Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

CARDIOVASCULAR DISEASE

The regulatory network architecture of cardiometabolic diseases

Complex disease definitions often represent descriptive umbrella terms of symptoms rather than mechanistic entities. A new study shows how network-based approaches can help identify the mechanisms that link genes, cells, tissues and organs in cardiovascular diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A mechanistic understanding of complex diseases requires a detailed mapping of the underlying perturbations across biological networks.

FrankRamspott / DigitalVision Vectors / Getty (proteome graphic); sumkinn / iStock / Getty Images Plus/Getty (transcriptome graphic)

References

  1. Schork, N. J. Nature 520, 609–611 (2015).

    Article  CAS  Google Scholar 

  2. Lee, L. Y. et al. Cardiovasc. Res. 117, 2186–2202 (2021).

    Article  CAS  Google Scholar 

  3. Koplev, S. Nat. Cardiovasc. Res. https://doi.org/10.1038/s44161-021-00009-1 (2022).

  4. Franzén, O. et al. Science 353, 827–830 (2016).

    Article  Google Scholar 

  5. Watanabe, K. et al. Nat. Genet. 51, 1339–1348 (2019).

    Article  CAS  Google Scholar 

  6. Boyle, E. A., Li, Y. I. & Pritchard, J. K. Cell 169, 1177–1186 (2017).

    Article  CAS  Google Scholar 

  7. Peter, I. S. & Davidson, E. H. Genomic Control Process: Development and Evolution (Academic Press, 2015).

  8. Haniffa, M. et al. Nature 597, 196–205 (2021).

    Article  CAS  Google Scholar 

  9. McGillivray, P. et al. Annu. Rev. Biomed. Data Sci. 1, 153–180 (2018).

    Article  Google Scholar 

  10. Menche, J. et al. Science 347, 1257601 (2015).

    Article  Google Scholar 

  11. Casas, A. I. et al. Proc. Natl Acad. Sci. USA 116, 7129–7136 (2019).

    Article  CAS  Google Scholar 

  12. Elbatreek, M. H. et al. PLoS Biol. 18, e3000885 (2020).

    Article  CAS  Google Scholar 

  13. Buphamalai, P. et al. Nat. Commun. 12, 6306 (2021).

    Article  CAS  Google Scholar 

  14. Trachana, K. et al. Circ. Res. 122, 1276–1289 (2018).

    Article  CAS  Google Scholar 

  15. Langhauser, F. et al. NPJ Syst. Biol. Appl. 4, 8 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Harald H. H. W. Schmidt or Jörg Menche.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, H.H.H.W., Menche, J. The regulatory network architecture of cardiometabolic diseases. Nat Genet 54, 2–3 (2022). https://doi.org/10.1038/s41588-021-00994-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-021-00994-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing