Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RNA-binding proteins control gene expression and cell fate in the immune system

Abstract

RNA-binding proteins (RBPs) are essential for the development and function of the immune system. They interact dynamically with RNA to control its biogenesis and turnover by transcription-dependent and transcription-independent mechanisms. In this Review, we discuss the molecular mechanisms by which RBPs allow gene expression changes to occur at different speeds and to varying degrees, and which RBPs regulate the diversity of the transcriptome and proteome. These proteins are nodes for integration of transcriptional and signaling networks and are intimately linked to intermediary metabolism. They are essential components of regulatory feedback mechanisms that maintain immune tolerance and limit inflammation. The role of RBPs in malignancy and autoimmunity has led to their emergence as targets for the development of new therapeutic modalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RBPs control the life of mRNA.

Marina Spence/Springer Nature.

Fig. 2: RNA granules are assembled in lymphocytes.

Marina Spence/Springer Nature.

Fig. 3: ZFP36 regulation of immune-cell activation.

Marina Spence/Springer Nature.

Fig. 4: RBPs mediate TORC-dependent regulation of cell metabolism.

Marina Spence/Springer Nature.

Similar content being viewed by others

References

  1. Floor, S. N. & Doudna, J. A. Tunable protein synthesis by transcript isoforms in human cells. eLife 5, e10921 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hombrink, P. et al. Programs for the persistence, vigilance and control of human CD8+ lung-resident memory T cells. Nat. Immunol. 17, 1467–1478 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Salerno, F., Paolini, N. A., Stark, R., von Lindern, M. & Wolkers, M. C. Distinct PKC-mediated posttranscriptional events set cytokine production kinetics in CD8+ T cells. Proc. Natl. Acad. Sci. USA 159, 201704227 (2017).

    Google Scholar 

  4. Turner, M., Galloway, A. & Vigorito, E. Noncoding RNA and its associated proteins as regulatory elements of the immune system. Nat. Immunol. 15, 484–491 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Hudson, W. H. & Ortlund, E. A. The structure, function and evolution of proteins that bind DNA and RNA. Nat. Rev. Mol. Cell Biol. 15, 749–760 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, Y. G., Satpathy, A. T. & Chang, H. Y. Gene regulation in the immune system by long noncoding RNAs. Nat. Immunol. 18, 962–972 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Kafasla, P., Skliris, A. & Kontoyiannis, D. L. Post-transcriptional coordination of immunological responses by RNA-binding proteins. Nat. Immunol. 15, 492–502 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Gerstberger, S., Hafner, M. & Tuschl, T. A census of human RNA-binding proteins. Nat. Rev. Genet. 15, 829–845 (2014). A compendium of RNA-binding proteins in the mammalian genome, indicating their structural and functional diversity.

    Article  CAS  PubMed  Google Scholar 

  9. Castello, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Brannan, K. W. et al. SONAR discovers RNA-binding proteins from analysis of large-scale protein-protein interactomes. Mol. Cell 64, 282–293 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He, C. et al. High-resolution mapping of RNA-binding regions in the nuclear proteome of embryonic stem cells. Mol. Cell 64, 416–430 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liepelt, A. et al. Identification of RNA-binding proteins in macrophages by interactome capture. Mol. Cell. Proteomics 15, 2699–2714 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chang, X., Li, B. & Rao, A. RNA-binding protein hnRNPLL regulates mRNA splicing and stability during B-cell to plasma-cell differentiation. Proc. Natl. Acad. Sci. USA 112, E1888–E1897 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang, H., Duckett, C. S. & Lindsten, T. iPABP, an inducible poly(A)-binding protein detected in activated human T cells. Mol. Cell. Biol. 15, 6770–6776 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Techasintana, P. et al. The RNA-binding protein HuR posttranscriptionally regulates IL-2 homeostasis and CD4+ Th2 differentiation. ImmunoHorizons 1, 109–123 (2017).

    Article  Google Scholar 

  16. Olejniczak, S. H. et al. Coordinated regulation of Cap-dependent translation and microRNA function by convergent signaling pathways. Mol. Cell. Biol. 36, 2360–2373 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mallory, M. J. et al. Induced transcription and stability of CELF2 mRNA drives widespread alternative splicing during T-cell signaling. Proc. Natl. Acad. Sci. USA 112, E2139–E2148 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tzachanis, D. et al. Tob is a negative regulator of activation that is expressed in anergic and quiescent T cells. Nat. Immunol. 2, 1174–1182 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. da Glória, V. G. et al. T cell activation regulates CD6 alternative splicing by transcription dynamics and SRSF1. J. Immunol. 193, 391–399 (2014).

    Article  PubMed  CAS  Google Scholar 

  20. Jeltsch, K. M. et al. Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote TH17 differentiation. Nat. Immunol. 15, 1079–1089 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Diaz-Muñoz, M. D. et al. The RNA-binding protein HuR is essential for the B cell antibody response. Nat. Immunol. 16, 415–425 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Van Nostrand, E.L. et al. A large-scale binding and functional map of human RNA binding proteins. Preprint available at https://www.biorxiv.org/content/early/2017/08/23/179648 (2017).

  23. Cieśla, J. Metabolic enzymes that bind RNA: yet another level of cellular regulatory network? Acta Biochim. Pol. 53, 11–32 (2006).

    PubMed  Google Scholar 

  24. White, M. R. & Garcin, E. D. The sweet side of RNA regulation: glyceraldehyde-3-phosphate dehydrogenase as a noncanonical RNA-binding protein. Wiley Interdiscip. Rev. RNA 7, 53–70 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Jia, J. et al. Protection of extraribosomal RPL13a by GAPDH and dysregulation by S-nitrosylation. Mol. Cell 47, 656–663 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chang, C.-H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Peng, M. et al. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 354, 481–484 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Salerno, F., Guislain, A., Cansever, D. & Wolkers, M. C. TLR-mediated innate production of IFN-γ by CD8+ T cells is independent of glycolysis. J. Immunol. 196, 3695–3705 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Hodge, D. L. et al. IFN-γ AU-rich element removal promotes chronic IFN-γ expression and autoimmunity in mice. J. Autoimmun. 53, 33–45 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sakai, S. et al. CD4 T-cell-derived IFN-γ plays a minimal role in control of pulmonary Mycobacterium tuberculosis infection and must be actively repressed by PD-1 to prevent lethal disease. PLoS Pathog. 12, e1005667 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Panas, M. D., Ivanov, P. & Anderson, P. Mechanistic insights into mammalian stress granule dynamics. J. Cell Biol. 215, 313–323 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scheu, S. et al. Activation of the integrated stress response during T helper cell differentiation. Nat. Immunol. 7, 644–651 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Díaz-Muñoz, M. D. et al. Tia1 dependent regulation of mRNA subcellular location and translation controls p53 expression in B cells. Nat. Commun. 8, 530 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Antonicka, H. & Shoubridge, E. A. Mitochondrial RNA granules are centers for posttranscriptional RNA processing and ribosome biogenesis. Cell Rep 10, 920–932 (2015).

    Article  CAS  Google Scholar 

  35. Hubstenberger, A. et al. P-body purification reveals the condensation of repressed mRNA regulons. Mol. Cell 68, 144–157 (2017). This study used flow cytometry to isolate processing bodies and analyze their makeup by proteomics.

    Article  CAS  PubMed  Google Scholar 

  36. Simsek, D. et al. The mammalian ribo-interactome reveals ribosome functional diversity and heterogeneity. Cell 169, 1051–1065 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Horvilleur, E. et al. A role for eukaryotic initiation factor 4B overexpression in the pathogenesis of diffuse large B-cell lymphoma. Leukemia 28, 1092–1102 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Shi, Z. et al. Heterogeneous ribosomes preferentially translate distinct subpools of mRNAs genome-wide. Mol. Cell 67, 71–83 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Zinder, J. C. & Lima, C. D. Targeting RNA for processing or destruction by the eukaryotic RNA exosome and its cofactors. Genes Dev. 31, 88–100 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pefanis, E. & Basu, U. RNA exosome regulates AID DNA mutator activity in the B cell genome. Adv. Immunol 127, 257–308 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Laffleur, B., Basu, U. & Lim, J. RNA exosome and non-coding RNA-coupled mechanisms in AID-mediated genomic alterations. J. Mol. Biol. 429, 3230–3241 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Kawaguchi, Y. et al. SRSF1-3 contributes to diversification of the immunoglobulin variable region gene by promoting accumulation of AID in the nucleus. Biochem. Biophys. Res. Commun. 485, 261–266 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Collart, M. A. The Ccr4-Not complex is a key regulator of eukaryotic gene expression. Wiley Interdiscip. Rev. RNA 7, 438–454 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Treiber, T. et al. A compendium of RNA-binding proteins that regulate microRNA biogenesis. Mol. Cell 66, 270–284 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Batra, R. et al. RNA-binding protein CPEB1 remodels host and viral RNA landscapes. Nat. Struct. Mol. Biol. 23, 1101–1110 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ivshina, M., Alexandrov, I. M., Vertii, A., Doxsey, S. & Richter, J. D. CPEB regulation of TAK1 synthesis mediates cytokine production and the inflammatory immune response. Mol. Cell. Biol. 35, 610–618 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Shin, J., Paek, K. Y., Ivshina, M., Stackpole, E. E. & Richter, J. D. Essential role for non-canonical poly(A) polymerase GLD4 in cytoplasmic polyadenylation and carbohydrate metabolism. Nucleic Acids Res 45, 6793–6804 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mayr, C. Regulation by 3′-untranslated regions. Annu. Rev. Genet. 51, 171–194 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Beisang, D., Reilly, C. & Bohjanen, P. R. Alternative polyadenylation regulates CELF1/CUGBP1 target transcripts following T cell activation. Gene 550, 93–100 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gruber, A. R. et al. Global 3′ UTR shortening has a limited effect on protein abundance in proliferating T cells. Nat. Commun. 5, 5465 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Berkovits, B. D. & Mayr, C. Alternative 3′ UTRs act as scaffolds to regulate membrane protein localization. Nature 522, 363–367 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lim, J. et al. Uridylation by TUT4 and TUT7 marks mRNA for degradation. Cell 159, 1365–1376 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gutiérrez-Vázquez, C. et al. 3′ uridylation controls mature microRNA turnover during CD4 T-cell activation. RNA 23, 882–891 (2017).

    Article  PubMed  CAS  Google Scholar 

  54. Kozlowski, E. et al. The RNA uridyltransferase Zcchc6 is expressed in macrophages and impacts innate immune responses. PLoS One 12, e0179797 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Morgan, M. et al. mRNA 3′ uridylation and poly(A) tail length sculpt the mammalian maternal transcriptome. Nature 548, 347–351 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Elbarbary, R. A. et al. Tudor-SN-mediated endonucleolytic decay of human cell microRNAs promotes G1/S phase transition. Science 356, 859–862 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Roignant, J.-Y. & Soller, M. m6A in mRNA: an ancient mechanism for fine-tuning gene expression. Trends Genet. 33, 380–390 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Vu, L. P. et al. The N 6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat. Med 23, 1369–1376 (2017).

    CAS  PubMed  Google Scholar 

  59. Li, H.-B. et al. m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature 548, 338–342 (2017). References 58 and 59 offer clear demonstrations of roles of RNA methylation in immune cell development and function.

    Article  CAS  PubMed  Google Scholar 

  60. Schaub, A. & Glasmacher, E. Splicing in immune cells—mechanistic insights and emerging topics. Int. Immunol. 29, 173–181 (2017).

    Article  PubMed  CAS  Google Scholar 

  61. Kelemen, O. et al. Function of alternative splicing. Gene 514, 1–30 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Shukla, S. et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479, 74–79 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Wong, J. J.-L. et al. Intron retention is regulated by altered MeCP2-mediated splicing factor recruitment. Nat. Commun. 8, 15134 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Marina, R. J. et al. TET-catalyzed oxidation of intragenic 5-methylcytosine regulates CTCF-dependent alternative splicing. EMBO J. 35, 335–355 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Sharma, S. et al. Acetylation-dependent control of global poly(A) RNA degradation by CBP/p300 and HDAC1/2. Mol. Cell 63, 927–938 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Movassat, M. et al. Coupling between alternative polyadenylation and alternative splicing is limited to terminal introns. RNA Biol. 13, 646–655 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Enders, A. et al. Zinc-finger protein ZFP318 is essential for expression of IgD, the alternatively spliced Igh product made by mature B lymphocytes. Proc. Natl. Acad. Sci. USA 111, 4513–4518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pioli, P. D., Debnath, I., Weis, J. J. & Weis, J. H. Zfp318 regulates IgD expression by abrogating transcription termination within the Ighm/Ighd locus. J. Immunol. 193, 2546–2553 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Haneklaus, M., O’Neil, J. D., Clark, A. R., Masters, S. L. & O’Neill, L. A. J. The RNA-binding protein Tristetraprolin (TTP) is a critical negative regulator of the NLRP3 inflammasome. J. Biol. Chem. 292, 6869–6881 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Kurosaki, T. & Maquat, L. E. Nonsense-mediated mRNA decay in humans at a glance. J. Cell Sci. 129, 461–467 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Middleton, R. et al. IRFinder: assessing the impact of intron retention on mammalian gene expression. Genome Biol. 18, 51 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ni, T. et al. Global intron retention mediated gene regulation during CD4+ T cell activation. Nucleic Acids Res. 44, 6817–6829 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cho, V. et al. The RNA-binding protein hnRNPLL induces a T cell alternative splicing program delineated by differential intron retention in polyadenylated RNA. Genome Biol. 15, R26 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Monzon-Casanova, E. et al. The RNA-binding protein PTBP1 is necessary for B cell selection in germinal center. Nat. Immunol. (in the press).

  75. Wong, J. J.-L. et al. Orchestrated intron retention regulates normal granulocyte differentiation. Cell 154, 583–595 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Rentas, S. et al. Musashi-2 attenuates AHR signalling to expand human haematopoietic stem cells. Nature 532, 508–511 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Stumpo, D. J. et al. Targeted disruption of Zfp36l2, encoding a CCCH tandem zinc finger RNA-binding protein, results in defective hematopoiesis. Blood 114, 2401–2410 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fang, J. et al. Ubiquitination of hnRNPA1 by TRAF6 links chronic innate immune signaling with myelodysplasia. Nat. Immunol. 18, 236–245 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Kristiansen, T. A. et al. Cellular barcoding links B-1a B cell potential to a fetal hematopoietic stem cell state at the single-cell level. Immunity 45, 346–357 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Zhou, Y. et al. Lin28b promotes fetal B lymphopoiesis through the transcription factor Arid3a. J. Exp. Med. 212, 569–580 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tijchon, E. et al. Tumor suppressors BTG1 and BTG2 regulate early mouse B-cell development. Haematologica 101, e272–e276 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Dolezal, E. et al. The BTG2-PRMT1 module limits pre-B cell expansion by regulating the CDK4-Cyclin-D3 complex. Nat. Immunol. 18, 911–920 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Inoue, T. et al. CNOT3 contributes to early B cell development by controlling Igh rearrangement and p53 mRNA stability. J. Exp. Med. 212, 1465–1479 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yang, C.-Y. et al. Interaction of CCR4-NOT with EBF1 regulates gene-specific transcription and mRNA stability in B lymphopoiesis. Genes Dev. 30, 2310–2324 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Galloway, A. et al. RNA-binding proteins ZFP36L1 and ZFP36L2 promote cell quiescence. Science 352, 453–459 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Vogel, K. U., Bell, L. S., Galloway, A., Ahlfors, H. & Turner, M. The RNA-binding proteins Zfp36l1 and Zfp36l2 enforce the thymic β-selection checkpoint by limiting DNA damage response signaling and cell cycle progression. J. Immunol. 197, 2673–2685 (2016). References 85 and 86 uncover a conserved regulation of quiescence through suppression of G1-S-phase progression factors by the ZFP36l1 and ZFP36l2 RNA-binding proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Galloway, A. & Turner, M. Cell cycle RNA regulons coordinating early lymphocyte development. Wiley Interdiscip. Rev. RNA 8, e1419 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  88. DeMicco, A. et al. Lymphocyte lineage-specific and developmental stage specific mechanisms suppress cyclin D3 expression in response to DNA double strand breaks. Cell Cycle 15, 2882–2894 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fu, M. & Blackshear, P. J. RNA-binding proteins in immune regulation: a focus on CCCH zinc finger proteins. Nat. Rev. Immunol. 17, 130–143 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Maeda, K. & Akira, S. Regulation of mRNA stability by CCCH-type zinc-finger proteins in immune cells. Int. Immunol. 29, 149–155 (2017).

    Article  PubMed  CAS  Google Scholar 

  91. Mino, T. et al. Regnase-1 and Roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell 161, 1058–1073 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Wawro, M., Kochan, J., Krzanik, S., Jura, J. & Kasza, A. Intact NYN/PIN-like domain is crucial for the degradation of inflammation-related transcripts by ZC3H12D. J. Cell. Biochem. 118, 487–498 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Kapoor, N. et al. Transcription factors STAT6 and KLF4 implement macrophage polarization via the dual catalytic powers of MCPIP. J. Immunol. 194, 6011–6023 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Garg, A. V. et al. MCPIP1 endoribonuclease activity negatively regulates interleukin-17-mediated signaling and inflammation. Immunity 43, 475–487 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Monin, L. et al. MCPIP1/Regnase-1 restricts IL-17A- and IL-17C-dependent skin inflammation. J. Immunol. 198, 767–775 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Ebner, F. et al. The RNA-binding protein tristetraprolin schedules apoptosis of pathogen-engaged neutrophils during bacterial infection. J. Clin. Invest. 127, 2051–2065 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Andrianne, M. et al. Tristetraprolin expression by keratinocytes controls local and systemic inflammation. JCI Insight 2, 92979 (2017).

    Article  PubMed  Google Scholar 

  98. Tarling, E. J. et al. RNA-binding protein ZFP36L1 maintains posttranscriptional regulation of bile acid metabolism. J. Clin. Invest. 127, 3741–3754 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Newman, R. et al. Maintenance of the marginal-zone B cell compartment specifically requires the RNA-binding protein ZFP36L1. Nat. Immunol. 18, 683–693 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen, J. et al. Posttranscriptional gene regulation of IL-17 by the RNA-binding protein HuR is required for initiation of experimental autoimmune encephalomyelitis. J. Immunol. 191, 5441–5450 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gubin, M. M. et al. Conditional knockout of the RNA-binding protein HuR in CD4+ T cells reveals a gene dosage effect on cytokine production. Mol. Med. 20, 93–108 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Techasintana, P., Davis, J. W., Gubin, M. M., Magee, J. D. & Atasoy, U. Transcriptomic-wide discovery of direct and indirect HuR RNA targets in activated CD4+ T cells. PLoS One 10, e0129321 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. DeMicco, A. et al. B cell-intrinsic expression of the HuR RNA-binding protein is required for the T cell-dependent immune response in vivo. J. Immunol. 195, 3449–3462 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. La Porta, J., Matus-Nicodemos, R., Valentín-Acevedo, A. & Covey, L. R. The RNA-binding protein, polypyrimidine tract-binding protein 1 (PTBP1) is a key regulator of CD4 T cell activation. PLoS One 11, e0158708 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Jin, Z., Liang, F., Yang, J. & Mei, W. hnRNP I regulates neonatal immune adaptation and prevents colitis and colorectal cancer. PLoS Genet. 13, e1006672 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Hornbeck, P. V. et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 43, D512–D520 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Hawse, W. F., Boggess, W. C. & Morel, P. A. TCR signal strength regulates Akt substrate specificity to induce alternate murine Th and T regulatory cell differentiation programs. J. Immunol. 199, 589–597 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Meininger, I. et al. Alternative splicing of MALT1 controls signalling and activation of CD4+ T cells. Nat. Commun. 7, 11292 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Martinez, N. M. et al. Widespread JNK-dependent alternative splicing induces a positive feedback loop through CELF2-mediated regulation of MKK7 during T-cell activation. Genes Dev. 29, 2054–2066 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mallory, M. J. et al. Signal- and development-dependent alternative splicing of LEF1 in T cells is controlled by CELF2. Mol. Cell. Biol. 31, 2184–2195 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ajith, S. et al. Position-dependent activity of CELF2 in the regulation of splicing and implications for signal-responsive regulation in T cells. RNA Biol. 13, 569–581 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Sedlyarov, V. et al. Tristetraprolin binding site atlas in the macrophage transcriptome reveals a switch for inflammation resolution. Mol. Syst. Biol. 12, 868 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Clark, A. R. & Dean, J. L. E. The control of inflammation via the phosphorylation and dephosphorylation of tristetraprolin: a tale of two phosphatases. Biochem. Soc. Trans. 44, 1321–1337 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tiedje, C. et al. The RNA-binding protein TTP is a global post-transcriptional regulator of feedback control in inflammation. Nucleic Acids Res. 44, 7418–7440 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Smallie, T. et al. Dual-specificity phosphatase 1 and tristetraprolin cooperate to regulate macrophage responses to lipopolysaccharide. J. Immunol. 195, 277–288 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ross, E. A. et al. Dominant suppression of inflammation via targeted mutation of the mRNA destabilizing protein tristetraprolin. J. Immunol. 195, 265–276 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Patial, S. et al. Enhanced stability of tristetraprolin mRNA protects mice against immune-mediated inflammatory pathologies. Proc. Natl. Acad. Sci. USA 113, 1865–1870 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Newton, R., Shah, S., Altonsy, M. O. & Gerber, A. N. Glucocorticoid and cytokine crosstalk: feedback, feedforward, and co-regulatory interactions determine repression or resistance. J. Biol. Chem. 292, 7163–7172 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Shah, S., Mostafa, M. M., McWhae, A., Traves, S. L. & Newton, R. Negative feed-forward control of tumor necrosis factor (TNF) by tristetraprolin (ZFP36) is limited by the mitogen-activated protein kinase phosphatase, dual-specificity phosphatase 1 (DUSP1): implications for regulation by glucocorticoids. J. Biol. Chem. 291, 110–125 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Tang, T. et al. Macrophage responses to lipopolysaccharide are modulated by a feedback loop involving prostaglandin E2, dual specificity phosphatase 1 and tristetraprolin. Sci. Rep. 7, 4350 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Wang, K.-T. et al. Functional regulation of Zfp36l1 and Zfp36l2 in response to lipopolysaccharide in mouse RAW264.7 macrophages. J. Inflamm. (Lond.) 12, 42 (2015).

    Article  CAS  Google Scholar 

  122. Zhang, Q. et al. New insights into the RNA-binding and E3 ubiquitin ligase activities of Roquins. Sci. Rep. 5, 15660 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Maruyama, T. et al. Roquin-2 promotes ubiquitin-mediated degradation of ASK1 to regulate stress responses. Sci. Signal. 7, ra8 (2014).

    Article  PubMed  CAS  Google Scholar 

  124. Cano, F., Rapiteanu, R., Sebastiaan Winkler, G. & Lehner, P. J. A non-proteolytic role for ubiquitin in deadenylation of MHC-I mRNA by the RNA-binding E3-ligase MEX-3C. Nat. Commun. 6, 8670 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tenekeci, U. et al. K63-ubiquitylation and TRAF6 pathways regulate mammalian P-body formation and mRNA decapping. Mol. Cell 62, 943–957 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Protter, D. S. W. & Parker, R. Principles and properties of stress granules. Trends Cell Biol. 26, 668–679 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hu, G. et al. A conserved mechanism of TOR-dependent RCK-mediated mRNA degradation regulates autophagy. Nat. Cell Biol. 17, 930–942 (2015). This paper links RNA decay to the regulation of autophagy and mTOR-dependent processes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Manfrini, N. et al. High levels of eukaryotic initiation factor 6 (eIF6) are required for immune system homeostasis and for steering the glycolytic flux of TCR-stimulated CD4+ T cells in both mice and humans. Dev. Comp. Immunol. 77, 69–76 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Chesney, J. et al. An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell glycolysis and the Warburg effect. Proc. Natl. Acad. Sci. USA 96, 3047–3052 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhang, J. et al. LIN28 regulates stem cell metabolism and conversion to primed pluripotency. Cell Stem Cell 19, 66–80 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Bayeva, M. et al. mTOR regulates cellular iron homeostasis through tristetraprolin. Cell Metab. 16, 645–657 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yoshinaga, M. et al. Regnase-1 maintains iron homeostasis via the degradation of transferrin receptor 1 and prolyl-hydroxylase-domain-containing protein 3 mRNAs. Cell Rep. 19, 1614–1630 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Vasudevan, S. & Peltz, S. W. Regulated ARE-mediated mRNA decay in Saccharomyces cerevisiae. Mol. Cell 7, 1191–1200 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Dejure, F. R. et al. The MYC mRNA 3′-UTR couples RNA polymerase II function to glutamine and ribonucleotide levels. EMBO J. 36, 1854–1868 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Huang, W. et al. DDX5 and its associated lncRNA Rmrp modulate TH17 cell effector functions. Nature 528, 517–522 (2015). This paper provides an excellent example of noncoding RNA interactions with RBP determining cell fate and function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Xing, Z., Wang, S. & Tran, E. J. Characterization of the mammalian DEAD-box protein DDX5 reveals functional conservation with S. cerevisiae ortholog Dbp2 in transcriptional control and glucose metabolism. RNA 23, 1125–1138 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Castello, A. et al. Comprehensive identification of RNA-binding domains in human cells. Mol. Cell 63, 696–710 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Niphakis, M. J. et al. A global map of lipid-binding proteins and their ligandability in cells. Cell 161, 1668–1680 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Clingman, C. C. et al. Allosteric inhibition of a stem cell RNA-binding protein by an intermediary metabolite. eLife 3, 693 (2014).

    Article  CAS  Google Scholar 

  140. Ramiscal, R. R. et al. Attenuation of AMPK signaling by ROQUIN promotes T follicular helper cell formation. eLife 4, e08698 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Dvinge, H., Kim, E., Abdel-Wahab, O. & Bradley, R. K. RNA splicing factors as oncoproteins and tumour suppressors. Nat. Rev. Cancer 16, 413–430 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tummala, H. et al. Poly(A)-specific ribonuclease deficiency impacts telomere biology and causes dyskeratosis congenita. J. Clin. Invest. 125, 2151–2160 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Dhanraj, S. et al. Bone marrow failure and developmental delay caused by mutations in poly(A)-specific ribonuclease (PARN). J. Med. Genet. 52, 738–748 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Stuart, B. D. et al. Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening. Nat. Genet. 47, 512–517 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hodson, D. J. et al. Deletion of the RNA-binding proteins ZFP36L1 and ZFP36L2 leads to perturbed thymic development and T lymphoblastic leukemia. Nat. Immunol. 11, 717–724 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Liu, Y. et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat. Genet. 49, 1211–1218 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kesarwani, M. et al. Targeting c-FOS and DUSP1 abrogates intrinsic resistance to tyrosine-kinase inhibitor therapy in BCR-ABL-induced leukemia. Nat. Med. 23, 472–482 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Vantourout, P. et al. Immunological visibility: posttranscriptional regulation of human NKG2D ligands by the EGF receptor pathway. Sci. Transl. Med. 6, 231ra49 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Schmiedel, D. et al. The RNA binding protein IMP3 facilitates tumor immune escape by downregulating the stress-induced ligands ULPB2 and MICB. eLife 5, 727 (2016).

    Article  Google Scholar 

  150. Galarza-Muñoz, G. et al. Human epistatic interaction controls IL7R splicing and increases multiple sclerosis risk. Cell 169, 72–84 (2017).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Glasmacher for allowing us to discuss her unpublished findings, and our many colleagues who have provided feedback and support during our preparation of this manuscript. We also thank E. Werbenko for providing images for Fig. 2. The Biotechnology and Biological Sciences Research Council, the Medical Research Council, Bloodwise and Wellcome support work in M.T.'s laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Turner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turner, M., Díaz-Muñoz, M.D. RNA-binding proteins control gene expression and cell fate in the immune system. Nat Immunol 19, 120–129 (2018). https://doi.org/10.1038/s41590-017-0028-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-017-0028-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing