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Leveraging functional genomic annotations 
and genome coverage to improve polygenic 
prediction of complex traits within and 
between ancestries

Zhili Zheng    1,2,3  , Shouye Liu1, Julia Sidorenko    1, Ying Wang    1, Tian Lin    1, 
Loic Yengo    1, Patrick Turley    4,5, Alireza Ani    6,7, Rujia Wang    6, 
Ilja M. Nolte    6, Harold Snieder    6, LifeLines Cohort Study*, Jian Yang    8,9, 
Naomi R. Wray    1,10, Michael E. Goddard11,12, Peter M. Visscher    1,13  
& Jian Zeng    1 

We develop a method, SBayesRC, that integrates genome-wide association 
study (GWAS) summary statistics with functional genomic annotations to 
improve polygenic prediction of complex traits. Our method is scalable 
to whole-genome variant analysis and refines signals from functional 
annotations by allowing them to affect both causal variant probability 
and causal effect distribution. We analyze 50 complex traits and diseases 
using ∼7 million common single-nucleotide polymorphisms (SNPs) and 96 
annotations. SBayesRC improves prediction accuracy by 14% in European 
ancestry and up to 34% in cross-ancestry prediction compared to the 
baseline method SBayesR, which does not use annotations, and outperforms 
other methods, including LDpred2, LDpred-funct, MegaPRS, PolyPred-S and 
PRS-CSx. Investigation of factors affecting prediction accuracy identifies a 
significant interaction between SNP density and annotation information, 
suggesting whole-genome sequence variants with annotations may further 
improve prediction. Functional partitioning analysis highlights a major 
contribution of evolutionary constrained regions to prediction accuracy 
and the largest per-SNP contribution from nonsynonymous SNPs.

Polygenic scores (PGSs) for complex traits are playing increasingly 
important roles in research and medical applications of the fast-growing 
genomic data from genome-wide association studies (GWASs)1. PGSs 
are used to provide evidence of polygenic adaptation of populations to 
different environments2, explore putative causal relationships between 
traits3, improve cost and efficiency of clinical trials4 and, perhaps most 
importantly, identify individuals with high genetic risk of complex 
diseases5–10, which opens up opportunities for preventative medicine, 
early intervention and personalized treatment11–13. However, the clinical 

application of PGSs is currently limited by the modest prediction accu-
racy for most complex diseases. Moreover, a substantial loss of predic-
tion accuracy is observed when applying PGSs across ancestries14–20.

The prediction accuracy of PGSs depends on the selection of SNPs 
in the model and the estimation of their effects. For cross-ancestry 
prediction, the accuracy further depends on the extent to which the 
linkage disequilibrium (LD) in the GWAS population matches that in the 
target population. Although mounting evidence suggests that com-
mon causal variants are shared across ancestry groups20,21, selecting 
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common SNPs and 96 functional annotations. We consider both within 
European ancestry and cross-ancestry prediction using datasets from 
multiple biobanks and large consortia, comparing with the best meth-
ods in the literature (Extended Data Table 1). Moreover, we investigate 
factors that affect prediction accuracy and consider connections 
between the genetic architecture of functional categories and their 
contributions to prediction accuracy.

Results
Method overview
SBayesRC extends SBayesR34 to incorporate functional annotations 
and allows for the joint analysis of all common SNPs in the genome. It 
only requires summary statistics from GWAS and LD correlations from 
a reference sample as input data, outputting joint SNP effect estimates 
for the PGS calculation. In addition, it provides posterior inclusion prob-
abilities (PIP) for SNPs as measures of trait associations and estimates of 
functional genetic architecture parameters like SNP-based heritability 
and polygenicity associated with the functional annotations.

Compared to other methods, SBayesRC has two unique features. 
First, it utilizes a low-rank model to efficiently fit all common vari-
ants and better model the LD between them (Methods, Extended 
Data Fig. 1a and Section 1 of the Supplementary Note). Based on the 
eigen-decomposition on quasi-independent LD blocks in the human 
genome35, the low-rank model refines the signals in GWAS summary 
statistics by collapsing information from SNPs in high LD, leading 
to significantly improved computational efficiency and enhanced 
robustness to LD differences between GWAS and reference samples 
(Section 2 of the Supplementary Note). Second, a multicomponent 
annotation-dependent mixture prior is used to better model the dis-
tribution of SNP effects and to learn both annotation parameters and 
SNP effects from the data (Methods, Extended Data Fig. 1b and Section 
5 of the Supplementary Note). By allowing the annotations to affect the 

these variants only in the PGS model is challenging because, due to the 
action of negative selection22–24, complex traits are affected by many 
common causal variants, with vanishingly small effect sizes and in LD 
with non-causal SNPs in their vicinity.

Functional genomic annotations can be used to distinguish likely 
causal SNPs from non-causal SNPs in high LD with them25, thereby 
improving polygenic prediction15,26–29. The idea of using functional 
annotations to improve prediction was first proposed in livestock 
genetics through a method called BayesRC30 based on individual-level 
data. Recent methodological development in human genetics have 
allowed the integration of GWAS summary-level data with annota-
tions for polygenic prediction, including AnnoPred27, LDpred-funct28, 
MegaPRS29 and PolyPred15. However, there are limitations in these 
methods. First, it is common to consider only a subset of common 
variants (for example, SNPs from a genotyping array or the HapMap3 
panel31) due to computational feasibility. This practice may potentially 
be problematic, as SNP markers can capture the effects of unobserved 
causal variants through LD but may not share the same annotation with 
the causal variants (Fig. 1a). Second, these methods are all stepwise 
and depend on the estimated per-SNP heritability enrichment for 
each annotation32 as input data in the initial step. This enrichment can 
result from variations in either the proportion of causal variants or the 
distribution of effect sizes across annotation levels or categories30,33 
(Fig. 1b). Notably, none of these methods explicitly account for the 
two sources of information in a unified model that simultaneously fit 
GWAS data and functional annotations.

Here, we propose a new method, SBayesRC, that addresses these 
limitations by analyzing all imputed common SNPs simultaneously 
using an efficient algorithm, refining the annotation information using 
a hierarchical multicomponent mixture prior and estimating all param-
eters jointly from the data using a full Bayesian learning machinery. We 
apply our method to 50 complex traits, with up to 10 million imputed 
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Fig. 1 | Characteristics of functional annotation data. a, Functional 
annotations provide orthogonal information that helps to distinguish the 
causal variant (CV) from the SNP in perfect LD with it. However, when the causal 
variant is not observed, its effect can be captured through LD by an SNP that has 
a different annotation from the causal variant, resulting in a mismatch between 

effect size and annotation category (denoted by ‘Annot’). b, Functional categories 
can differ in both the proportion of causal variants and the distribution of causal 
effect sizes, either of which can lead to an enrichment or depletion in per-SNP 
heritability in a functional category.
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probability that SNPs are causal variants and the probability distribu-
tion of their effect sizes, SBayesRC can better capture the causal effects 
if the distributions of effect sizes truly differ between annotations. 
The method has been implemented in an R package and the software 
GCTB23 (see Code availability).

Genome-wide simulation based on real genotypes and 
annotation data
We first calibrated the low-rank model with simulation in HapMap3 SNPs 
to determine the best parameter setting for polygenic prediction (Section 
9 of the Supplementary Note). We then tested our method under two 
common issues encountered in practice: (1) differences in LD between 
GWAS and LD reference datasets and (2) unequal GWAS sample sizes 
across SNPs (Section 11 of the Supplementary Note), in comparison to 
two state-of-the-art methods using summary statistics, LDpred2 (ref. 36) 
and SBayesR34. For all methods, a decrease in prediction accuracy was 
observed when the LD reference sample size was too small relative to the 
GWAS sample size, indicating an important variation in LD by chance 
(Fig. 2a and Extended Data Fig. 2). However, SBayesRC (without annota-
tion) preserved more prediction accuracy than the other methods. In an 
extreme case where LD correlations were estimated using individuals of 

African ancestry, SBayesRC achieved a preservation of ∼70% prediction 
accuracy, whereas SBayesR and LDpred2 (default settings) were unable 
to reach convergence. Regarding the scenario of unequal per-SNP sam-
ple sizes, as the proportion of overlapped SNPs decreased, SBayesR 
more frequently failed to converge, and LDpred2 exhibited a faster rate 
of decrease in prediction accuracy compared to SBayesRC (Fig. 2b). It 
is noteworthy that the impact of model misspecification was mostly 
absorbed in the nuisance residual variance in SBayesRC, resulting in less 
bias in the genetic architecture parameters, such as SNP-based herit-
ability and polygenicity, compared to LDpred2 (Extended Data Fig. 3).

We next assessed the benefits of using functional annotation data 
by expanding the simulation to include 7,356,518 imputed common 
SNPs and incorporating functional annotations to simulate the causal 
effects (Methods). As expected, the result demonstrated a significant 
improvement in prediction accuracy when using more SNPs and/or 
annotation data in SBayesRC (Fig. 2c). Compared to using 1 M HapMap3 
SNPs, using all 7 M SNPs led to a 14.4% increase in prediction accuracy 
(calculated as (R27M − R21M)/R

2
1M, where R2 is the prediction R2 in the vali-

dation sample). Compared to the no-annotation model, the model 
incorporating annotation data improved the prediction accuracy by 
2.0% and 3.8% when using 1 M HapMap3 and 7 M common SNPs, 
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Fig. 2 | Assessing the performance of different methods by simulations. 
a, Robustness of SBayesRC to the choice of LD reference (ukb20k, a random 
sample of 20,000 unrelated individuals of European (EUR) ancestry from the 
UKB; uk10k, 3,642 unrelated EUR individuals from the UK10K dataset; 1kg0.5k, 
494 unrelated EUR individuals from the 1000 Genomes Project; afr4k, a random 
sample of 4,000 unrelated individuals of African ancestry from the UKB).  
b, Robustness of SBayesRC to the unequal per-SNP sample sizes in the meta-
analysis. c, The prediction R2 from SBayesRC, LDpred-funct and MegaPRS with 
different SNP densities and with or without annotations. The dashed line shows 
the prediction R2 from the benchmarking method SBayesR using HapMap3 SNPs 
without annotations. d, Power of identifying causal variants using SBayesRC with 

or without high-density SNPs or annotation data. e, False discovery rate (FDR) of 
identifying causal variants using SBayesRC with or without high-density SNPs or 
annotation data. f, Correlations between the SBayesRC estimated and true effect 
sizes at SNPs with posterior inclusion probability (PIP) greater than a threshold. 
Results were from simulations (n = 10 independent replicates) with trait 
heritability h2 = 0.5 (the upper bound of the prediction accuracy). See Extended 
Data Figs. 2 and 3 and Supplementary Figs. 3–5 for results from the simulation 
with h2 = 0.1. Each box plot in a–c shows the spread of data; the line is the middle 
(median), the box covers the middle half (IQR), the whiskers extend to 1.5 times 
the IQR, and dots show outliers. Data in d–f are presented as mean values (center 
point) ± standard error of the mean (s.e.m.) (error bar) in each PIP bin.
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respectively. Although a similar pattern was observed in LDpred-funct 
and MegaPRS, SBayesRC consistently outperformed both methods in 
each scenario (Fig. 2c and Supplementary Fig. 5). We hypothesize that 
the advantage of exploiting annotations arises from both better iden-
tification of causal variants and better estimation of their effect sizes. 
This hypothesis is supported by the results that incorporating annota-
tions in the model led to higher power and lower false discovery rate 
(FDR) for identifying the causal variants (Fig. 2d, e) and a stronger 
correlation in the estimated and true SNP effects (Fig. 2f). Coupled with 
the higher prediction accuracy, the SNP-based heritability estimation 
approached the true value in the simulation when more SNPs with 
annotation data were used (Extended Data Fig. 4). Moreover, we dem-
onstrated through sensitivity analyses that SBayesRC is robust in 

various circumstances, including a misspecification of mixture distri-
bution scaling factors or the number of mixture components, and using 
an alternative data-generative model for simulation (Supplementary 
Figs. 9–11 and Section 12 of the Supplementary Note).

Improved prediction accuracy within European ancestry
For the evaluation of prediction accuracy within European ancestry, 
we conducted ten-fold cross-validation in the 28 approximately inde-
pendent traits from the UKB and cross-biobank prediction using data 
from the LifeLines cohort37 and the FinnGen project38 (Methods and 
Supplementary Table 1). We used 96 genomic annotations from Base-
lineLD v2.2 (ref. 24) and 7 M imputed common SNPs in the UKB after 
matching with validation and annotation datasets (Methods).
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Fig. 3 | Prediction performance using SBayesRC with 7 M SNPs and 
annotation data in European populations. a, Relative prediction accuracy of 
different methods to SBayesR using 1 M HapMap3 SNPs, averaged from ten-fold 
cross-validation in the UKB (n = 28 traits). Each box plot shows the spread of data; 
the line is the middle (median), the box covers the middle half (IQR), the whiskers 
extend to 1.5 times the IQR, and dots show outliers. b, Relative prediction 
accuracy of different methods to LDpred2 (grid of models) using 1 M HapMap3 

SNPs for six traits in the UKB cross-validation (average value), five traits in the 
cross-biobank prediction analysis using the FinnGen data as training and the 
UKB data as validation, and four traits in the out-of-sample prediction analysis 
using the published meta-GWAS as training and the LifeLines data as validation. 
c, Out-of-sample prediction accuracy for height and BMI, using the UKB (n = 0.05 
to 0.3 M by downsampling) or the GIANT dataset40 (n = 0.7 M) as training and the 
LifeLines data as validation.
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To assess the performance of our method in comparison to differ-
ent approaches, we considered the analysis of 1 M HapMap3 SNPs 
without any annotation using SBayesR34 as the benchmark and ran other 
methods, including C + PT39, LDpred2 (ref. 36), LDpred-funct28 and 
MegaPRS29. The prediction accuracy of each method was assessed by 

calculating the relative value to that of SBayesR (δ2x =
R2x−R2SBayesR
R2SBayesR

, where 

R2x  is the prediction R-squared of method x in the validation sample). 
When using HapMap3 SNPs only, SBayesRC without annotations gave 
a prediction accuracy similar to that of SBayesR, which was significantly 
higher than that of LDpred2 (δ2LDpred2 = −3.2%, Wilcoxon signed rank 
exact test P = 1.4 × 10−7) (Fig. 3a). The use of 7 M SNPs or annotation data 
in SBayesRC resulted in an improvement in prediction accuracy by 2.8% 
(P = 0.001) or 3.2% (P = 3.2 × 10−7), respectively, on average across traits. 
The combined use of both sources of information further increased 
the prediction accuracy by 14.2% (P = 7.5 × 10−9), indicating a strong 
interaction between the SNP density and annotations (see more discus-
sion below). MegaPRS exhibited the second highest mean prediction 
accuracy and a similar boost with the combination of 7 M SNPs and 
annotation information, comparable to the results from SBayesRC. 
Overall, SBayesRC outperformed LDpred-funct by 11.9% (P = 5.5 × 10−5) 
and MegaPRS by 4.1% (P = 2.5 × 10−7) in prediction accuracy, when using 
7 M SNPs and annotation data. In addition, the regression slopes from 
SBayesRC were close to one across different traits, indicating that the 
SBayesRC predictors were unbiased (Extended Data Fig. 5). Consistent 
results were observed in an extended analysis of 50 complex traits 
(Extended Data Fig. 6 and Supplementary Tables 3 and 8).

We conducted two sets of cross-biobank prediction analyses using 
FinnGen and LifeLines datasets (Methods). In both cases, SBayesRC 
yielded the highest prediction accuracy, consistent with the results 
from the UKB cross-validation (Fig. 3b). Particularly, SBayesRC demon-
strated significant advantages in the analysis of FinnGen summary sta-
tistics, whereas both MegaPRS and LDprep-funct had lower prediction 
accuracy than LDpred2, which only used 1 M HapMap3 SNPs without 
annotations. The significant advantage of SBayesRC over MegaPRS can 
be attributed to its ability to better account for LD differences between 
GWAS and reference samples, which is further supported by the results 
of cross-biobank prediction within other ancestries (Extended Data 
Fig. 7). To explore the influence of sample size on prediction accuracy, 
we focused on height and body mass index (BMI) for which publicly 
available GWAS summary statistics with varying sample sizes were 
used. As expected, the prediction accuracy improved with increasing 
training sample size for both height and BMI in all methods. SBayesRC 
consistently outperformed LDpred2 by 4.0–21.9% and LDpred-funct 
by 7.1–26.3% and performed slightly better than MegaPRS in each sam-
ple size (Fig. 3c). In the largest sample size analyzed (nGIANT = 0.7M40) 
and using SBayesRC with 7 M SNPs and 96 per-SNP annotations, we 
achieved a maximum prediction R2 of 0.40 for height and 0.16 for BMI 
in the LifeLines cohort.

Improved accuracy in cross-ancestry prediction
To assess whether the improved accuracy achieved by using functional 
annotations with genome coverage for prediction is transferable to 

populations of different ancestries, we performed cross-ancestry pre-
diction in the UKB, where we trained predictors based on GWAS data 
from individuals of European (EUR) ancestry and validated in samples 
of South Asian (SAS), East Asian (EAS) and African (AFR) ancestries 
(Methods).

We evaluated SBayesRC, MegaPRS and two recently devel-
oped methods designed specifically for cross-ancestry prediction, 
PolyPred-S15 and PRS-CSx14 (Extended Data Table 1 lists a summary 
of these methods). PolyPred-S incorporates functional annotations 
through a fine-mapping analysis, whereas PRS-CSx combines informa-
tion from multiple GWAS datasets, both requiring a tuning sample of 
individual-level data from the target population to generate the final 
SNP weights for prediction. We also allowed SBayesRC and MegaPRS 
to utilize these extra datasets by first running the method in each of the 
GWAS datasets of different ancestries separately and then combining 
the SNP effects with weights estimated from the tuning data (referred 
to as SBayesRC-multi and MegaPRS-multi; Methods).

In cross-ancestry prediction, we observed a decrease in predic-
tion accuracy relative to that within EUR (Fig. 4a), which is consistent 
with previous studies14–19,41. However, despite the overall decline in 
prediction accuracy, the use of high-density SNPs beyond HapMap3 or 
functional annotation data led to increased prediction accuracy when 
compared to the benchmark of SBayesR within each of the ancestries 
(Fig. 4b). Within all non-EUR populations, SBayesRC using both 7 M 
SNPs and annotation data consistently achieved the highest predic-
tion accuracy, with a relative improvement of 16.0% in SAS (P = 1.5 × 
10−5), 22.6% in EAS (P = 2.1 × 10−4) and 33.7% in AFR (P = 4.6 × 10−5), aver-
aged across traits. On average across the three non-EUR ancestries, 
SBayesRC outperformed PolyPred-S by 15.4% in mean prediction accu-
racy. MegaPRS with 7 M SNPs outperformed its 1 M SNPs counterpart 
and exhibited comparable prediction accuracy to SBayesRC (slightly 
worse by 3.3% on average across ancestries), but with a larger variance 
across traits. When using an additional set of GWAS summary statistics 
from Biobank Japan42 (BBJ), PRS-CSx showed a 17.4% improvement 
compared to the benchmark of SBayesR in predicting EAS individuals 
in the UKB, slightly higher than that of SBayesRC using EUR data only 
but with annotations (15.9%). However, when SBayesRC-multi was used, 
which combines 7 M SNPs, functional annotations and the BBJ data, the 
improvement was almost doubled (32.9%), outperforming PRS-CSx 
by 13.5% (Fig. 4c). Similar patterns of improvement from the use of 
high-density SNPs and annotation data were observed in prediction 
within the AFR ancestry in PAGE43 dataset (Fig. 4d). Notably, SBayesRC 
using EUR dataset only has readily outperformed PRS-CSx using both 
EUR and AFR datasets. Through combining all sources of information, 
SBayesRC-multi outperformed PRS-CSx and MegaPRS-multi by 40.9% 
and 7.7 % in mean prediction accuracy, respectively, and had smaller 
variance. These results demonstrate that leveraging functional anno-
tations with all imputed SNPs can be as or more advantageous than 
using multiple GWAS datasets at a subset of SNPs, highlighting the 
importance of incorporating both types of information for optimizing 
cross-ancestry prediction.

In addition to improved prediction accuracy, SBayesRC also 
demonstrated efficient use of computational resources compared to 

Fig. 4 | Cross-ancestry prediction using SBayesRC with 7 M SNPs and 
annotation data. a, The ratio of prediction accuracy for SBayesRC (with different 
SNP densities and whether using annotations), MegaPRS and PolyPred-S in each 
ancestry to that of SBayesR with 1 M HapMap3 SNPs averaged across ten folds 
of cross-validation in European ancestry (n = 17 traits). b, Relative prediction 
accuracy (% of improvement) of each method to that of SBayesR trained in the 
GWAS of European ancestry and validated in each of the other ancestries (n = 17 
traits). VitD in PolyPred-S AFR population had a value of 331%, which is removed 
from the graph for a clear presentation. c, Relative prediction accuracy (as in 
b) either using summary statistics from UKB of European ancestry alone or 
together with those from BBJ of East Asian ancestry for cross-ancestry prediction 

in the UKB population of East Asian ancestry (n = 8 traits available). The number 
above each box plot indicates the mean value across traits. d, Relative prediction 
accuracy (similar to c) from UKB of European ancestry alone or together with 
those from PAGE of mixed African ancestry for cross-ancestry prediction in the 
UKB population of African ancestry (n = 8 traits available). White blood cell in d 
is an outlier in UKB EUR + PAGE (relative improvement of 140.7%, 173.3%, 188.8%, 
189.3%, 211.6% and 128.2% for each method/scenario), which is removed from the 
plot for a clear presentation. Each box plot shows the spread of data; the line is 
the middle (median), the box covers the middle half (IQR), the whiskers extend 
to 1.5 times the IQR, and dots show outliers. Data are provided in Supplementary 
Tables 4–6.
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other methods (Table 1). For the analysis of 7 M SNPs with 96 annota-
tions, SBayesRC required 74 GB RAM and 8.5 computing hours with 
4 CPU cores, which are commonly available in a standard computing  
cluster.

Significant interaction between SNP density and annotation 
information
Results above have shown that the combination of the full imputation 
SNP set and annotation data outperformed the use of either one alone, 
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indicating an interaction effect between SNP density and annotation 
information. To investigate this interaction, we quantified the improve-
ment in prediction accuracy due to the use of annotation data at each 
SNP density level (Methods). In the 28 independent UKB traits in EUR, 
the relative prediction accuracy with annotations versus without anno-
tations at 7 M imputed SNPs was significantly greater than that at 1 M 
HapMap3 SNPs, with a twofold difference or more in most traits (Fig. 5). 
This difference was also observed in the cross-ancestry prediction, 
although with some variation (Extended Data Fig. 8). We performed 
a statistical test on this interaction by fitting the indicator variables 
for SNP density and annotation data, as well as their product, to the 
scaled prediction accuracy for each trait in UKB EUR (Methods). The 
test showed that the interaction effect was highly significant (PInteraction  
= 6.7 × 10−7), in addition to significant main effects for SNP density (PSNP density  
= 4.2 × 10−4) and annotations (PAnnotations = 1.1 × 10−5). Similar significant 
interaction effect was also observed in MegaPRS (PInteraction = 1.1 × 10−5) 
and LDpred-funct (PInteraction = 0.048) (Fig. 3a), suggesting that this 
phenomenon is capturing a biological signal independent of the pre-
diction methods. This finding is in line with the hypothesis that the 
annotations at the SNPs in LD with a causal variant may not accurately 
reflect the annotation at the causal variant itself, resulting in a loss of 
information (Fig. 1a).

Other factors affecting accuracy of prediction leveraging 
functional annotations
Here, we investigate other factors, besides SNP density, that affect 
accuracy of prediction leveraging functional annotations, including 
SNP-based heritability, GWAS sample size, properties of minor allele 
frequency (MAF) and LD, the number of annotations and the analysis 
strategy. The results showed that traits with lower SNP-based herit-
ability or smaller GWAS sample sizes tended to benefit more from 
leveraging annotation data for prediction (Fig. 6a, b). Analyses focus-
ing on height and BMI showed that functional annotations were more 
informative than LD and MAF annotations, and using a comprehensive 
set of functional annotations was superior to using only a few key func-
tional categories (Fig. 6c). Moreover, we found that the unified analysis 
using all 7 M SNPs in the model was better than the stepwise analysis 
in refining the information from annotation data (Fig. 6d). Details of 
these analyses are described in Section 16 of the Supplementary Note.

Contributions of functional categories to prediction accuracy
To identify which functional annotations are most important, we 
constructed functional category-specific PGS using SNPs within that 

functional category and their effect estimates from the genome-wide 
analysis of SBayesRC. Overall, categories with more SNPs made a greater 
contribution to the prediction accuracy, but there were some apparent 
outliers (Fig. 7a). Notably, evolutionary constrained regions, despite 
being small in SNP set size, had the greatest contribution among all 
categories without flanking windows. For example, regions that are 
conserved across 29 eutherian mammals (Conserved_LindbladToh44 
in BaselineLD) only cover 2.9% of the genome but contributed 40.5% of 
the prediction accuracy averaged across traits, resulting in a per-SNP 
predictability enrichment of 14.0-fold (that is, enrichment in per-SNP 
contribution to prediction accuracy = 40.5/2.9). In comparison, the cod-
ing regions (which account for 1.6% of the genome) contributed 25.9% 
of the prediction accuracy, with a per-SNP predictability enrichment 
fold of 16.5. This result suggests that evolutionary constrained variants 
are as informative as the coding variants for complex trait prediction. 
Across functional categories, the per-SNP contribution to prediction 
accuracy was proportional to the per-SNP contribution to heritability 
(Fig. 7b), suggesting that the variance explained by an SNP in the GWAS 
sample can be transferred into its predictive ability in the validation 
sample. Nonsynonymous SNPs in the coding sequence showed the 
largest per-SNP predictability (41.4-fold enrichment), and they also 
exhibited the largest enrichment in per-SNP heritability.

We prioritized functional annotations based on their per-SNP her-
itability enrichment, averaged across the traits analyzed in this study. 
The top 20 annotations showed a mean fold enrichment in per-SNP 
heritability ranging from 3.8 to 18.8, which included nonsynonymous 
variants, evolutionary constrained regions, coding sequence and 
regulatory elements. These results were by and large consistent with 
the results from S-LDSC (Supplementary Fig. 12). Notably, our method 
allows us to go on ask whether the enrichment in per-SNP heritability 
was due to a higher number of causal variants or larger effect sizes in 
the category. We found that, conditional on the other annotations, the 

Table 1 | Computation resource required for different 
methodsa

Method (no. SNPs) Runtime (h) Memory (GB) Required storage 
(GB)

SBayesRC (7 M) 8.5 73.3 72

LDpred-funct (7 M) 6.0 120.6 40–50 per trait

PolyPred-S (7 M) 19.8b 71.7 2,800

MegaPRS (7 M) 7.2 247.7 277

LDpred2 (1 M) 5.5 53.4 43

SBayesRC (1 M) 0.8 4.8 5.6

SBayesR (1 M) 0.5 27.0 22

PRS-CSx (1 M) 14.2c 4.7 5.6

MegaPRS (1 M) 0.2 11.6 7.4
aResults were average values across traits using 4 CPU cores when multi-thread was 
supported for the method (n = 28 traits). Benchmarked with CPU AMD EPYC 7643 on a 
computing cluster. bIn PolyPred-S, fine-mapping is the most time-consuming step and is 
suggested to run by blocks in parallel. Here we used a single core and divided the runtime 
by 4 for comparison to others. cPer dataset runtime: total runtime/number of training 
datasets (=2).
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nonsynonymous SNPs category was enriched in both the proportion 
of causal variants and the magnitude of effect sizes (Fig. 7c). Moreover, 
compared to evolutionary conserved regions in mammals, conserved 
regions in primates had lower proportion of null SNPs and higher pro-
portions of SNPs with small to large effects in human traits.

Discussion
We have introduced a novel method, SBayesRC, for polygenic predic-
tion of complex traits using GWAS summary statistics of the full set of 
imputed SNPs and incorporating diverse functional annotations on 
each SNP. Compared to the common practice of using 1 M HapMap3 
SNPs, leveraging 7 M imputed common SNPs and 96 per-SNP annota-
tions resulted in a 14% improvement in prediction accuracy within 
European ancestry across 28 complex traits and diseases, and up to 
34% improvement across ancestries averaged over 18 well-powered 
traits. These results indicate that incorporating functional annota-
tions into prediction models can significantly enhance prediction 
accuracy, consistent with previous studies15,26–28,30,45. SBayesRC out-
performed the best methods for both within European ancestry 
and cross-ancestry prediction using annotations, MegaPRS and 
PolyPred-S, suggesting its superiority in leveraging annotation data 
for prediction. SBayesRC-multi outperformed PRS-CSx, highlight-
ing the importance of considering both annotation data and multiple 
GWAS datasets for cross-ancestry prediction. Furthermore, this study 
revealed a significant interaction between SNP density and annotation 
information for prediction accuracy, indicating that the benefits of 
incorporating annotations into prediction are amplified with higher  
SNP density.

The interaction between SNP density and annotation informa-
tion can be explained as follows. First, when using a low-density panel 
of SNPs, the available information from functional annotations may 
not provide an accurate prior for weighing the SNP effects, because 
the SNPs in the low-density panel may not be the causal variants but 
instead may be in LD with them. In this case, SNPs carrying different 
annotations could capture the effects of the causal variants, resulting 
in a misspecification of the SNP effect prior and potentially biased esti-
mation of annotation effects (Fig. 1a). Indeed, as shown by simulation, 
the estimation of the proportion of SNPs in each non-zero distribution 
was unbiased in the full SNP panel but significantly biased in the 1 M 
subset of SNPs (Supplementary Fig. 7). Second, using a high-density 
panel of SNPs allows for better fine-mapping of the causal variants 
and better estimation of their effects. Consistent with the previous 
studies46,47, the additional information from the annotation data effec-
tively enhanced the power in fine-mapping causal variants (Fig. 2d,e) 
and the accuracy of estimating causal effects (Fig. 2f). In the real data 
analysis, a significant improvement was also observed from 1 M to 
7 M imputed SNPs with annotations, but no further difference was 
observed with 10 M imputed SNPs (Extended Data Fig. 9). This plateau 
in prediction performance could be attributed to the saturation of 
SNP tagging on the common causal variants by the 7 M set or due to 
limitations in imputation accuracy on common SNPs or sample size of  
discovery GWAS.

We found that the combination of high-density SNPs and func-
tional annotations provides the most benefit to traits with low 
SNP-based heritability or small GWAS discovery sample sizes by pro-
viding additional information to allele frequency and LD categories. 
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data points and shading indicates the confident interval of the regression.  
b, GWASs with small sample sizes tend to benefit more from using annotation 
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core/full set of annotations). d, Full analysis of all SNPs and annotation data is 
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These results highlight the utility of leveraging functional annotations 
for predicting disease risk, as most common diseases do not have a 
high SNP-based heritability and the effective sample sizes are still 
limited for many diseases. Additionally, our findings underscore the 
importance of generating more high-quality functional annotations, 
as they offer biological information beyond non-functional depend-
ent annotations like MAF and LD. Furthermore, we demonstrated that 
using a unified computational framework to jointly model the GWAS 
and annotation data is more desirable than the stepwise approaches 
commonly used in the previous studies28,48. The results of this study 
are useful to inform the experimental design of leveraging functional 
annotations for prediction in future research.

We note several limitations in this study. First, although our 
method is scalable to analysis of whole-genome sequence data, we 

only analyzed imputed common SNPs that were functionally annotated 
due to limitations in the availability of whole-genome sequence data 
during the study. We investigated use of up to 10 million imputed SNPs 
with MAF > 0.01 but did not observe a significant improvement compar-
ing to the 7 million SNP set. A follow-up study with sequence variants is 
warranted to explore this further. Second, our low-rank model requires 
the GWAS summary data to match the SNPs used to generate the LD 
data; otherwise, eigen-decomposition on the LD matrices would need 
to be recomputed. An alternative approach is to impute the summary 
statistics for those ‘missing’ SNPs49 (Section 17 of the Supplementary 
Note). We found empirically that the loss of prediction accuracy was 
marginal unless the missing rate exceeded 30%. Third, although our 
method has improved robustness to LD and per-SNP sample size vari-
ation, it is still subject to other errors in the GWAS summary statistics, 
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such as genotyping errors and allelic mislabeling. Thus, applica-
tion of additional quality control on the summary statistics prior to 
the analysis may be necessary in some circumstances50. Fourth, for 
cross-ancestry prediction, there is possibility of further improvement 
in prediction accuracy by jointly modeling summary statistics from 
multiple populations, as done in PRS-CSx14. However, we leave such 
an extension of our method to a future project. Fifth, this study used 
general annotations curated by the BaselineLD model32, which does not 
include annotations from recent studies regarding cell-type specific 
epigenetic marks and chromatin states51–54. Incorporating annotations 
derived from the trait-relevant tissues or cell types, as inferred from 
GWAS data and single-cell omics data, is expected to generate more 
accurate predictors. As irrelevant annotations may slightly decrease 
in prediction accuracy when the GWAS power is relatively low (Sup-
plementary Fig. 8), we recommend utilizing biologically informative 
annotations, particularly for traits with limited power.

In conclusion, the method proposed in this study is a powerful 
approach to improve polygenic prediction in complex traits and dis-
eases. Our findings provide guidelines on how to best utilize functional 
annotation data for prediction and which functional categories are 
most useful for within European and cross-ancestry prediction. We 
anticipate further improved prediction accuracy in the future when the 
method is applied to whole-genome sequence data with high-quality 
trait-relevant annotations.
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Methods
Ethics approval
The University of Queensland Human Research Ethics Committee B 
(2011001173) provides approval for analysis of human genetic data 
used in this study on the high-performance cluster of the University 
of Queensland.

Summary-data-based low-rank model
Consider a general form of the summary-data-based model for fitting 
SNP joint effects:

b = Rβββ + εεε (1)

where b is the vector of GWAS marginal effect estimates (assuming the 
genotype matrix X has already been standardized with mean zero and 
variance one), R = 1

N
X′X  is the LD correlation matrix, N is the GWAS 

sample size, βββ is the vector of SNP joint effects, and εεε is the vector of 
residual terms with Var (εεε) = 1

N
Rσ2e. When the marginal effects are esti-

mated from GWAS using genotypes at 0/1/2 scale (b*), b can be esti-
mated using b*, standard error and GWAS sample size (Section 6 of the 
Supplementary Note).

Sparse LD matrices estimated from a reference sample are often 
used to improve computational feasibility, including banded28,36, 
shrunk34,55 and block-diagonal14,56 matrices. For our low-rank model, 
we use a block-diagonal LD matrix based on quasi-independent LD 
blocks found in the human genome35. For optimal performance, we 
merge small contiguous blocks into a single block with the minimum 
width of 4 cM, resulting in 591 merged blocks for the samples of Euro-
pean ancestry. For each block i, we perform eigen-decomposition on 
Ri (the subscript is ignored for simplicity in notation)

R = UΛΛΛU′,

where U is the matrix of eigenvectors and ΛΛΛ is the diagonal matrix of 
eigenvalues. By multiplying both sides of Equation 1 by ΛΛΛ−−−

111
222 U′′′, we have

w = Qβββ + ϵ (2)

where w===ΛΛΛ−−−
111
222 U′b is a linear combination of marginal SNP effect esti-

mates, Q === ΛΛΛ
111
222 U′ is the new coefficient matrix and the new residuals 

ϵ=== 1
N
ΛΛΛ−−−

111
222 U′X′e  are independently and identically distributed, that is, 

ϵ ∼ N (000, Iσ2ϵ ), making it straightforward to estimate the residual vari-
ance, thereby improving the model robustness (Section 3 of the Sup-
plementary Note). To account for high LD between SNPs and LD 
variations between GWAS and LD reference samples, we opt to include 
eigenvectors and eigenvalues for the top principal components (PCs) 
that collectively explain at least ρ proportion of the variance in LD. 
Assuming q top PCs are selected given a value of ρ, the dimension of w 
and Q is q × 1 and q × m, respectively, with m being the number of SNPs 
in the block. Because q is often much smaller than m, Equation 2 is a 
low-rank model and computationally more efficient than Eq. (1). We 
investigated the impact of ρ on the method and decided to use ρ = 99.5% 
as the default value with negligible loss in predictive performance 
(Supplementary Figs. 2 and 3; Section 9 of the Supplementary Note). 
However, the optimal value of ρ in real trait analysis would depend on 
the LD variation between GWAS and reference datasets. To enable an 
automated search for the best ρ for the trait, we performed pseudo 
validation based on the observed summary statistics, similar to the 
method used in Zhang et al.29, but requires the result of 
eigen-decomposition of LD matrix that has already been generated 
(Section 10 of the Supplementary Note).

SBayesRC
SBayesRC is a Bayesian method built on the low-rank model described 
above, assuming a multi-normal mixture distribution for SNP effects. 
Specifically, we assume

βj ∼
5
∑
k=1

πjkN (0, γkσ2g) ,

where σ2g  is the total SNP-based genetic variance estimated from the 
data and γ = [0, 0.001, 0.01, 0.1, 1]′% depict the scaling factors of five 
distributions as the mixture components, including a distribution of 
zeros and four normal distributions, where each SNP a priori explains 
0.001% to 1% of genetic variance. The parameter πjk  is the probability 
for the SNP effect to belong to the kth distribution.

In contrast to SBayesR34, which assumes the same πk  for all SNPs, 
here the probability of distribution membership πjk  is SNP-specific and 
depends on the annotations of each SNP. Let A be the matrix of annota-
tions with a dimension of the number of SNPs m by the number of 
annotations c. For each SNP, we model πjk  as

f (πjk) = μk +
c
∑
l=1

Ajlαkl (3)

where f (•) is a link function that maps the probability variable πjk  to 
the real line, μk is the intercept capturing the overall proportion of SNPs 
belonging to the kth distribution in the genome, Ajl is the value of anno-
tation l on SNP j (0 or 1 for binary annotations or standardized value 
with mean 0 and variance 1 for quantitative annotations), and αkl is the 
effect of annotation l on the membership probability to the kth distribu-
tion. This generalized linear model allows functional annotations to 
affect the probability of an SNP being causal (1 − πj1) and accommodates 
any distribution of the causal effect (by mixture of a finite number of 
normal distributions) given the cumulation of functional annotations, 
regardless of discrete or quantitative annotations, accounting for 
overlapping between annotations. Through estimation of αkl from the 
data, this computational framework provides a machinery to make 
inference on the functional genetic architecture of the trait, because 
f −1 (αkl) quantifies the deviation of the kth distribution membership 

probability, driven by annotation l, to the baseline model where all 
annotation values equal to zero, conditional on the presence of the 
other annotations. The estimates of α1l,… ,α5l altogether provide a more 
detailed description about functional architecture than the per-SNP 
heritability enrichment estimate for an annotation category (Section 7  
of the Supplementary Note and Supplementary Figs. 7 and 13). We 
assume a flat prior for μk  and a normal prior for αkl ∼ N(0,σ2αk

)  with 
σ2αk

∼ χ −2 (υα, τ2α), where υα = 4 and τ2α = 1.
For a mixture distribution of five components, there are 5 × (c + 1) 

annotation parameters to estimate from the data (including the inter-
cept). In addition, πjk  is subject to a constraint that ∑5

k=1πjk = 1 for any 
SNP, which makes the sampling scheme for αkl  not straightforward. 
Although the Metropolis–Hastings algorithm can be used to sample all 
ααα jointly to account for the dependence between elements of πππj, finding 
the optimal tuning parameters for the proposal distribution could be 
difficult and specific to the trait. To remove the dependence between 
probability parameters, we used an alternative parameterization for 
modeling membership probabilities and annotation effects. Let δj be 
the indicator for the mixture component membership for SNP j:

δj = kwithprobabilityπjk; k = 1 to 5.

We define a conditional probability that the SNP effect belongs 
to the kth distribution given that it has passed the bar for the (k − 1)th 
distribution as

pjk = Pr (δj ≥ k|δj ≥ k − 1) for k ≥ 2

such that πj1 = 1 − pj2, πj2 = (1 − pj3)pj2, πj3 = (1 − pj4)pj3pj2, πj4 = (1 − pj5)
pj4pj3pj2  and πj5 = pj5pj4pj3pj2 . We then apply the generalized linear 
model, Equation 3, to link pjk  with αααk. In this parameterization, all pjk  
are independent, which means that αααk can be sampled in parallel in each 
Markov chain Monte Carlo (MCMC) iteration, and αkl  can be sampled 
from its full conditional distribution using Gibbs sampling algorithm 
when the probit link function is chosen, namely, f (pjk) = Φ (pjk) where 

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-024-01704-y

the samples with the phenotypic value beyond the range of mean ± 5 
s.d. for the quantitative traits analyzed in this study (height, BMI and 
diastolic blood pressure). We further removed the related samples and 
retained 11,842 unrelated samples for out-of-sample prediction. For 
type 2 diabetes, we had 179 cases in the retained sample.

FinnGen data
We accessed publicly available summary statistics from FinnGen38, 
which had a sample size of 342,499. We selected five traits (Supplemen-
tary Table 7) that had a large number of cases in both UKB and FinnGen 
(each >1,000) and similar trait definition. As the LD reference was not 
publicly available from the FinnGen, we used the LD reference from 
the UKB. We kept the SNPs common in both datasets and matched the 
alleles. We further removed SNPs with a difference in allele frequency 
between GWAS and LD reference larger than 0.2. The FinnGen data was 
used as the training dataset in the cross-biobank prediction analysis, 
where the validation dataset was the UKB sample of European ancestry.

Public data from GWAS meta-analysis
We trained the prediction models using publicly available summary 
data from published GWAS meta-analysis for height40 (n = 704,823), 
body mass index (BMI)40 (n = 688,633), diastolic blood pressure (DBP)64 
(n = 756,595) and type 2 diabetes (T2D)65 (ncase = 62,693). We kept the 
same variant set in the UKB and the LifeLines and extracted the SNPs 
with per-SNP sample size within mean ± 3 s.d. and a difference in allele 
frequency between GWAS and LD reference samples smaller than 0.2. 
The summary data were further processed using DENTIST50 to filter 
the SNPs with potential errors, and SNPs with PDENTIST < 5 × 10-8 and 
PGWAS > 0.01 were removed. Finally, all the summary data were imputed 
to the same variant panel for further analysis. These summary statis-
tics were used as the training dataset in the out-of-sample prediction 
analysis, where the validation dataset was the LifeLines cohort.

Cross-validation in the UKB
We performed ten-fold cross-validation in the UKB with 341,809 unre-
lated individuals of European ancestry. We partitioned the total sample 
into ten equal-sized disjoint subsamples. In each fold, one subsample 
was retained as the validation set, whereas the other nine subsamples 
were used as training data. This process was repeated ten times. Sum-
mary statistics for each fold were generated by PLINK2 software60 with 
sex, age and first 10 PCs as covariates. Linear regression was used for 
continuous traits, and logistic regression was used for binary traits. 
The cross-validation was performed for all independent traits using the 
following methods: clumping and P-value thresholding (C + PT) imple-
mented in PLINK 1.9 software, SBayesR34, SBayesRC, LDpred2 (ref. 36), 
MegaPRS29 and LDpred-funct28. For all methods, a random sample of 
20,000 unrelated UKB individuals of European ancestry was used as the 
LD reference. For SBayesR and LDpred2, only 1 M HapMap3 common 
SNPs were used for the ease of computation. For C + PT, LDpred-funct, 
MegaPRS and SBayesRC, both 1 M and 7 M common SNP sets were used 
and incorporated 96 functional annotations from BaseLineLD model 
2.2 (ref. 62) when possible. The specific settings for each method are 
described in Section 18 of the Supplementary Note.

For each fold, PGS was calculated using genotypes from the inde-
pendent validation set. The prediction R2 was obtained from linear 
regression of phenotypes on the PGS for quantitative traits, and McFad-
den’s pseudo-R2 from logistic regression was used for binary traits. The 
final R2 of PGS was calculated as the difference between the R2 from the 
full model (PGS + sex + age + 10 PCs) and the null model (sex + age + 10 

PCs). The relative prediction accuracy was then computed as 
R2x−R2SBayesR
R2SBayesR

, 

where x is the prediction method being compared, and R2 is the predic-
tion accuracy. The mean relative prediction accuracy was reported 
across ten folds. For binary traits, additional statistics such as the area 
under the receiver-operating characteristic curve and the odds ratio 

Φ (•) is the cumulative density function of the standard normal distribu-
tion. More details about the alternative parameterization and the 
MCMC sampling scheme are described in Section 8 of the Supplemen-
tary Note. In all SBayesRC analyses in this study, we ran MCMC for 3,000 
iterations with the first 1,000 iterations as burn-in, and the rest were 
used for posterior inference. Running a longer chain did not change 
the prediction accuracy in the simulation and real trait analysis.

UKB
The UK Biobank (UKB) is a large volunteer cohort with sample size of 
more than 500,000 individuals from the United Kingdom57. It contains 
extensive phenotypic and genotypic information from the partici-
pants, and all participants signed informed consent with the protocol’s 
approval from the National Research Ethics Service Committee. The 
genotype data was generated using two array chips, the Applied Biosys-
tems UKB Axiom Array and the Applied Biosystems UK BiLEVE Axiom 
Array. SNP imputation was conducted by the UKB analysis team using 
reference panels from the Haplotype Reference Consortium58 and the 
UK10K project59. We called the imputed data to BED format by PLINK60 
with best-guest calling, kept SNPs with MAF ≥ 0.01, Hardy-Weinberg 
equilibrium test P ≥ 10-10, and imputation info score ≥ 0.6 in the samples 
of European ancestry. We used the GCTA software61 to remove the cryp-
tic relatedness in the UKB based on the HapMap3 SNPs in each popula-
tion (cutoff value of 0.05), keeping only unrelated samples. We further 
removed samples with mismatched sex information in phenotype and 
genotype, and samples that withdrew participation. The final dataset 
contained four ancestries: European (EUR, n = 347,800), East Asian (EAS, 
n = 2,252), South Asian (SAS, n = 9,436) and African (AFR, n = 7,006).

We matched the SNPs between UKB, the annotation baseline 
model BaselineLD v2.2 (ref. 62) and the LifeLines cohort37, resulting in 
7,356,518 common SNPs and 1,154,522 HapMap3 SNPs. For a secondary 
analysis, we included up to 9,705,522 imputed common SNPs with their 
annotation data extracted from PolyPred-S15, which used BaseLineLF 
(an extended version of BaseLineLD v2.2 to include annotations at the 
low-frequency variants). We randomly sampled 5,991 EUR samples as 
the tuning sample for C + PT60 and LDpred2 (ref. 36) and performed 
ten-fold cross-validation in the remaining samples (n = 341,809). We 
extracted 53 traits with relatively large sample size (n > 100,000) from 
all four ancestries. The phenotypes with continuous values were fil-
tered within the range of mean ± 7 standard deviation (s.d.) and then 
rank-based inverse-normal transformed within each ancestry and sex 
group. To construct a set of independent traits, we pruned these 53 
traits with pair-wise phenotypic correlation |r | < 0.3, resulting in 31 
independent traits for the prediction analysis, including 11 binary traits 
and 20 continuous traits. Three binary traits were further removed due 
to very low average prediction accuracy (mean R2 < 0.01 among all 
methods in the European cross-validation). The final set of 50 traits 
included in this study, of which 28 were approximately independent, 
are shown in Supplementary Table 1.

1000 Genomes and UK10K data
In addition to the UKB, we used two other whole-genome sequence 
datasets for LD reference. We obtained genotype data from the 1000 
Genomes Project (phase 3)63 and kept samples labeled as ‘GBR’, ‘CEU’, 
‘TSI’, ‘IBS’ and ‘FIN’ as samples of European ancestry. After extracting 
the same SNP set (7,356,518 SNPs) and removing the cryptic relatedness 
as above, we retained 494 unrelated samples. We also used the genotype 
data from the UK10K project59, which consisted of 3,781 individuals 
and 45.5 million genetic variants. After extracting the same SNP set 
and conducting QC as above, we retained 3,642 unrelated samples.

LifeLines cohort
From the LifeLines cohort37, we used 36,305 samples and 17 million SNPs 
after imputation and QC (imputation info score > 0.3, MAF > 0.0001 and 
HWE > 10−6). We kept the samples with age >20 years old and removed 
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per s.d. of PGS from the logistic regression conditional on sex, age and 
10 PCs were computed (Supplementary Tables 3 and 8). Overall, the 
area under the receiver-operating characteristic curve and odds ratio 
statistics yielded consistent results with the pseudo-R2 for measuring 
prediction accuracy in diseases.

Cross-ancestry prediction
We performed two sets of cross-ancestry prediction analyses. In the 
first set of analyses, we used the summary statistics from all European 
(EUR) unrelated samples as the training data (sample sizes shown 
in Supplement Table 1). We excluded 500 tuning samples from each 
non-EUR ancestry for methods that require a tuning step, and these 
samples were not used in the PGS validation for all methods. We ran 
SBayesR, SBayesRC and MegaPRS using the summary statistics of 
UKB EUR, and then applied the estimated SNP effects directly to the 
genotypes of individual of SAS, EAS and AFR ancestries in the UKB. We 
ran PolyPred-S following its pipeline and optimized the SNP weights 
with tuning samples from the target population. In this analysis, we 
calculated two types of relative prediction accuracy for each trait. In 
the first type of relative prediction accuracy, we used the prediction 
accuracy of SBayesR with 1 M HapMap3 SNPs in EUR as the benchmark. 
In the second type of relative prediction accuracy, the benchmark was 
the prediction accuracy of SBayesR trained in EUR and validated in each 
of the other ancestries.

In the second set of prediction analyses, we used two sets of sum-
mary statistics, one from the UKB EUR and the other from a GWAS study 
with the same ancestry of the validation population. We ran PRS-CSx 
with GWAS summary statistics from the UKB EUR and from BBJ42 or 
Population Architecture using Genomics and Epidemiology (PAGE)43 
datasets. Then we estimated the optimal weights to combine the two 
sets of PGS using the target tuning samples from the UKB. Follow-
ing a similar strategy, we extended SBayesRC and MegaPRS to utilize 
GWAS data from multiple populations by running the method in each 
population separately and tuned the weights in the target population 
(SBayesRC-multi and MegaPRS-multi). The specific settings for dif-
ferent methods used in this analysis are described in Section 19 of the 
Supplementary Note.

Detection of interaction between SNP density and annotation 
information
To investigate the interaction between SNP density and annotation 
information, we first quantified the improvement in prediction accu-
racy due to the use of annotation information by calculating the relative 
prediction accuracy from the full model that includes annotations to 

the basic model that excludes annotations (δ2 = R2Full−R
2
Basic

R2Basic
) at each SNP 

density level. Then, we evaluated the interaction between SNP density 
and annotation information by comparing δ2 between 7 M imputed 
(δ27M) and 1 M HapMap3 SNPs (δ21M). If the benefit of including annota-
tions is independent of SNP density (that is, no interactive effect 
between SNP density and annotation information), δ27M  is expected to 
be equal to δ21M  (that is, equal amount of improvement in prediction 
accuracy regardless of whether 7 M or 1 M SNPs are used). To formally 
test this interaction effect, we fit the indicator variables for SNP density 
and annotation data, as well as their product (that is, interaction term), 
to the prediction accuracy for each trait. To account for the variability 
in prediction accuracy between traits because of trait heritability, the 
prediction R2 from different scenarios (involving different SNP density 
levels and the use of annotations) for each trait was scaled relative  
to the prediction R2 obtained using HapMap3 SNPs without 
annotations.

Simulations
We performed two sets of simulations to assess the performance of our 
method. The first set of simulations was performed using 1 M HapMap3 

SNPs for model calibration and robustness assessment. In this set, we 
randomly selected 10,000 variants from the whole genome as causal 
variants. Among these, 6,000 variants had small effects sampled from 
N(0, 0.01), 30 variants had medium effects sampled from N(0, 0.1), 
and 10 variants had large effects sampled from N(0, 1). To introduce 
unequal per-SNP sample sizes, we divided the training sample into 
two equal-sized cohorts and generated two sets of summary statis-
tics. We then randomly sampled a proportion of SNPs to conduct a 
meta-analysis using the inverse variance method, simulating scenarios 
where only a subset of SNPs was in common between cohorts for the 
meta-analysis. The proportion of overlapping SNPs between the two 
cohorts was set to be 100%, 90%, 50% or 0%. In the second set of simula-
tions, we used 7 M imputed SNPs and incorporated annotation data. 
The causal effects were sampled following the SBayesRC model, where 
we used the annotation effects estimated from height in real data 
analysis and calculated the per-SNP probability of membership in each 
mixture component by probit link function, and then sampled the SNP 
effect from that distribution. Following Gazal et al.62, we used 21 major 
annotations from the BaselineLD model. To evaluate the impact of dif-
ferent data-generative models, we also simulated data under the model 
of S-LDSC32 (or MegaPRS without LD weighting), where the variance 
of SNP effect distribution is a function of annotations and their herit-
ability enrichment. The details of this alternative model are provided 
in Section 13 of the Supplementary Note. In all simulations, normally 
distributed residuals were added to the genetic values to give a trait 
heritability of either 0.1 or 0.5. We repeated each simulation scenario 
ten times, with ten sets of different causal variants.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The UKB data, UK10K and LifeLines are available through formal appli-
cation to the UKB (http://www.ukbiobank.ac.uk), UK10K (https://www.
uk10k.org/data_access.html) and LifeLines (https://www.lifelines. 
nl/researcher/how-to-apply). The summary data and PGS weights 
from SBayesRC for the 28 approximately independent UKB traits  
can be found at https://cnsgenomics.com/software/gctb/#Download. 
All the other datasets used in this study are available in the public  
domain, including the 1000 Genomes Project (https://www. 
internationalgenome.org/data/), FinnGen (https://www.finngen.fi/ 
en/access_results; version R8), BBJ (https://biobankjp.org/en/) and 
PAGE (https://www.ebi.ac.uk/gwas/publications/31217584).

Code availability
SBayesRC is implemented in a R package at https://github.com/ 
zhilizheng/SBayesRC and a publicly available software GCTB at 
https://cnsgenomics.com/software/gctb/#Download. A combined 
source code (both R package and GCTB) is also available at https://doi.
org/10.5281/zenodo.10416921.
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Extended Data Fig. 1 | Schematic overview of SBayesRC. a, A resource-
efficient low-rank model that simultaneously fits sequence-level SNPs with high 
computation efficiency and has independent residuals. Solid blue box denotes 

a dense matrix or vector. b, A hierarchical multicomponent mixture prior for 
SNP effects that incorporates functional annotation data and allows for any 
distribution of SNP effects in each annotation.
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Extended Data Fig. 2 | Robustness of SBayesRC to the choice of LD reference 
in simulation with HapMap3 SNP panel. LD reference datasets included: 
ukb20k, 20,000 random sample from the UKB of European ancestry (EUR); 
ukb10k, 10,000 random sample from UKB EUR; ukb4k, 4,000 random sample 
from UKB EUR; uk10k, 3,642 unrelated samples from the UK10K dataset; ukb0.5k, 

500 random sample from UKB EUR; 1kg0.5k, 494 unrelated samples from 
1000GP EUR; afr4k, 4,000 random samples from the UKB of African ancestry 
(AFR). Each box plot shows the spread of data in 10 independent simulations; the 
line is the middle (median), the box covers the middle half (IQR), the whiskers 
extend to 1.5 times the IQR, and dots show outliers.
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Extended Data Fig. 3 | Parameter estimation from SBayesRC and LDpred2 
using summary statistics from a meta-analysis of two simulated cohorts. The 
proportion of overlapped SNPs between the two cohorts varied from 100 to 0. 
When the proportion of overlapping is less than 100, there existed unequal per-
SNP sample sizes in the GWAS summary data. a,b, SBayesRC gave approximately 
unbiased estimates for SNP-based heritability (true value = 0.5) and polygenicity 

(true value = 0.01), whereas these estimates in LDpred2 were largely biased.  
c, The model misspecification affected the residual variance in SBayesRC, which 
is a nuisance parameter in the model. Each box plot shows the spread of data 
in 10 independent simulations; the line is the middle (median), the box covers 
the middle half (IQR), the whiskers extend to 1.5 times the IQR, and dots show 
outliers. The dashed line indicates the true value in simulation.
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Extended Data Fig. 4 | SNP-based heritability estimation from different 
methods and SNP panels for simulated traits. Plots show a simulated trait 
with heritability of 0.1 (bottom) or 0.5 (top). The dashed line indicates the true 

value in the simulation. Each box plot shows the spread of data in 10 independent 
simulations; the line is the middle (median), the box covers the middle half (IQR), 
the whiskers extend to 1.5 times the IQR, and dots show outliers.
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Extended Data Fig. 5 | Mean regression slope from different methods for 28 
independent traits across 10-fold cross-validations in the UKB unrelated 
sample of European ancestry. Note that 8 traits in LDpred-funct and MegaPRS 
had a large regression slope (>2) and hence were removed from the LDpred-funct 
and MegaPRS column for better visibility of the other methods. The dashed line 

indicates the regression slope of 1. Each box plot shows the spread of data in 28 
independent traits; the line is the middle (median), the box covers the middle half 
(IQR), the whiskers extend to 1.5 times the IQR, and dots show outliers. The values 
are shown in Supplementary Table 3.
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Extended Data Fig. 6 | Relative prediction accuracy of different methods to 
SBayesR for 50 UKB traits. Plots shows relative prediction accuracy of different 
methods to SBayesR using 1 M HapMap3 SNPs, averaged from 10-fold cross-
validation for 50 UKB traits. Except for LDpred2 and SBayesR (HapMap3 SNPs 
without annotation), all other methods used imputed 7 M SNPs with functional 

annotations. The dashed line indicates the improved prediction accuracy equals 
to 0 (prediction accuracy equals to SBayesR using 1 M HapMap3 SNPs). Each box 
plot shows the spread of data in 50 traits; the line is the middle (median), the box 
covers the middle half (IQR), the whiskers extend to 1.5 times the IQR, and dots 
show outliers.
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Extended Data Fig. 7 | The improvement in prediction accuracy of SBayesRC 
relative to MegaPRS when an external LD reference independent of the GWAS 
sample was used in the analysis. The improved prediction accuracy was 

calculated as (
R2SBayesRC−R2MegaPRS

R2MegaPRS
%). FinnGen (n = 5 traits): GWAS summary data 

from FinnGen as training, a random sample of UKB UKB as LD reference, and the 

full UKB EUR as validation; BBJ (n = 8 traits): GWAS summary data from BBJ as 
training, UKB EAS as LD reference, and UKB EAS as validation; PAGE (n = 8 traits): 
GWAS summary data from PAGE (mixed AFR ancestry) as training, UKB AFR as LD 
reference, and UKB AFR as validation. Each box plot shows the spread of data; the 
line is the middle (median), the box covers the middle half (IQR), the whiskers 
extend to 1.5 times the IQR, and dots show outliers.
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Extended Data Fig. 8 | Interaction effects in all populations. Comparison 
between 1 M HapMap3 SNPs and 7 M imputed SNPs for the improvement (%) 
in prediction accuracy for SBayesRC using annotations relative to SBayesRC 
without annotations. Results are from the 10-fold cross-validation in different 

ancestries in the UKB. Dots show the mean relative prediction accuracy and bars 
show the standard error estimated from the cross-validation. The black solid line 
indicates y = x.
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Extended Data Fig. 9 | Prediction accuracy of SBayesRC. Prediction accuracy 
of SBayesR (without annotation) or SBayesRC (with annotations) using 1 M, 7 M 
or 10 M common SNPs for 7 UKB traits. Each box shows the results of 10-fold 
cross-validation in the unrelated European sample. Trait acronym: BMI, body 
mass index; BW, birth weight; EA, educational attainment; hBMD, heel bone 

mineral density; HT, height; NeuC, neutrophile cell count; VitD, vitamin D level. 
Each box plot shows the spread of data in 10 cross-validation for that trait; the line 
is the middle (median), the box covers the middle half (IQR), the whiskers extend 
to 1.5 times the IQR, and dots show outliers.
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Extended Data Table 1 | Summary of prediction methods used in this study
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