. & Zenkteler, M. Development of haploid embryos and plants of Lactuca sativa induced by distant pollination with Helianthus annuus and H. tuberosus. Euphytica 208, 439–451 (2016).

    Article  Google Scholar 

  34. Verzegnazzi, A. L. et al. Major locus for spontaneous haploid genome doubling detected by a case–control GWAS in exotic maize germplasm. Theor. Appl. Genet. 134, 1423–1434 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Borg, M. et al. The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulon essential for sperm cell differentiation in Arabidopsis. Plant Cell 23, 534–549 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, L., Ko, E. E., Tran, J. & Qiao, H. TREE1-EIN3–mediated transcriptional repression inhibits shoot growth in response to ethylene. Proc. Natl Acad. Sci. USA 117, 29178–29189 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Taimur, N. Genetic and molecular mechanisms mediating sperm cell formation in Arabidopsis thaliana (PhD Thesis, Univ. of Leicester) https://leicester.figshare.com/ndownloader/files/18288044 (2014).

  38. Borges, F. et al. Comparative transcriptomics of arabidopsis sperm cells. Plant Physiol. 148, 1168–1181 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Borg, M. et al. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin. Nat. Cell Biol. 22, 621–629 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao, P. et al. Two-step maternal-to-zygotic transition with two-phase parental genome contributions. Dev. Cell 49, 882–893.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Underwood, C. J., Henderson, I. R. & Martienssen, R. A. Genetic and epigenetic variation of transposable elements in Arabidopsis. Curr. Opin. Plant Biol. 36, 135–141 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 18, 71–86 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. McClintock, B. Controlling elements and the gene. Cold Spring Harb. Symp. Quant. Biol. 21, 197–216 (1956).

    Article  CAS  PubMed  Google Scholar 

  44. Ong-Abdullah, M. et al. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525, 533–537 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Christin, P. A., Weinreich, D. M. & Besnard, G. Causes and evolutionary significance of genetic convergence. Trends Genet. 26, 400–405 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Stern, D. L. The genetic causes of convergent evolution. Nat. Rev. Genet. 14, 751–764 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Rosenblum, E. B., Parent, C. E. & Brandt, E. E. The molecular basis of phenotypic convergence. Annu. Rev. Ecol. Evol. Syst. 45, 203–226 (2014).

    Article  Google Scholar 

  48. Hanna, W. W. & Bashaw, E. C. Apomixis: its identification and use in plant breeding 1. Crop Sci. 27, 1136–1139 (1987).

    Article  Google Scholar 

  49. Karpechenko, G. D. Experimental polyploidy and haploidy. Teor. Osn. Sel. Rastenii, Obqaja Sel. I, 397–434 (Sel'khozgiz, 1935).

  50. d’Erfurth, I. et al. Turning meiosis into mitosis. PLoS Biol. 7, e1000124 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Khanday, I., Skinner, D., Yang, B., Mercier, R. & Sundaresan, V. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565, 91–95 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Conner, J. A., Mookkan, M., Huo, H., Chae, K. & Ozias-Akins, P. A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant. Proc. Natl Acad. Sci. USA 112, 11205–11210 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Conner, J. A., Podio, M. & Ozias-Akins, P. Haploid embryo production in rice and maize induced by PsASGR-BBML transgenes. Plant Reprod. 30, 41–52 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, Z., Conner, J., Guo, Y. & Ozias-Akins, P. Haploidy in tobacco Induced by PsASGR-BBML transgenes via parthenogenesis. Genes 11, 1072 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  55. Van Baarlen, P., De Jong, H. J. & Van Dijk, P. J. Comparative cyto-embryological investigations of sexual and apomictic dandelions (Taraxacum) and their apomictic hybrids. Sex. Plant Reprod. 15, 31–38 (2002).

    Article  Google Scholar 

  56. Collins-Silva, J. et al. Altered levels of the Taraxacum kok-saghyz (Russian dandelion) small rubber particle protein, TkSRPP3, result in qualitative and quantitative changes in rubber metabolism. Phytochemistry 79, 46–56 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Vos, P. et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407–4414 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brugmans, B., van der Hulst, R. G. M., Visser, R. G. F., Lindhout, P. & van Eck, H. J. A new and versatile method for the successful conversion of AFLP markers into simple single locus markers. Nucleic Acids Res. 31, e55–e55 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Doyle, J. & Doyle, J. Isolation of DNA from fresh tissue. Focus 12, 13–15 (1990).

    Google Scholar 

  60. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li, H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics 32, 2103–2110 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Hunter, S. et al. InterPro: the integrative protein signature database. Nucleic Acids Res. https://doi.org/10.1093/nar/gkn785 (2009).

  72. Darling, A. C. E., Mau, B., Blattner, F. R. & Perna, N. T. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394–1403 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Vijverberg, K., Van der Hulst, R. G. M., Lindhout, P. & Van Dijk, P. J. A genetic linkage map of the diplosporous chromosomal region in Taraxacum officinale (common dandelion; Asteraceae). TAG Theor. Appl. Genet. 108, 725–732 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Fauser, F., Schiml, S. & Puchta, H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J. 79, 348–359 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J. D. G. & Kamoun, S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 691–693 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Wuest, S. E. et al. Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes. Curr. Biol. 20, 506–512 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-seq: single-cell RNA-seq by multiplexed linear amplification. Cell Rep. 2, 666–673 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Hashimshony, T. et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-seq. Genome Biol. 17, 77 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sprunck, S. et al. Egg cell—secreted EC1 triggers sperm cell activation during double fertilization. Science 338, 1093–1097 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Curtis, I. S., Power, J. B., Blackhall, N. W., De Laat, A. M. M. & Davey, M. R. Genotype-independent transformation of lettuce using Agrobacterium tumefaciens. J. Exp. Bot. 45, 1441–1449 (1994).

    Article  CAS  Google Scholar 

  83. Koltunow, A. M., Bicknell, R. A. & Chaudhury, A. M. Apomixis: molecular strategies for the generation of genetically identical seeds without fertilization. Plant Physiol. 108, 1345–1352 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the following: T. Gerats (KeyGene) for essential vision and support; S. van Liere, S. Lecoulant, D. Valkenburg, A. Bergsma, M. Frescatada, W. van Rengs and C. Schol (all of KeyGene) for technical assistance; H. Schneiders, H. van der Poel, R. Hulzink, A. Wittenberg and A. Janssen (all of KeyGene) for DNA-sequencing and bioinformatics; S. Keshtkar, M. V. Boekschoten, H. Hackert, I. van der Meer, L. Berke, T. Zhao, H. van der Geest and J. van Haarst (all of Wageningen University & Research (WUR)) and J. A. Mol (Utrecht University) for advice and access to facilities; R. van den Bulk (WUR) for supporting institutional cooperation; R. Mank and KeyGene greenhouse staff for plant culturing; P. Bundock and M. de Both for critical reading and discussion of the manuscript; and J. Kirschner and J. Štěpánek (Institute of Botany, Průhonice), R. Vašut (Palacký University Olomouc) and R. van der Hulst (Solynta) and K. Verhoeven (Netherland Institute of Ecology) for supplying plant materials and taxonomic information. The pUBI::Cas9 construct was a kind gift of H. Puchta. The Dutch Research Council Applied and Engineering Sciences grant (no. 13700 (ParTool) to K.V., C.O., M.B. and M.E.S.). The elucidation of the Pilosella LOP locus was supported by a basic science grant from the New Zealand Foundation for Science and Technology. The formation of the Pilosella BAC library was supported in part by the Arizona Genome institute.

Author information

Authors and Affiliations

Authors

Contributions

P.J.V.D., K.V., R.H.M.O.d.C., C.J.U., D.R., S.O., M.P., A.V.T., R.B. and M.E.S. conceived and designed the project. C.J.U., K.V., D.R., S.O., C.O., T.R., J.F., K.J., S.M., M.B., R.B., A.C., S.E., C.W. and P.J.V.D. generated the experimental data. K.V., D.R., C.J.U., R.H.M.O.d.C., T.R., S.E.S., S.M., R.B., P.J.V.D. and M.E.S. analyzed the experimental data. D.R., K.V., S.M., W.X., E.D., K.N., E-J. B., C.J.U., P.J.V.D., R.B., M.E.S. and C.W. conducted the bioinformatic analysis. P.J.V.D., M.E.S., S.E.S., R.B. and C.J.U. wrote the manuscript with contributions from K.V., T.R., R.H.M.O.d.C. and D.R. All authors critically read and edited the manuscript.

Corresponding authors

Correspondence to M. Eric Schranz or Peter J. van Dijk.

Ethics declarations

Competing interests

D.R., P.J.V.D., R.H.M.O.d.C., M.P., A.J.V.T., T.R., J.F., K.J., S.M., E.D., K.N. and E-J.B. are employees of KeyGene N.V. C.J.U. is a former employee of KeyGene N.V. S.E.S. is an employee of KeyGene Inc. These authors declare that they are bound by confidentiality agreements that prevent them from disclosing their competing interests in this work. The remaining authors declare no competing interests.

Additional information

Peer review information Nature Genetics thanks Venkatesan Sundaresan, Thomas Dresselhaus and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer review reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21, Tables 1–2, 4, 6–10, and 14–22, Notes 1–18, URLs, References, and original gel scan of Supplementary Fig. 11.

Reporting Summary

Peer Review Information

Supplementary Data 1

The sequence of the PAR haplotype.

Supplementary Data 2

The sequence of the sex1 haplotype.

Supplementary Data 3

The sequence of the sex2 haplotype.

Supplementary Data 4

The sequences of the 20 genes of the Ks and Ka analyses.

Supplementary Data 5

The sequences of the Taraxacum and Pilosella PAR alleles.

Supplementary Data 6

The sequences of the Taraxacum and Pilosella MITEs.

Supplementary Tables

Supplementary Tables 3a, 3b, 3c, 5, 11, 12 and 13.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Underwood, C.J., Vijverberg, K., Rigola, D. et al. A PARTHENOGENESIS allele from apomictic dandelion can induce egg cell division without fertilization in lettuce. Nat Genet 54, 84–93 (2022). https://doi.org/10.1038/s41588-021-00984-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-021-00984-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing