nature genetics

Brief Communication

https://doi.org/10.1038/s41588-024-01674-1

A combinatorial genetic strategy for
exploring complex genotype-phenotype

associationsincancer

Received: 17 April 2023

Accepted: 25 January 2024

Published online: 29 February 2024

W Check for updates

Shan Li"'?, Alicia Wong'"?, Huiyun Sun"?', Vipul Bhatia', Gerardo Javier',
Sujata Jana®’, Qian Wu?®*, Robert B. Montgomery®, Jonathan L. Wright®,
Hung-Ming Lam®, Andrew C. Hsieh ® *®, Bishoy M. Faltas ® "2°1°,
Michael C. Haffner'®" & John K. Lee ® 35"

Available genetically defined cancer models are limited in genotypic and
phenotypic complexity and underrepresent the heterogeneity of human
cancer. Here, we describe a combinatorial genetic strategy applied to
anorganoid transformation assay to rapidly generate diverse, clinically
relevant bladder and prostate cancer models. Importantly, the clonal
architecture of the resultant tumors can be resolved using single-cell or
spatially resolved next-generation sequencing to uncover polygenic drivers
of cancer phenotypes.

Most cancers are not driven by a single oncogenic driver but are
instead the sum of multiple genetic perturbations that occur during
tumor evolution'. However, the functional impact of most genomic
abnormalities found in cancers remains largely unknown. Wrangling
the catalog of recurrent genetic alterations in cancer and deriving
meaningful insights into the functional and contextual contributions
of these events is a major challenge in the field of cancer genomics.
In vitro assays recapitulate only specific aspects of cancer behaviors
such as cell proliferation, anchorage-independent colony formation
orinvasive migration. Invivo strategies such as the transplantation of
cancer celllines or chemical carcinogenesis are not genetically defined.
Genetically engineered mouse models are a gold standard to define
geneticdriversincancer, but they are costly, slow and do not allow the
facile manipulation of more than a few genes. Dissociated-cell tissue
recombination and transplantation assays have also been applied to
study the malignant transformation of primary epithelial cellsbut have
beenreliant on the introduction of discrete sets of candidate genes and
limited by inefficient transgenesis. Collectively, existing cancer models

generated through these methods grossly underrepresent the diversity
of human cancer. Furthermore, the use of these technologies to sys-
tematically investigate the permutations of genetic events associated
withasingle cancer would be incredibly challenging, if notimpossible.
To address these limitations of scale, throughput and economy, we
developed amethodology incorporating barcoded lentiviral libraries
encoding cancer-associated genetic eventsintroduced efficiently and
atrandominto primary epithelial cells, which are engrafted in mice for
tumorigenic selection, at a high multiplicity of infection (MOI). This
system enables the generation of genotypically and phenotypically
diverse tumors and the massively parallel single-cell lentiviral barcode
sequencing of tumors to identify cooperative oncogenic drivers of
malignant transformation and specific cancer phenotypes.
Organotypicor organoid cultures permit the expansion of primary
epithelial cells while maintaining their complex organization and tis-
sue function®. A major barrier to higher-order genetic studies in this
context has been inefficient transgenesis using available lentiviral
transduction protocols. We proposed that enforced cell-virus contact
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inaconstrained volume of gel matrix could increase lentiviral transduc-
tion efficiency. Primary mouse bladder urothelial (mBU) and prostate
epithelial (mPE) cells were isolated by fluorescence-activated cell sort-
ing (FACS) onthebasis of alineage-negative (Lin") (CD45 CD31 Terl119"),
EpCAM'CD49f"e" immunophenotype (Extended Data Fig. 1a), as these
populations self-renew at high frequencies® and readily establish orga-
noids in culture (Extended Data Fig. 1b). Cells were mixed into cold
Matrigel containing concentrated lentivirus expressing GFP before
the seeding and polymerization of organoid droplets*. Near com-
plete transduction of mBU and mPE cells was achieved, delivering up
to 10-20 copies per cell (Fig. 1a,b). We next developed a barcoding
system to characterize the distribution of unique proviral copies per
cell. Lentiviral constructs were barcoded with matching ten-nucleotide
sequences distal to the 5’ long terminal repeat (LTR) and proximal
to the 3’ LTR and produced as a pool. A custom single-cell amplicon
panel was designed on the Mission Bio Tapestri platform to enable
the sensitive enumeration of multiple uniquely barcoded lentivi-
ruses per cell (Extended Data Fig. 1c). This approach was validated
using a defined population of 3T3 cells engineered with lentiviruses
to harbor up to four unique lentiviral barcodes per cell (Extended
Data Fig.1d). mPE were transduced with a diverse barcoded lentiviral
pool at varying MOls, and single-cell amplicon sequencing showed
relatively normal distributions of proviral copies per cell (Fig. 1c and
Extended DataFig.1e).

To determine the utility of this approach in understanding
the initiation and progression of bladder and prostate cancer, we
selected commonly mutated genes from cancer genome sequencing
studies®” (Extended Data Fig. 2a) and cloned these as open read-
ing frames (ORFs) or short hairpin RNAs (shRNAs) into barcoded
lentiviral constructs to mimic gain-of-function or loss-of-function
events (Extended Data Fig. 2b and Supplementary Table 1). At least
three shRNAs from The RNAi Consortium (TRC) targeting each gene
were tested for knockdown in 3T3 cells by quantitative PCR. The
shRNA demonstrating the most potent knockdown of target gene
expression was incorporated into the lentiviral libraries (Extended
DataFig.2c). Abladder urothelial lentiviral pool (BU-LVP) of 33 genes
and a prostate epithelial lentiviral pool (PE-LVP) of 24 genes were
produced in arrayed format to avoid lentiviral barcode recombi-
nation and concentrated by ultracentrifugation (Extended Data
Fig.3a). Infectivity (representation) of each lentivirus was evaluated
by transducing either mBU or mPE cells with the respective lentiviral
pooland performing bulk amplicon sequencing of lentiviral barcodes
(Extended Data Fig. 3b). Initial lentivirus pools demonstrated over
tenfold overrepresentation of shRNA vectors relative to ORF vectors
(Extended Data Fig. 3¢), presumably owing to more efficient viral
packagingbecause of thereduced lengthbetween LTRs of the transfer
plasmid®. These data were applied to adjust the cell surface area of
producer cells for subsequent arrayed lentiviral library production,
leading to near normalization of the representation of shRNA and
ORF vectors (Extended Data Fig. 3d).

We adopted an approach in which primary mBU and mPE cells
infected with BU-LVP or PE-LVP at high MOl in organoids were recom-
bined with inductive mouse embryonic day 16 (E16) bladder mes-
enchyme (EBLM)’ or urogenital sinus mesenchyme (UGSM)" and
subsequently grafted subcutaneously in NOD scid gamma (NSG) mice
to enable biological selection for tumorigenic clones (Fig. 1d). No
tumors were appreciable from control grafts of untransduced mBU
or mPE cells recombined with EBLM or UGSM. The efficiency of tumor
formation (tumors formed per graftinoculated) was 80% (16 of 20) for
mBU cellsinfected with BU-LVP and 38% (18 of 47) for mPE cells infected
with PE-LVP (Supplementary Table 2). Tumor latency was measured
as time from inoculation to achieving a maximal tumor diameter of
1cmandranged from2.3to 7.4 months (mean 4.2 months) for bladder
tumors and 3.2 to 16 months (mean 8.9 months) for prostate tumors
(Supplementary Table 2).

A representative tumor derived from primary mBU cells trans-
duced with BU-LVP exhibited three morphologically distinct regions
consistent with papillary urothelial carcinoma with an inverted
growth pattern, urothelial carcinoma with squamous differentia-
tion and sarcomatoid urothelial carcinoma, all three of which were
also supported by GATA3, TP63 and pan-cytokeratin (panCK) immu-
nostaining (Fig. 1e). Single-cell DNA amplicon sequencing was per-
formed to enumerate the lentiviral barcodes for the determination
of clonal architecture and deconvolution of lentivirus-delivered
genetic events putatively involved in tumorigenesis. Three major
clones harboring distinguishable sets of lentiviral barcodes were
identified (Fig. 1f), but spatial resolution was lost owing to single-cell
dissociation. To associate histology with clonality, we performed
laser capture microdissection (LCM) of the three regions on stained
tissue sections and performed bulk DNA amplicon sequencing
(Fig.1g). The papillary urothelial carcinoma was uniquely associated
with Fgfr3 S243C, shAtm and Zfp703 mutations, in addition to the
common Ywhaz, Pik3ca E545K, Pparg and Purl4 mutations observed
in all three dominant clones. Cancer genomics studies have shown
that activating mutations in FGFR3 are highly enriched in papillary
urothelial carcinomas®". We further validated these findings in the
mouse urothelial transformation assay inindependent experiments
using a defined lentiviral pool of Fgfr3 S243C, Ywhaz, Pik3ca E545K,
Ppargand Pvrl4 (Extended DataFig. 4a), which produced tumors with
papillary urothelial carcinoma with an inverted growth pattern by
histopathology and based on the endophytic proliferative pattern
(Extended Data Fig. 4b). The co-occurrence of these genetic altera-
tions was also evidentin the human muscle-invasive bladder cancers
from The Cancer Genome Atlas bladder cancer (TCGA-BLCA) cohort®
(Extended Data Fig. 5).

Several tumors called the Fred Hutch Bladder Tumor (FHBT) series
havebeen generated using this methodology, including those with pure
urothelial carcinoma and others with mixtures of histologic subtypes
(Fig.2aand Extended DataFig. 6). The urothelial origin of these tumors
was supported by GFP staining (Fig. 2b—d), which was positive even

Fig.1| Efficient lentiviral transduction of primary epithelial cells at high
multiplicity of infection and transformation of urothelial cells to tumors
with mixed cancer histologies. a, Top, schematic of alentiviral (LV) construct
with matching barcodes (BCs) at the 5" and 3’ ends. Bottom, overview of
experiments with LV infection of primary mouse cells in organoid culture

and quantification of transduction. Created with BioRender.com.CMV,
cytomegalovirus; UBC, ubiquitin C; WVH8, Woodchuck hepatitis virus 8 post-
transcriptional regulatory element. b, Left, brightfield and GFP images of mouse
bladder or prostate organoids 72 h after mock or GFP LV transduction. Scale bar,
400 pm. Right, tables summarizing quantification of LV transduction by flow
cytometry and LV copies of GFP (+ s.d.) by qPCR. ¢, Left, plot of the distribution
of LV copies per mPE cell at different MOIs 72 h after transduction. Right, table
summarizing viral copy number (VCN) population frequencies at varying MOls.
The experiment was independently repeated three times with similar results.

d, Scheme of the mBU organoid transformation assay to uncover functional
genotype-phenotype associations inbladder cancer. Created with BioRender.
com. e, Left, gross image of a tumor arising from mBU transformed with a
BU-LVP. Middle, low-magnification image of the hematoxylin and eosin (H&E)-
stained tumor section. Right, high-magnification images of H&E-stained and
immunohistochemically stained sections of regions with distinct histologies.
Scale bars, 50 pm. Each FHBT model is a unique tumor that is the result of an
independent experiment. f, Clonal architecture of the three dominant clones
inthe tumor as determined by Mission Bio Tapestri single-cell analysis of LV
barcodes. g, Left, tumor tissue section after LCM of the histologically distinct
regions. Right, table showing the associations between regional tumor
histologies and clones in fbased on LCM and bulk DNA amplicon sequencing of
LV barcodes.
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Fig.2|Rapid generation of aseries of clinically relevant and phenotypically
diverse bladder cancer models. a, Bar graph showing the representation

of cancer histologies present across a series of FHBTs generated using mBU
transformed with BU-LVP. b-d, Low-magnification and high-magnification
images of H&E-stained sections and high-magnification images of
immunohistochemically stained sections for GFP and panCK expression
depicting high-grade urothelial carcinomas with mixed histologies present
within the same tumor. Scale bars, 50 pum. Each FHBT model is a unique tumor
thatis the result of anindependent experiment. e, PCA plot showing FHBT series
color-coded on the basis of histology. Heatmaps showing the histologies of

PC1(14.49%)

the FHBT series relative to basal and luminal signature scores for the BASE47
subtype predictor (f) and signature scores for the Consensus Molecular
Classifier (g) assigned to neuroendocrine-like (NE-like), basal and/or squamous
(Ba/Sq), stroma-rich, luminal papillary (LumP), luminal non-specified (LumNS)
and luminal unstable (LumU) subtypes. h, Pre-ranked GSEA dotplot of hallmark
pathways based on differentially expressed genes (false discovery rate < 0.001)
in pairwise histology comparisons.i, PCA projection plot of FHBT samples over
the TCGA-BLCA samples color-coded by Consensus Molecular Classification
(Ba/Sq, LumNS, LumP, LumU, NE-like or stroma-rich) with 90% confidence
ellipses shown.
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inregions of sarcomatoid carcinoma with low or absent panCK stain-
ing (Fig. 2b). We conducted molecular profiling of these tumors and
their regional tumor histologies by LCM and RNA-seq analysis. Prin-
cipal component analysis (PCA) of the gene expression data showed
that squamous and sarcomatoid subtypes clustered together and
were separate from urothelial and papillary urothelial carcinomas
(Fig.2e). The BASE47 subtype predictor?, a gene expression classifier
used to distinguish luminal and basal subtypes of urothelial carcinoma,
generally classified the tumors with papillary and papillary squamous
subtypes as luminal and the squamous and sarcomatoid histologies
as basal, consistent with an established relationship between sarco-
matoid differentiation and the basal subtype” (Fig. 2f). The Consen-
sus Molecular Classifier' revealed that the non-papillary urothelial
histologies showed neuroendocrine-like gene expression with low or
absent luminal and basal gene signatures (Fig. 2g and Extended Data
Fig. 7a). Gene set enrichment analysis (GSEA) was used to compare
these tumor histologies in a pairwise manner and revealed the enrich-
ment of genes associated with epithelial-to-mesenchymal transition
insarcomatoid carcinoma, as expected from prior molecular analyses
of human tumors® (Fig. 2h). We further confirmed the relevance of our
FHBT models by projecting their RNA expression patterns onto princi-
ple component analysis plots of tumors from the TCGA-BLCA cohort
(Fig. 2i) and established N-butyl-N-(4-hydroxybutyl)-nitrosamine
(BBN)-induced mouse bladder cancer models” (Extended Data
Fig. 7b) to show that they occupy overlapping space on the basis of
histologic classification, indicating that the transcriptional features
with the greatest variance between tumor subtypes are also conserved
with FHBT models.

mPE cells transduced with PE-LVP and engrafted in mice (Extended
Data Fig. 8a) also gave rise to mixed cancer morphologies. One tumor
showed high-grade prostate adenocarcinoma with focal pleomorphic
giant cells (Extended DataFig. 8b), arare histologic subtype associated
with poor prognosis'® that may contribute to therapeutic resistance
and lethality”. Immunostaining revealed HOXB13 and AR expression
in both histologies with pronounced nuclear TP53 expression in the
pleomorphic giant cells (Extended Data Fig. 8b). We isolated large
(pleomorphic giant cell carcinoma) and small (adenocarcinoma)
cells from dissociated tumors using a flow cytometry-based strategy,
propagated these cells briefly (one passage) in organoid cultures, then
dissociated the cells and stained with the nuclear dye Hoechst 33342
to further isolate cells on the basis of DNA content for downstream
single-cell lentiviral barcode enumeration (Extended Data Fig. 8c).
This single-cell clonality analysis revealed striking enrichment of
shKmt2c in the putative pleomorphic giant cell clones (Extended
Data Fig. 8d). Recent studies have established that KMT2C medi-
ates the DNA damage response in cancer'®", and DNA damage repair
alterations are common in human prostate adenocarcinoma with
pleomorphic giant cell features®.

Insummary, we describe a set of technologies that form a func-
tional in vivo cancer genomics assay with efficient delivery of com-
pound genetic perturbations from barcoded lentiviral libraries and
single-cell sequencing to rapidly investigate genotype-phenotype
relationshipsin cancer initiation and progression using primary epi-
thelial cells. We leveraged this strategy to develop a series of mouse
bladder cancers that recapitulate the phenotypic diversity of human
bladder cancer and amouse prostate cancer with pleomorphic giant
cell carcinoma, representing cancer subtypes that have not previ-
ously been modeled in a genetically defined fashion. Importantly,
single-cell lentiviral barcode deconvolution associated mutantactive
Fgfr3 with the luminal papillary differentiation of urothelial carci-
noma and the loss of Kmt2c with pleomorphic giant cell carcinomain
prostate cancer. These initial studies provide proof of principle that
this approach can be deployed to investigate higher-order genetic
interactions to explore complex genotype-to-phenotype relation-
shipsin cancer.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
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Methods

Lentiviral constructs and lentiviral library production
Double-barcoded lentiviral vectors were generated from the parental
vector FU-CGW?* by sequentially inserting matched ten-nucleotide
barcodesinto the Paclsite distal to the HIVFLAP using the Quick Liga-
tion Kit (New England Biolabs) and PCR amplification of the WPRE
sequence and barcode with insertion into the Clal sites proximal to
the 3’ LTR by HiFi DNA Assembly (New England Biolabs). ORFs were
clonedintothe EcoRlsite of the double-barcoded lentiviral vectors by
HiFi DNA Assembly. To generate shRNA lentiviral vectors, the ubiquitin
C promoter sequence was excised from the double-barcoded plasmid
by digesting with PspXIand EcoRI. U6 promoter and shRNA cassettes
were isolated by digesting pLKO.1 TRC shRNA clones with PspXI and
EcoRl and were inserted into the digested double-barcoded plasmid
using the Quick Ligation Kit. Individual lentiviruses were generated
in arrayed format in 293T cells (CRL-11268, ATCC) by co-transfection
of each double-barcoded lentiviral ORF or shRNA plasmid with the
helper plasmids pVSV-G, pMDL and pRev using FUGENE HD Transfec-
tion Reagent (Promega). Lentiviral supernatants were collected 36 h
after transfection, pooled and concentrated by ultracentrifugationin
V-bottom polypropylene centrifuge tubes ona SW 32 Tiin an Optima
XE90 (Beckman Coulter) at 82,520g at 4 °C for 2 h. Supernatants were
aspirated, and lentiviral pellets were resuspended in residual media
and cryopreserved.

shRNA screening

Thetop threeto five shRNA sequencesidentified from The RNAi Con-
sortium for each target gene were identified from the Genetic Pertur-
bation Platform Web Portal at the Broad Institute. shRNA sequences
were cloned into pLKO.1. pLKO.1-TRC control and pLKO.1-shRNA len-
tiviruses were generated and used to transduce 3T3 cells (gift from V.
Vasioukhin, Fred Hutchinson Cancer Center). Seventy-two hours after
lentiviral transduction, 3T3 cells were collected, and RNA was collected
using an RNeasy Mini Kit (Qiagen). Reverse transcription of RNA was
performed using SuperScript IV Reverse Transcriptase (Invitrogen)
as per the manufacturer’s instructions. qPCR was performed on a
QuantStudio 6 using SYBR Green qPCR Master Mix (ThermoFisher Sci-
entific), and primers specificto each target gene and Ubc as a control.
Allprimersused for these studies are listed in Supplementary Table 3.
Relative expression was calculated using ddCT analysis.

Embryonic bladder mesenchyme and urogenital sinus
mesenchyme preparation

All animal care and studies were performed in accordance with an
approved Fred Hutchinson Cancer Center Institutional Animal Care
and Use Committee (IACUC) protocol (PROTO000051048) and
Comparative Medicine regulations. All animals were housed in an
Association for Assessment and Accreditation of Laboratory Animal
Care (AALAC)-accredited facility and subjected to a 12-h light/dark
cycle with the temperature maintained between 18 °C and 24 °C and
40-60% humidity. UGSM was isolated and propagated as previously
described”. E16 fetal bladders were also collected at the same time as
the urogenital sinus and subjected to similar steps for preparation of
EBLM. UGSM and EBLM were passaged less than five times before use
inengraftment studies.

Mouse bladder and prostate dissociation and organoid
culture

Bladder and prostates from 8- to 12-week-old male C57BL/6 mice
(TheJackson Laboratory) were dissected and mechanically and enzy-
matically dissociated as previously described?. Cells were stained
with antibodies for FACS on a Sony SH800 Cell Sorter with collection
of Lin"CD49f"&"EpCAM"e" cells. Between 1 x 10* and 2 x 10* bladder
urothelial and prostate epithelial cells were resuspended in a total
of 15 pl of growth factor-reduced Matrigel (Corning) with or without

concentrated lentivirus and seeded as droplets in each 48-well tis-
sue culture plate well. Cells were cultured as previously described™.
Mouse bladder organoid culture media consisted of Advanced
DMEM-F12,10 mMHEPES, 2 mM GlutaMAX, B27 supplement, 1.25 mM
N-acetylcysteine, 50 ng mI" hEGF,100 ng mI™* hNoggin and 500 ng ml™
hR-spondin, 200 nM A83-01and 10 pM Y-27632. Mouse prostate orga-
noid culture media consisted of mouse bladder organoid culture media
with the addition of 1 nM dihydrotestosterone.

Organoid transformation assay

After 5-7 days of culture, transduced mouse bladder urothelial or pros-
tate epithelial organoids were liberated by dissociating the Matrigel
matrix with 5 U ml™ dispase (STEMCELL Technologies). Organoids
were washed with PBS and resuspended inice-cold Matrigel witheither
10° EBLM or UGSM and subcutaneously injected into the flanks of
6- to 8-week-old male NSG (NOD-SCID-IL2Ry-null) mice (The Jackson
Laboratory). For prostate epithelial transformation studies, mice were
supplemented with testosterone through the subcutaneous implan-
tation of 90-day release testosterone pellets (Innovative Research of
America). Tumors were collected when they reached 1 cm in maximal
diameter. The maximum tumor size permitted by the Fred Hutchinson
Cancer Center IACUC is 2 cm in diameter, which was not exceeded
during these studies.

Copy number assay

DNA was extracted from organoids using a GeneJET Genomic DNA
PurificationKit (ThermoFisher Scientific). Copy number analysis was
performed by TagMan Real-Time PCR Assay (ThermoFisher Scien-
tific) using the TagMan Copy Number Reference Assay, mouse, Tfrc
(4458366) and EGFP TagMan Copy Number Assay (Mr00660654_cn) on
aQuantStudio 6. Genomic DNA extracted from the tails of transgenic
C57BL/6 mice with one or two copies of GFP was used as a calibrator
sample. GFP copy number was determined using ddCT analysis, where
sample copy number = calibrator copy number x 2794T,

Single-cell DNA amplicon sequencing library preparation and
sequencing

A custom panel was designed for the Mission Bio Tapestri to amplify
segments of ten mouse genes at two exons each, the 5" and 3’ lentiviral
barcodes and lentiviral GFP. Libraries were generated either from
cryopreserved or freshly dissociated tumor cells using the Mission
Bio Tapestri Single-cell DNA Custom Kit according to the manufac-
turer’s recommendations. Single cells (3,000 to 4,000 cells per pl)
were resuspended in Tapestri cell buffer and encapsulated using a
Tapestri microfluidics cartridge, lysed and barcoded. Barcoded sam-
ples were subjected to targeted PCR amplification, and PCR prod-
ucts wereremoved fromindividual droplets, purified with KAPA Pure
Beads (Roche Molecular Systems) and used as a template for PCR to
incorporate Illumina P7 indices. PCR products were purified by KAPA
Pure Beads and quantified by Qubit dsDNA High Sensitivity Assay
(ThermoFisher Scientific). Sample quality was assessed by Agilent
TapeStation analysis. Libraries were pooled and sequenced on an
llluminaMiSeq or HiSeq 2500 with 150 bp paired-end readsin the Fred
Hutchinson Cancer Center Genomics Shared Resource.

Laser capture microdissection and DNA and RNA isolation for
high-throughput sequencing

Sections 10 pm thick were cut from formalin-fixed paraffin-embedded
(FFPE) tumor tissue blocks and mounted onto PEN Membrane Frame
Slides (ThermoFisher Scientific). Sections were fixed with 95% ethanol
for1min, stained with3% cresyl violet and dehydrated through graded
alcohols and xylene. Histology review and annotation were performed
by a pathologist. Laser capture microdissection was performed onan
Arcturus XT Laser Capture Microdissection System (ThermoFisher
Scientific). Microdissected specimens were collected for DNA and
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RNA extraction. DNA was extracted using a GeneRead DNA FFPE Kit
(Qiagen), and RNA was extracted using an RNeasy FFPE Kit (Qiagen)
accordingtothe manufacturer’s protocols. Two-step PCR for lentiviral
barcode amplification and sequencing library adaptor ligation was
performed. The first PCR reaction consisted of 2x KAPA HiFi HotStart
ReadyMix, 100 nM of 1° FWD primer (5’- TCGTCGGCAGCGTCAGAT-
GTGTATAAGAGACAGCAAAATTTTCGGGTT TATTACAGG-3’),100 nM
of 1° REV primer (5’- GTCTCGTGGGCTCGGAGATGTGTATAAGAGA
CAGGCCGCTCGAGGACTATTAAG-3’) and 80 ng of genomic DNA. Ther-
mal cycling conditions were 95 °C for 3 min; (95 °C for 30 s, 64 °C for
30s,72°Cfor30s) x 25 cycles; 72 °C for 5 min; and hold at 4 °C. PCR
cleanup was conducted using the Wizard SV Gel and PCR Clean-Up
System (Promega), with elution in 30 pl of double distilled water. The
second PCR reaction consisted of 2x KAPA HiFi HotStart ReadyMix,
140 nM of 2°i7 primer, 140 nM of 2°i5 primer and 5 pl of elution from
the PCR cleanup of the 1° PCR. Thermal cycling conditions were 95 °C
for 3 min, (95°Cfor30s,61°Cfor30s,72°Cfor30s)x8cycles; 72 °C
for 5 min; and hold at 4 °C. The sequences of 2° primers used to incor-
porate dual-indexed Illumina sequencing adaptors are displayed in
Supplementary Table 4. PCR cleanup was conducted using the Wiz-
ard SV Gel and PCR Clean-Up System, with elution in 30 pl of double
distilled water. Sample quality was assessed by Agilent TapeStation
analysis. Sequencing was performed on an Illlumina MiSeq or HiSeq
2500 instrument using 150 bp single-end reads. PhiX sequences were
excluded fromthe sequencing reads by Bowtie 2v2.4.4 (ref. 23). Cuta-
dapt v4.1 (ref. 24) was used to trim the reads to the barcode region.
Thenthe trimmed reads were aligned to custom DNA references con-
taining all barcodes using Bowtie 2. Samtools v1.11 (ref. 25) was used
to extract read counts for each barcode. The RNA-seq libraries were
prepared using a SMARTer Stranded Total RNA-Seq Kit v3 - Pico Input
Mammalian (TakaraBio) and sequenced onan IlluminaNovaSeq 6000
using aNovaSeq S4 flow cell with 100 bp paired-end reads by MedGe-
nome. Sequencing reads were mapped to mouse genome reference
GRCm39, and gene expression was quantified and normalized using
the UC Santa Cruz Computational Genomics Lab Toil RNA-seq pipeline
v4.1.2 (ref. 26).

Transcriptional subtype analysis and PCA projections

All computational analyses were carried out in RStudio v4.1.0.
Mouse Ensembl genes were converted to Mouse Genome Informat-
ics (MGI) gene symbols using the biomaRt package v2.24.1 (https://
bioconductor.org/packages/release/bioc/html/biomaRt.html). MGI
gene symbols were then converted to their human orthologs by refer-
encing the mouse-human ortholog database available from The Jack-
son Laboratory (http://www.informatics.jax.org/downloads/reports/
HOM_MouseHumanSequence.rpt). The human ortholog matrix was
used for downstream analysis in transcriptional subtype analysis.
FHBT samples were classified using the BASE47 subtype predictor
gene list and the ConsensusMIBC package v1.1 (https://github.com/
cit-bioinfo/consensusMIBC). Z-score means of genes and signature
scores were calculated for each sample. Heatmaps of both the BASE47
and ConsensusMIBC results were generated using the pheatmap pack-
age v1.0.12 (https://www.rdocumentation.org/packages/pheatmap/
versions/1.0.12/topics/pheatmap). For PCA analysis, the FPKM human
ortholog matrix was normalized by log, +1 transformation before
performing mean-centered PCA using the prcomp package v3.6.2
(https://www.rdocumentation.org/packages/stats/versions/3.6.2/
topics/prcomp). Visualization of the PCA plot was performed using the
factoextra package v1.0.7 (https://cran.r-project.org/web/packages/
factoextra/index.html) and ggpubr package v0.6.0 (https://www.
rdocumentation.org/packages/ggpubr/versions/0.6.0).

For PCA projections, RNA-seq count data from the FHBT,
GSE220999 and TCGA-BLCA datasets were transformed to counts
per million, normalized and batch corrected using ComBat-seq” to
compare across each dataset using the DGEobj.utils package v1.0.6

(https://rdrr.io/cran/DGEobj.utils). PCA projection of the FHBT data
onto the TCGA-BLCA space was done by first generating a PCA of the
TCGA-BLCA samples from the common genes between the FHBT and
GSE220999 data. A PCA for both the FHBT and GSE220999 samples
was then scaled by the eigenvalues of the TCGA-BLCA using the base
package v3.6.2 (https://www.rdocumentation.org/packages/base/
versions/3.6.2/topics/scale). A plot was constructed overlaying the
reference TCGA-BLCA samples with either FHBT or GSE220999 tumor
projections using ggplot2 v3.4.1 (https://cran.r-project.org/web/
packages/ggplot2/index.html). TCGA-BLCA samples were colored
by their Consensus Molecular Classifier subtype. Differential gene
expression analysis was performed pairwise between FHBT histologies
using the DESeq2 package v1.38.3 (ref. 28). Pvalues were generated via
the Wald test and P-adjusted using the Benjamini-Hochberg correc-
tion. Pre-ranked GSEA (Broad Institute) was conducted by inputting a
ranked list of differentially expressed genes based on log,-transformed
P values from the DESeq2 analysis for each pairwise comparison.
Dot plots were generated by plotting the normalized enrichment
score and log-transformed false discovery rate for each pre-ranked
GSEA output using ggplot2.

Single-cell lentiviral barcode enumeration and clonality
analysis

Raw sequencing reads were trimmed to the amplicon regions using
the awk command. Barcode sequences in the reads were filtered
and extracted using UMI-tools v1.0.0 (ref. 29). Processed reads were
aligned to customreferences containing allamplicon sequences using
bwa-memv0.7.17-r1188 (ref. 30). Samtools was used to extract amplicon
counts for each barcode. Mouse cells with no GFP amplicon counts
were removed. Counts per cell were normalized to total counts for
each barcode. A minimum threshold normalized count of 1% of total
counts was used to define the presence of abarcodeinacell. The clonal
architecture of cells was determined by enumerating all cells contain-
ing each distinct combination of barcodes.

Immunohistochemistry

Tumor samples were formalin-fixed and paraffin-embedded, sectioned
to a5-pm thickness and placed on positively charged glass slides. For
eachtumor, slides were stained with a standard hematoxylinand eosin
protocol. Immunohistochemical staining was performed according
to an established protocol®. Stained slides were digitally scanned on
aVENTANADP 200 (Roche) and analyzed using QuPath 0.2.3 (ref. 32).

Antibodies

Antibodies used for FACS: Human/mouse/bovine integrin alpha
6/CD49f PE-conjugated antibody (FAB13501P, R&D Systems, 1:40);
PE/Cyanine7 anti-mouse CD326 (Ep-CAM) antibody (118216, Bio-
Legend, 1:40); CD31 (PECAM-1) monoclonal antibody (390), FITC
(11-0311-82, eBioscience, 1:100); CD45 monoclonal antibody (30-F11),
FITC (11-0451-85, eBioscience, 1:100); TER-119 monoclonal antibody
(TER-119), FITC (11-5921-82, eBioscience, 1:100). Antibodies used for
immunohistochemistry: Anti-wide spectrum Cytokeratin antibody
(ab9377, Abcam, 1:100); rabbit monoclonal GFP antibody (clone D5.1,
Cell Signaling, 1:100); rabbit polyclonal p63 antibody (12143-1-AP,
Proteintech, 1:200); mouse monoclonal p53 antibody (clone 1C12,
Cell Signaling, 1:500); rabbit monoclonal HOXB13 antibody (clone
D7N8O, Cell Signaling, 1:50); rabbit polyclonal AR antibody (06-680,
Millipore, 1:2,000); rabbit monoclonal GATA3 antibody (clone D13C9,
Cell Signaling, 1:200); rabbit monoclonal CD44 antibody (clone E7K2Y,
Cell Signaling, 1:100).

Statistical analyses

Data analysis was performed on GraphPad Prism 9 (GraphPad Soft-
ware). qPCRresults were analyzed in Excel. Statistical significance was
determined using the unpaired two-tailed Student’s t-test. Results are
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depicted as mean +s.d. unless stated otherwise. For all statistical tests,
Pvalues of <0.05 were considered significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Sequencing data pertaining to this study are available from the Gene
Expression Omnibus (GEO) as SuperSeries GSE229783. RNA-seq data
from FHBT models are available from accession number GSE229780.
Bulk DNA amplicon sequencing data from lentiviral library represen-
tation studies and from FHBT models are available from accession
numbers GSE231542 and GSE229781, respectively. Single-cell DNA
ampliconsequencing datarelated to determining the unique proviral
copies per cell after lentiviral transduction across arange of MOls are
available from accession number GSE231543. Single-cell DNA amplicon
sequencing datafrom FHBT models and enriched cells from the tumor
model with prostate adenocarcinomaand focal pleomorphicgiant cell
carcinoma are available from accession number GSE229782.

Code availability

The study did not use any custom code or software. All code or soft-
ware used for all data processing and analysis has been described in
the Methods section. No custom code was used to generate figures.
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Extended Data Fig. 1| Isolation of mouse bladder urothelial and prostate
epithelial cells for organoid culture and design/validation of a custom
Mission Bio Tapestri single-cell DNA amplicon sequencing panel.

(a) Representative flow cytometry plot for the isolation of mouse bladder urothelial
(top) and prostate epithelial (bottom) from dissociated tissues basedona

Lin (CD45CD31Ter119") EpCAM*CD49f"" immunophenotype. (b) Images of
organoid cultures of mouse bladder urothelial and prostate epithelial cells
ondayland day 5 after seeding. (c) Table showing the amplicons represented
ina custom Mission Bio Tapestri single-cell DNA amplicon sequencing panel.
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(d) Table showing results of a validation study where a defined mixture of 3T3
cells with an unlabeled population and others labeled with combinations of
lentiviruses encoding distinct barcodes were analyzed using the Mission Bio
Tapestri single-cell DNA amplicon sequencing panel to determine clonality.
~2,000 cells were analyzed. (e) Overview of experiments with infection of
mouse prostate epithelial (mPE) cells with a diverse barcoded lentiviral library
inorganoid culture across a range of multiplicity-of-infection (MOI) and
quantification of viral copy number per cell across the population by single-cell
amplicon sequencing. Created with BioRender.com.
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Extended Data Fig. 2| See next page for caption.
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Extended Data Fig. 2| Recurrent genetic alterations associated with bladder
and prostate cancer encoded inbarcoded lentiviral libraries. (a) Tables
showing gain-of-function and loss-of-function genetic alterations associated
withbladder and prostate cancer selected for representation in cancer-specific
barcoded lentiviral libraries. (b) Schematics of barcoded lentiviral vectors
expressing open reading frames (ORF) or short-hairpin RNA (shRNA). LTR = long
terminal repeat; BC = barcode; UBC = Ubiquitin C; CMV = cytomegalovirus;

GFP = green fluorescent protein; WHV8 = Woodchuck hepatitis virus 8 post-
transcriptional regulatory element. (c) Plot showing relative expression of target
genes as determined by quantitative polymerase chain reaction (QPCR) in3T3

cells 72 hours after lentiviral transduction with pLKO.1-TRC control or pLKO.1
expressing select ShRNA previously screened and selected for inclusion in the
barcoded lentiviral libraries based on the extent of gene knockdown. qPCR
reactions were performed on four biologically independent replicates. Statistical
analysis was performed by two-tailed, unpaired ¢-test with p-values shown.

(d) Plot showing relative overexpression of gain-of-function genes as determined
by qPCRin3T3 cells 72 hours after lentiviral transduction with barcoded ORF
vectors. qPCR reactions were performed on three biologically independent
replicates. Statistical analysis was performed by two-tailed, unpaired ¢-test with
p-values shown.
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Extended Data Fig. 3| Generation of barcoded lentiviral libraries and barcode representation by bulk amplicon sequencing of genomic DNA. Created
normalization of library representation. Schema showing the (a) generation with BioRender.com. (c) Representative distribution of barcoded lentiviruses
ofindividual lentiviruses from the library in arrayed format with subsequent within alibrary with skewed enrichment of shRNA relative to ORF lentiviruses.
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respective mouse bladder urothelial (mBU) or prostate epithelial (mPE) cellsin applying information from c to adjust producer cell surface areain afor the
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Extended DataFig. 4| Active mutant Fgfr3 S243C cooperates with other functional genotype-phenotype associations. Created with BioRender.com.
oncogenic factors in mouse bladder urothelial cells to drive papillary (b) High-magnification images of H&E- and IHC-stained sections of a resultant
urothelial carcinoma withinverted growth pattern. (a) Scheme of the mBU tumor of the experiment in a with histologic features consistent with papillary
organoid transformation assay using a defined lentiviral library to confirm urothelial carcinoma with inverted growth pattern.
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Extended Data Fig. 6 | FHBT models demonstrate diverse cancer histologies. (a-e) Low- and high-magnification images of H&E-stained sections and high-
magnification images of IHC-stained sections for GFP and pan-cytokeratin (panCK) expression depicting characteristic histologies. Scale bars = 50 pum.
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Extended Data Fig. 7 | Phenotypic diversity and relevance of FHBT models. (PCA) projection plot of FHBT samples over BBN carcinogen-induced mouse
(a) Heatmap showing the histologies of the Fred Hutch Bladder Tumor (FHBT) bladder tumors color-coded based on histology or histology and Consensus
series relative to expressions of genes that constitute basal and luminal Molecular Classification (UC = urothelial carcinoma, Sq = squamous,
signatures for the BASE47 subtype predictor. (b) Principle component analysis Src =sarcomatoid, NE = neuroendocrine) with 90% confidence ellipses shown.

Nature Genetics


http://www.nature.com/naturegenetics

Brief Communication https://doi.org/10.1038/s41588-024-01674-1

a :-'. Barcoded lentiviral Urogenital
*_/ '.. library of genetic sinus
*% perturbations mesenchyme
l (UGSM)
(—\/ - s
Primary mouse prostate Transduced Subcutaneous Polyclonal tumor Histology and
epithelial (mPE) cells organoids engraftment immunohistochemistry

b

Adenocarcinoma

Pleomorphic giant cell
carcinoma

C FACS of dissociated mixed prostate adenocarcinoma and d Single-cell clonality analysis of small cells/nuclei

pleomorphic giant cell carcinoma tumor based on cell size Genes encoded by LV Clonal frequency (%)

om Etv1 343
Spop F133C, Etv1 26.1
o00K shzfhx3 5.0
Spop F133C, shZfhx3 29
T oo Myc, shZfhx3 26
o Myc, Spop F133C, shzZfhx3 22
2 o ) Etv1, shzfu3 19
Single cells Myc, Etv1 19
200K o . Spop F133C, Etv1, shZfhx3 16
! Trp53 R245Q, Etv1, shzZfhx3 15
o : T
P Single-cell clonality analysis of large cells/nuclei
V: Genes encoded by LV Clonal frequency (%)
shKmt2c, shTtn, Etv1 11.8
shKmt2c, shTtn, Spop F133C, Etv1 55
shKmt2c, shTtn, Erg, Etv1 51
Myc, Etv1 4.7
l FACS based on nuclear S”;’P’(:‘g’:%tat‘” :“:’
Hoechst staining ShKmi2, shTtn, Spop F133C, Erg, Etv1 27
. - shKmt2c, Spop F133C, Etv1 27
3 Small cells 3 Large nuclei shKmt2c, shTtn, Myc, Etv1 2.7
g © g & A Myc, Spop F133C, Etv1 23
Se Sew shKmt2c, Spop F133C, Erg, Etv1 2.1
3 3 shKmt2c, Mye, Etv1 1.9
% o % “© shKmt2c, Pik3ca E545K, Spop F133C, Erg, Etv1 1.9
E ., E shKmt2c, Erg, Etv1 1.8
2 2 shKmt2c, Myc, Spop F133C, Etv1 17
o o shKmt2c, Pik3ca E545K, shTtn, Erg, Etv1 17
40K 60K 80K 100K 0 20K 40K 60K 80K 100K R
Hoechst 33342 Hoechst 33342 shKmt2c, Pik3ca E545K, shTtn, Etv1 1.5
g .
- L
Single-cell DNA High-throughput

amplicon (LV barcode) DNA sequencing
library preparation

Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Association of adenocarcinoma with polymorphic Scale bar =50 pm. (c) Overview of the experimental approach to enrich for
giant cell carcinoma of the prostate with perturbation of Kmt2c. prostate adenocarcinoma and pleomorphic giant cell carcinoma based on
(a) Scheme of the mouse prostate epithelial (mPE) organoid transformation cell size and nuclear DNA content followed by single-cell lentiviral barcode
assay to uncover functional genotype-phenotype associations in prostate enumeration. (d) Tables showing single-cell clonality analysis of: Top, tumor
cancer. Created with BioRender.com. (b) Left, Gross image of a tumor arising cells enriched for ‘small cells/nuclei. Bottom, tumor cells enriched for ‘large
from mPE transformed with a prostate epithelial lentiviral pool (PE-LVp). cells/nuclei. Highlighted in red is shkmt2c based on the enumeration of the
Right, high-magnification images of H&E- and IHC-stained sections of regions associated lentiviral barcode. Created with BioRender.com.

with high-grade adenocarcinoma and pleomorphic giant cell carcinoma.
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Data collection  The single-cell or bulk DNA amplicon sequencing data collected for this manuscript was generated using a custom panel designed for the
Mission Bio Tapestri to amplify segments of ten mouse genes at two exons each, the 5" and 3’ lentiviral barcodes, and lentiviral GFP. Amplicon
DNA libraries generated using Tapestri were sequenced on an Illumina MiSeq or HiSeq 2500 with 150 bp paired-end reads in the Fred
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Sequencing data pertaining to this study is available from Gene Expression Omnibus (GEO) as SuperSeries GSE229783. RNA-seq data from FHBT models is available
from accession number GSE229780. Bulk DNA amplicon sequencing data from lentiviral library representation stud-ies and from FHBT models are available from
accession numbers GSE231542 and GSE229781, respectively. Single-cell DNA amplicon sequencing data related to determining the unique proviral copies per cell
after lentiviral transduction across a range of MOlIs is available from accession number GSE231543. Single-cell DNA amplicon sequencing data from FHBT models
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Sample size In vitro experiments were performed using three independent replicates and each experiment was repeated at least three times. Sample sizes
for in vitro experiments were either based on ensuring sufficient statistical power or based on the standard in the field. For in vivo studies,
transduced mouse bladder or prostate cells were subcutaneously injected in 5-6 mice and those which formed tumors were collected and
screened by histology. Sample size was based on prior experience with dissociated-cell tissue recombination/transplantation assays and
inherent variability due to technical complexity and pilot studies of the frequency of transformation of prostate (30-40%) and bladder
(70-80%) epithelial cell grafts using the methodology (see Extended Data Table 1). 5-6 grafts from each transformation study ensured the
generation of tumors from at least one graft for each experiment.

Data exclusions  No data was excluded from the analyses.

Replication Experiments have been repeated multiple times using different independent biological samples with similar experimental conditions or
otherwise mentioned in the figure legends, main text or methods.

Randomization  Randomization was not applicable as there was no pre-specified comparison of interventions.

Blinding Blinding was not applied to the study as a therapeutic intervention was not investigated.
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Antibodies

Antibodies used Antibodies used in this study for FACS:
Human/mouse/bovine integrin alpha 6/CD49f PE-conjugated antibody (FAB13501P, R&D Systems, 1:40);
PE/Cyanine 7 anti-mouse CD325 (Ep-CAM) antibody (118216, Biolegend, 1:40);
CD31 (PECAM-1) monoclonal antibody (390), FITC (11-0311-82,eBioscience, 1:100);
CD45 monoclonal antibody (30-Fll), FITC (11-0451-85, eBioscience, 1:100);
TER-119 monoclonal antibody (TER-119), FITC (11-5921-82, eBioscience, 1:100).

Antibodies used for immunohistochemistry:

Rabbit polyclonal panCK (ab9377, Abcam, 1:100);

Rabbit monoclonal GFP antibody (clone D5.1, Cell Signaling, 1:100);
Rabbit polyclonal p63 antibody (12143-1-AP, Proteintech, 1:200);

Mouse monoclonal p53 antibody (clone 1C12, Cell Signaling, 1:500);
Rabbit monoclonal HOXB13 antibody (clone D7N8O, Cell Signaling, 1:50);
Rabbit polyclonal AR antibody (06-680, Millipore, 1:2,000);

Rabbit monoclonal GATA3 antibody (clone D13C9, Cell Signaling, 1:200);
Rabbit monoclonal CD44 antibody (clone E7K2Y, Cell Signaling, 1:100).

Validation For each antibody, the validation statement has been taken from the manufacturer's website or data sheet and detailed as follows:

Human/mouse/bovine integrin alpha 6/CD49f PE-conjugated antibody (FAB13501P, R&D Systems) - the antibody is validated to
detect human, mouse, and bovine Integrin alpha 6/CD49f. Recognizes an epitope in the extracellular domain of the Integrin alpha 6
subunit.

PE/Cyanine 7 anti-mouse CD325 (Ep-CAM) antibody (clone- G8.8, 118216, BioLegend)- validated to be used by flow and is cited in
multiple publication can be seen on this website: https://www.biolegend.com/fr-lu/products/pe-cyanine7-anti-mouse-cd326-ep-
cam-antibody-5303.

CD31 (PECAM-1) monoclonal antibody (390), FITC (11-0311-82,eBioscience) - validated by staining in more than 40 publications
found on this website: https://www.thermofisher.com/antibody/product/CD31-PECAM-1-Antibody-clone-390-
Monoclonal/11-0311-82.

CD45 monoclonal anitbody (30-F11), FITC (11-0451-85, eBioscience) - the 30-F11 antibody has been tested by flow cytometric
analysis of mouse bone marrow cells. https://www.thermofisher.com/antibody/product/CD45-Antibody-clone-30-F11-
Monoclonal/11-0451-82

TER-119 monoclonal antibody (TER-119), FITC (11-5921-82, eBioscience) - has been tested by flow cytometric analysis of mouse bone
marrow cells. https://www.thermofisher.com/antibody/product/TER-119-Antibody-clone-TER-119-Monoclonal/17-5921-82

Rabbit polyclonal panCK (ab9377, Abcam, 1:100) - suitable for: IHC-P, ICC, ICC/IF, Flow Cyt, WB, IHC-Fr. https://www.abcam.com/
products/primary-antibodies/wide-spectrum-cytokeratin-antibody-ab9377.html

Rabbit monoclonal GFP antibody (clone D5.1, Cell Signaling, 1:100) - validated for WB and IHC. https://www.cellsignal.com/products/
primary-antibodies/gfp-d5-1-rabbit-mab/2956

Rabbit polyclonal p63 antibody (12143-1-AP, Proteintech, 1:200) - validated for WB, IHC, IP and IF. https://www.ptglab.com/
products/TP63-Antibody-12143-1-AP.htm

Mouse monoclonal p53 antibody (clone 1C12, Cell Signaling, 1:500) - validated for WB, IHC, flow, and ChIP. https://
www.cellsignal.com/products/primary-antibodies/p53-1c12-mouse-mab/2524




Rabbit monoclonal HOXB13 anti-body (clone D7N8O, Cell Signaling, 1:50) - Validated for WB, IP, and IHC. https://www.cellsignal.com/
products/primary-antibodies/hoxb13-d7n8o-rabbit-mab/90944

Rabbit polyclonal AR antibody (06-680, Millipore, 1:2,000) - validated for WB and IHC. https://www.emdmillipore.com/US/en/
product/Anti-Androgen-Receptor-Antibody, MM_NF-06-680

Rabbit monoclonal GATA3 antibody (clone D13C9, Cell Signaling, 1:200) - validated for WB, IHC, ChIP, IF and flow. https://
www.cellsignal.com/products/primary-antibodies/gata-3-d13c9-xp-rabbit-mab/5852

Rabbit monoclonal CD44 antibody (clone E7K2Y, Cell Signaling, 1:100) - validated for WB and IHC. https://www.cellsignal.com/
products/primary-antibodies/cd44-e7k2y-xp-rabbit-mab/37259

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s)

Authentication

HEK293T (CRL-3216) were obtained from the American Type Culture Collection and were cultured in DMEM medium
supplemented with 10% FBS, 100 U/mL penicillin and 100 pg/mL streptomycin, and 4 mmol/L GlutaMAX (Thermo Fisher).

Cell line authentication was done via short tandem repeat (STR) profiling at the IDEXX BioAnalytics, 4011 Discovery Drive,
Columbia, MO 65201.

Mycoplasma contamination All cell lines routinely tested negative for Mycoplasma contamination.

Commonly misidentified lines  No misidentified cell lines were used in this study.

(See ICLAC register)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in

Research

Laboratory animals

Wild animals
Reporting on sex
Field-collected samples

Ethics oversight

For studies using immunocompromised mice, six- to eight-week-old male NSG (NOD-SCID-IL2Ry-null) mice were obtained from The
Jackson Laboratory and were 2-4 months old when used for the studies.

Eight- to twelve-week-old male wild-type C57BI/6 (C57BI/6J) mice were obtained from The Jackson Laboratory and were 2-4 months
old when used for the studies.

The study did not involve wild animals.

Male mice were used for all the experiments.

The study did not include field-collected samples.

All animal care and studies were performed in accordance with an approved Fred Hutchinson Cancer Center Institutional Animal Care
and Use Committee protocol (PROTO000051048) and Comparative Medicine regulations.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|Z The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

|Z| All plots are contour plots with outliers or pseudocolor plots.

|Z| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument

Software

Bladder and prostates from eight- to twelve-week-old male C57BL/6 mice were dissociated into single cells and were stained
with antibodies for fluorescence-activated cell sorting on a Sony SH800 Cell Sorter. Bladder urothelial and prostate epithelial
cells were sorted and collected based on a Lin(-) CD49f(high) EpCAM(high) immunophenotype. For prostate polymorphic
giant cells were analyzed based on forward and side scatter and further staining for nuclear DNA content with Hoechst 33342
dye.

Flow cytometric analysis or sorting were performed using BD FACSCanto and Sony SH800 Cell Sorter instruments.

FlowJo 10.8.0 software.
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Cell population abundance Bladder and prostates from eight- to twelve-week-old male C57BL/6 mice were dissociated into single cells and were stained
with antibodies for fluorescence-activated cell sorting on a Sony SH800 Cell Sorter. Bladder urothelial and prostate epithelial
cells were sorted and collected based on a Lin(-) CD49f(high) EpCAM(high) immunophenotype. For prostate polymorphic
giant cells were analyzed based on forward and side scatter and further staining for nuclear DNA content with Hoechst 33342
dye. Cell population abundance is shown in associated flow plots showing the gating strategy.

Gating strategy Stained prostate and bladder epithelial cells were plotted based on side scatter-area (SSC-A) and FITC (lineage markers) and
the lineage-negative population was selected for gating by CD49f-PE and EpCAM-APC. The CD49f(high) EpCAM(high)
population was sorted for experimental use.

Dissociated cells from mixed prostate adenocarcinoma an pleomorphic giant cell carcinoma tumors were plotted based on
forward scatter-height (FSC-H) and forward scatter-area (FSC-A) to select single cells. Single cells were then gated based on
high SSC-A and high FSC-A to isolate larger cells. After passage in organoid culture, dissociated and stained tumor cells were
plotted based on SSC-A and Hoechst 33342 staining. Tumor cells were sorted based on high and low Hoechst 33342 staining.

The gating strategies for isolating prostate and bladder epithelial cells and the polymorphic giant cells isolation are provided
in the Extended Data Figs. 1a, and 8c, respectively.
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& Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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