Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tissue-resident memory T cells at the center of immunity to solid tumors

Abstract

Immune responses in tissues are constrained by the physiological properties of the tissue involved. Tissue-resident memory T cells (TRM cells) are a recently discovered lineage of T cells specialized for life and function within tissues. Emerging evidence has shown that TRM cells have a special role in the control of solid tumors. A high frequency of TRM cells in tumors correlates with favorable disease progression in patients with cancer, and studies of mice have shown that TRM cells are necessary for optimal immunological control of solid tumors. Here we describe what defines TRM cells as a separate lineage and how these cells are generated. Furthermore, we discuss the properties that allow TRM cells to operate in normal and transformed tissues, as well as implications for the treatment of patients with cancer.

Tissue-resident memory T cells provide immunological protection in peripheral tissues. Amsen et al. discuss the role of these cells in the context of anti-tumor immunity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two-step model for TRM cell differentiation.

Debbie Maizels /Springer Nature

Fig. 2: Transcriptional regulation of memory CD8+ T cell lineages.

Debbie Maizels /Springer Nature

Fig. 3: Maintenance of TRM cells in the epithelium.

Debbie Maizels /Springer Nature

Fig. 4: Proposed mechanisms for the control of tumors by CD103+ TRM cells.

Debbie Maizels /Springer Nature

Similar content being viewed by others

References

  1. Becht, E., Giraldo, N. A., Dieu-Nosjean, M. C., Sautès-Fridman, C. & Fridman, W. H. Cancer immune contexture and immunotherapy. Curr. Opin. Immunol. 39, 7–13 (2016).

    Article  PubMed  CAS  Google Scholar 

  2. Fridman, W. H., Pagès, F., Sautès-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12, 298–306 (2012).

    Article  PubMed  CAS  Google Scholar 

  3. Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 541, 321–330 (2017).

    Article  PubMed  CAS  Google Scholar 

  4. Lim, W. A. & June, C. H. The principles of engineering immune cells to treat cancer. Cell 168, 724–740 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Dadi, S. & Li, M. O. Tissue-resident lymphocytes: sentinel of the transformed tissue. J. Immunother. Cancer 5, 41 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hombrink, P. et al. Programs for the persistence, vigilance and control of human CD8+ lung-resident memory T cells. Nat. Immunol. 17, 1467–1478 (2016).

    Article  PubMed  CAS  Google Scholar 

  7. Kumar, B. V. et al. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep. 20, 2921–2934 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Oja, A.E. et al. Trigger-happy resident memory CD4+ T cells inhabit the human lungs. Mucosal Immunol. https://doi.org/10.1038/mi.2017.94 (2017).

  9. Mueller, S. N. & Mackay, L. K. Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 16, 79–89 (2016).

    Article  PubMed  CAS  Google Scholar 

  10. Steinert, E. M. et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161, 737–749 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Mackay, L. K. et al. The developmental pathway for CD103+ CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 14, 1294–1301 (2013).The study in ref. 11 shows that memory CD8+ T cells from different tissues share a core residency transcriptome signature, in support of the proposal that T RM cells are a separate memory T cell lineage.

    Article  PubMed  CAS  Google Scholar 

  12. Beura, L. K. et al. T cells in nonlymphoid tissues give rise to lymph-node-resident memory T cells. Immunity 48, 327–338 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Mackay, L. K. et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352, 459–463 (2016).

    Article  PubMed  CAS  Google Scholar 

  14. Skon, C. N. et al. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat. Immunol. 14, 1285–1293 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Mackay, L. K. et al. Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention. J. Immunol. 194, 2059–2063 (2015).

    Article  PubMed  CAS  Google Scholar 

  16. Cheuk, S. et al. CD49a expression defines tissue-resident CD8+ T cells poised for cytotoxic function in human skin. Immunity 46, 287–300 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10, 524–530 (2009).

    Article  PubMed  CAS  Google Scholar 

  18. Ray, S. J. et al. The collagen binding α1β1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection. Immunity 20, 167–179 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. Goodison, S., Urquidi, V. & Tarin, D. CD44 cell adhesion molecules. Mol. Pathol. 52, 189–196 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. McNamara, H. A. et al. Up-regulation of LFA-1 allows liver-resident memory T cells to patrol and remain in the hepatic sinusoids. Sci. Immunol. 2, eaaj1996 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Slütter, B., Pewe, L. L., Kaech, S. M. & Harty, J. T. Lung airway-surveilling CXCR3hi memory CD8+ T cells are critical for protection against influenza A virus. Immunity 39, 939–948 (2013).

    Article  PubMed  CAS  Google Scholar 

  22. Wu, T. et al. Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J. Leukoc. Biol. 95, 215–224 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ariotti, S. et al. Tissue-resident memory CD8+ T cells continuously patrol skin epithelia to quickly recognize local antigen. Proc. Natl Acad. Sci. USA 109, 19739–19744 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wakim, L. M., Woodward-Davis, A. & Bevan, M. J. Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc. Natl Acad. Sci. USA 107, 17872–17879 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ariotti, S. et al. T cell memory. Skin-resident memory CD8+ T cells trigger a state of tissue-wide pathogen alert. Science 346, 101–105 (2014).The study in ref. 25 reports an essential early role for TRM cells in the activation of the surrounding tissue to establish protection after re-infection.

    Article  PubMed  CAS  Google Scholar 

  26. Schenkel, J. M. et al. T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science 346, 98–101 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Schenkel, J. M., Fraser, K. A., Vezys, V. & Masopust, D.. Sensing and alarm function of resident memory CD8+ T cells. Nat. Immunol. 14, 509–513 (2013).The studies in refs. 26 and 27 demonstrate that an important early role of T RM cells consists of the production of IFN-γ and the pro-inflammatory chemokines CCL3 and CCL4 to attract monocytes, neutrophils and circulating memory T cells..

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. McMaster, S. R., Wilson, J. J., Wang, H. & Kohlmeier, J. E. Airway-resident memory CD8 T cells provide antigen-specific protection against respiratory virus challenge through rapid IFN-γ production. J. Immunol. 195, 203–209 (2015).

    Article  PubMed  CAS  Google Scholar 

  29. Piet, B. et al. CD8+ T cells with an intraepithelial phenotype upregulate cytotoxic function upon influenza infection in human lung. J. Clin. Invest. 121, 2254–2263 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Malik, B. T. et al. Resident memory T cells in the skin mediate durable immunity to melanoma. Sci. Immunol. 2, eaam6346 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Joshi, N. S. et al. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281–295 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kallies, A., Xin, A., Belz, G. T. & Nutt, S. L. Blimp-1 transcription factor is required for the differentiation of effector CD8+ T cells and memory responses. Immunity 31, 283–295 (2009).

    Article  PubMed  CAS  Google Scholar 

  33. Rutishauser, R. L. et al. Transcriptional repressor Blimp-1 promotes CD8+ T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity 31, 296–308 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Mackay, L. K. et al. T-box transcription factors combine with the cytokines TGF-β and IL-15 to control tissue-resident memory t cell fate. Immunity 43, 1101–1111 (2015).

    Article  PubMed  CAS  Google Scholar 

  35. Laidlaw, B. J. et al. CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection. Immunity 41, 633–645 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Boddupalli, C. S. et al. ABC transporters and NR4A1 identify a quiescent subset of tissue-resident memory T cells. J. Clin. Invest. 126, 3905–3916 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Milner, J. J. et al. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours. Nature 552, 253–257 (2017).The authors of ref. 37 use a functional screen to identify Runx3 as an essential regulator of T RM cell differentiation in infection and for immunological control of melanoma. This study shows that virus-specific T RM cells and tumor-specific T RM cells share a transcriptional program to establish tissue residency.

    PubMed  CAS  PubMed Central  Google Scholar 

  38. van Gisbergen, K. P. et al. Mouse Hobit is a homolog of the transcriptional repressor Blimp-1 that regulates NKT cell effector differentiation. Nat. Immunol. 13, 864–871 (2012).

    Article  PubMed  CAS  Google Scholar 

  39. Stelma, F. et al. Human intrahepatic CD69+CD8+ T cells have a tissue resident memory T cell phenotype with reduced cytolytic capacity. Sci. Rep. 7, 6172 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pallett, L. J. et al. IL-2high tissue-resident T cells in the human liver: sentinels for hepatotropic infection. J. Exp. Med. 214, 1567–1580 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Vieira Braga, F. A. et al. Blimp-1 homolog Hobit identifies effector-type lymphocytes in humans. Eur. J. Immunol. 45, 2945–2958 (2015).

    Article  PubMed  CAS  Google Scholar 

  42. Hertoghs, K. M. et al. Molecular profiling of cytomegalovirus-induced human CD8+ T cell differentiation. J. Clin. Invest. 120, 4077–4090 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Zaid, A. et al. Persistence of skin-resident memory T cells within an epidermal niche. Proc. Natl Acad. Sci. USA 111, 5307–5312 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sheridan, B. S. et al. Oral infection drives a distinct population of intestinal resident memory CD8+ T cells with enhanced protective function. Immunity 40, 747–757 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Gaide, O. et al. Common clonal origin of central and resident memory T cells following skin immunization. Nat. Med. 21, 647–653 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Thome, J. J. et al. Spatial map of human T cell compartmentalization and maintenance over decades of life. Cell 159, 814–828 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kakaradov, B. et al. Early transcriptional and epigenetic regulation of CD8+ T cell differentiation revealed by single-cell RNA sequencing. Nat. Immunol. 18, 422–432 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Masopust, D. et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med. 207, 553–564 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Enamorado, M. et al. Enhanced anti-tumour immunity requires the interplay between resident and circulating memory CD8+ T cells. Nat. Commun. 8, 16073 (2017).The study in ref. 49 formally establishes an important contribution of tissue resident immunity to tumor control through parabiosis experiments and pharmacological blockade of egress from lymph nodes. It also shows that T CM cells retain the ability to make T RM cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Graef, P. et al. Serial transfer of single-cell-derived immunocompetence reveals stemness of CD8+ central memory T cells. Immunity 41, 116–126 (2014).

    Article  PubMed  CAS  Google Scholar 

  51. Iborra, S. et al. Optimal generation of tissue-resident but not circulating memory T cells during viral infection requires crosspriming by DNGR-1+ dendritic cells. Immunity 45, 847–860 (2016).The study in ref. 51 shows that the Clec9a + XCR1 + DCs within the lymph nodes are instrumental in the differentiation of T RM cells but not that of circulating memory cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Wu, T. C. et al. Reprogramming tumor-infiltrating dendritic cells for CD103+ CD8+ mucosal T-cell differentiation and breast cancer rejection. Cancer Immunol. Res. 2, 487–500 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Mora, J. R. & von Andrian, U. H. T-cell homing specificity and plasticity: new concepts and future challenges. Trends Immunol. 27, 235–243 (2006).

    Article  PubMed  CAS  Google Scholar 

  54. Iijima, N. & Iwasaki, A. T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 346, 93–98 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Nakanishi, Y., Lu, B., Gerard, C. & Iwasaki, A. CD8+ T lymphocyte mobilization to virus-infected tissue requires CD4+ T-cell help. Nature 462, 510–513 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Jiang, X. et al. Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity. Nature 483, 227–231 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Beura, L. K. et al. Intravital mucosal imaging of CD8+ resident memory T cells shows tissue-autonomous recall responses that amplify secondary memory. Nat. Immunol. 19, 173–182 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Masopust, D., Vezys, V., Wherry, E. J., Barber, D. L. & Ahmed, R. Cutting edge: gut microenvironment promotes differentiation of a unique memory CD8 T cell population. J. Immunol. 176, 2079–2083 (2006).

    Article  PubMed  CAS  Google Scholar 

  59. Mackay, L. K. et al. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc. Natl Acad. Sci. USA 109, 7037–7042 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Casey, K. A. et al. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J. Immunol. 188, 4866–4875 (2012).

    Article  PubMed  CAS  Google Scholar 

  61. Bergsbaken, T. & Bevan, M. J. Proinflammatory microenvironments within the intestine regulate the differentiation of tissue-resident CD8+ T cells responding to infection. Nat. Immunol. 16, 406–414 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Collins, N. et al. Skin CD4+ memory T cells exhibit combined cluster-mediated retention and equilibration with the circulation. Nat. Commun. 7, 11514 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Khan, T. N., Mooster, J. L., Kilgore, A. M., Osborn, J. F. & Nolz, J. C. Local antigen in nonlymphoid tissue promotes resident memory CD8+ T cell formation during viral infection. J. Exp. Med. 213, 951–966 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Muschaweckh, A. et al. Antigen-dependent competition shapes the local repertoire of tissue-resident memory CD8+ T cells. J. Exp. Med. 213, 3075–3086 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Çuburu, N. et al. Intravaginal immunization with HPV vectors induces tissue-resident CD8+ T cell responses. J. Clin. Invest. 122, 4606–4620 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Park, S. L. et al. Local proliferation maintains a stable pool of tissue-resident memory T cells after antiviral recall responses. Nat. Immunol. 19, 183–191 (2018).

    Article  PubMed  CAS  Google Scholar 

  67. Schenkel, J. M. et al. IL-15-independent maintenance of tissue-resident and boosted effector memory CD8 T cells. J. Immunol. 196, 3920–3926 (2016).

    Article  PubMed  CAS  Google Scholar 

  68. Slütter, B. et al. Dynamics of influenza-induced lung-resident memory T cells underlie waning heterosubtypic immunity. Sci. Immunol. 2, eaag2031 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Adachi, T. et al. Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma. Nat. Med 21, 1272–1279 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Surh, C. D. & Sprent, J. Homeostasis of naive and memory T cells. Immunity 29, 848–862 (2008).

    Article  PubMed  CAS  Google Scholar 

  71. Zhang, N. & Bevan, M. J. Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity 39, 687–696 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Mohammed, J. et al. Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-β. Nat. Immunol. 17, 414–421 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Fernandez-Ruiz, D. et al. Liver-resident memory CD8+ T cells form a front-line defense against malaria liver-stage infection. Immunity 45, 889–902 (2016).

    Article  PubMed  CAS  Google Scholar 

  74. Li, Y. et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147, 629–640 (2011).

    Article  PubMed  CAS  Google Scholar 

  75. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    Article  PubMed  CAS  Google Scholar 

  76. Balmer, M. L. et al. Memory CD8+ T cells require increased concentrations of acetate induced by stress for optimal function. Immunity 44, 1312–1324 (2016).

    Article  PubMed  CAS  Google Scholar 

  77. Chang, C. H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Boddupalli, C. S. et al. Interlesional diversity of T cell receptors in melanoma with immune checkpoints enriched in tissue-resident memory T cells. JCI Insight 1, e88955 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Djenidi, F. et al. CD8+CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients. J. Immunol. 194, 3475–3486 (2015).

    Article  PubMed  CAS  Google Scholar 

  80. Ganesan, A. P. et al. Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat. Immunol. 18, 940–950 (2017).The studies in refs. 79 and 80 report that tumor-infiltrating CD8 + T cells in human NSCLC show enrichment for a T RM cell transcriptome signature and show a clear association between the presence of cells with the phenotype of CD103 + T RM cells and survival rates.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Murray, T. et al. Very late antigen-1 marks functional tumor-resident CD8 T cells and correlates with survival of melanoma patients. Front. Immunol. 7, 573 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Webb, J. R., Milne, K. & Nelson, B. H. PD-1 and CD103 are widely coexpressed on prognostically favorable intraepithelial CD8 T Cells in human ovarian cancer. Cancer Immunol. Res. 3, 926–935 (2015).

    Article  PubMed  CAS  Google Scholar 

  83. Webb, J. R., Milne, K., Watson, P., Deleeuw, R. J. & Nelson, B. H. Tumor-infiltrating lymphocytes expressing the tissue resident memory marker CD103 are associated with increased survival in high-grade serous ovarian cancer. Clin. Cancer Res. 20, 434–444 (2014).

    Article  PubMed  CAS  Google Scholar 

  84. Jouanneau, E. et al. Intrinsically de-sialylated CD103+ CD8 T cells mediate beneficial anti-glioma immune responses. Cancer Immunol. Immunother. 63, 911–924 (2014).

    Article  PubMed  CAS  Google Scholar 

  85. Quinn, E., Hawkins, N., Yip, Y. L., Suter, C. & Ward, R. CD103+ intraepithelial lymphocytes–a unique population in microsatellite unstable sporadic colorectal cancer. Eur. J. Cancer 39, 469–475 (2003).

    Article  PubMed  CAS  Google Scholar 

  86. Komdeur, F. L. et al. CD103+ intraepithelial T cells in high-grade serous ovarian cancer are phenotypically diverse TCRαβ+ CD8αβ+ T cells that can be targeted for cancer immunotherapy. Oncotarget 7, 75130–75144 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Nizard, M. et al. Induction of resident memory T cells enhances the efficacy of cancer vaccine. Nat. Commun. 8, 15221 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Wang, B. et al. CD103+ tumor infiltrating lymphocytes predict a favorable prognosis in urothelial cell carcinoma of the bladder. J. Urol. 194, 556–562 (2015).

    Article  PubMed  CAS  Google Scholar 

  89. Wang, Z. Q. et al. CD103 and intratumoral immune response in breast cancer. Clin. Cancer Res. 22, 6290–6297 (2016).

    Article  PubMed  CAS  Google Scholar 

  90. Workel, H. H. et al. CD103 defines intraepithelial CD8+ PD1+ tumour-infiltrating lymphocytes of prognostic significance in endometrial adenocarcinoma. Eur. J. Cancer 60, 1–11 (2016).

    Article  PubMed  CAS  Google Scholar 

  91. Koh, J. et al. Prognostic implications of intratumoral CD103+ tumor-infiltrating lymphocytes in pulmonary squamous cell carcinoma. Oncotarget 8, 13762–13769 (2017).

    PubMed  PubMed Central  Google Scholar 

  92. Komdeur, F. L. et al. CD103+ tumor-infiltrating lymphocytes are tumor-reactive intraepithelial CD8+ T cells associated with prognostic benefit and therapy response in cervical cancer. OncoImmunology 6, e1338230 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Gabriely, G. et al. Targeting latency-associated peptide promotes antitumor immunity. Sci. Immunol. 2, eaaj1738 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Anz, D. et al. CD103 is a hallmark of tumor-infiltrating regulatory T cells. Int. J. Cancer 129, 2417–2426 (2011).

    Article  PubMed  CAS  Google Scholar 

  95. Sun, Y. Y. et al. Local HPV recombinant vaccinia boost following priming with an HPV DNA vaccine enhances local HPV-Specific CD8+ T-cell-mediated tumor control in the genital tract. Clin. Cancer Res. 22, 657–669 (2016).

    Article  PubMed  CAS  Google Scholar 

  96. Boutet, M. et al. TGFβ signaling intersects with CD103 integrin signaling to promote T-lymphocyte accumulation and antitumor activity in the lung tumor microenvironment. Cancer Res. 76, 1757–1769 (2016).

    Article  PubMed  CAS  Google Scholar 

  97. Pickup, M., Novitskiy, S. & Moses, H. L. The roles of TGFβ in the tumour microenvironment. Nat. Rev. Cancer 13, 788–799 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Gauthier, L. et al. Paxillin binding to the cytoplasmic domain of CD103 promotes cell adhesion and effector functions for CD8+ resident memory T cells in tumors. Cancer Res. 77, 7072–7082 (2017).

    Article  PubMed  CAS  Google Scholar 

  99. Le Floc’h, A. et al. αEβ7 integrin interaction with E-cadherin promotes antitumor CTL activity by triggering lytic granule polarization and exocytosis.J. Exp. Med. 204, 559–570 (2007).The study in ref. 99 showed that the hallmark epithelial T RM cell molecule CD103 has a function in killing tumor cells.

    Article  PubMed  CAS  Google Scholar 

  100. Le Floc’h, A. et al. Minimal engagement of CD103 on cytotoxic T lymphocytes with an E-cadherin-Fc molecule triggers lytic granule polarization via a phospholipase Cγ-dependent pathway. Cancer Res. 71, 328–338 (2011).

    Article  PubMed  CAS  Google Scholar 

  101. Sandoval, F. et al. Mucosal imprinting of vaccine-induced CD8. T cells is crucial to inhibit the growth of mucosal tumors. Sci. Transl. Med. 5, 172ra20 (2013). This (ref. 101) was an early study showing that a tissue-specific vaccine elicits T RM cells and elicits more-efficient anti-tumor immunity than does a systemic vaccine.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Mlecnik, B. et al. Functional network pipeline reveals genetic determinants associated with in situ lymphocyte proliferation and survival of cancer patients. Sci. Transl. Med. 6, 228ra37 (2014).

    Article  PubMed  CAS  Google Scholar 

  103. Dadi, S. et al. Cancer immunosurveillance by tissue-resident innate lymphoid cells and innate-like T cells. Cell 164, 365–377 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Sierra, R. A. et al. Rescue of notch-1 signaling in antigen-specific CD8+ T cells overcomes tumor-induced T-cell suppression and enhances immunotherapy in cancer. Cancer Immunol. Res. 2, 800–811 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Tsukumo, S. I. & Yasutomo, K. Regulation of CD8+ T cells and antitumor immunity by Notch signaling. Front. Immunol. 9, 101 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Backer, R. A. et al. A central role for Notch in effector CD8+ T cell differentiation. Nat. Immunol. 15, 1143–1151 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Pan, Y. et al. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism.Nature 543, 252–256 (2017).The study in ref. 107 shows that T RM cells rely on uptake of fatty acids for their energy metabolism rather than on glucose, which is of low abundance in several tissues.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Zhang, Y. et al. Enhancing CD8+ T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell 32, 377–391 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  109. Buck, M. D., Sowell, R. T., Kaech, S. M. & Pearce, E. L. Metabolic instruction of immunity. Cell 169, 570–586 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Parker, B. S., Rautela, J. & Hertzog, P. J. Antitumour actions of interferons: implications for cancer therapy. Nat. Rev. Cancer 16, 131–144 (2016).

    Article  PubMed  CAS  Google Scholar 

  111. Wang, W. et al. Effector T cells abrogate stroma-mediated chemoresistance in ovarian cancer. Cell 165, 1092–1105 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Zitvogel, L., Galluzzi, L., Smyth, M. J. & Kroemer, G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 39, 74–88 (2013).

    Article  PubMed  CAS  Google Scholar 

  113. Brewitz, A. et al. CD8+ T cells orchestrate pDC-XCR1+ dendritic cell spatial and functional cooperativity to optimize priming. Immunity 46, 205–219 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Roberts, E. W. et al. Critical role for CD103+/CD141+ dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 30, 324–336 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015).

    Article  PubMed  CAS  Google Scholar 

  117. Spranger, S., Dai, D., Horton, B. & Gajewski, T. F. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31, 711–723 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Reuben, A. et al. Genomic and immune heterogeneity are associated with differential responses to therapy in melanoma. NPJ Genom. Med. 2, 10 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Glasner, A. et al. NKp46 receptor-mediated interferon-γ production by natural killer cells increases fibronectin 1 to alter tumor architecture and control metastasis. Immunity 48, 107–119 (2018).

    Article  PubMed  CAS  Google Scholar 

  120. Stary, G. et al. VACCINES. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science 348, aaa8205 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Dalgleish, A. G. Therapeutic cancer vaccines: why so few randomised phase III studies reflect the initial optimism of phase II studies. Vaccine 29, 8501–8505 (2011).

    Article  PubMed  Google Scholar 

  122. Nizard, M., Roussel, H. & Tartour, E. Resident memory T cells as surrogate markers of the efficacy of cancer vaccines. Clin. Cancer Res. 22, 530–532 (2016).

    Article  PubMed  CAS  Google Scholar 

  123. Geukes Foppen, M. H., Donia, M., Svane, I. M. & Haanen, J. B. Tumor-infiltrating lymphocytes for the treatment of metastatic cancer. Mol. Oncol. 9, 1918–1935 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Hinrichs, C. S. & Rosenberg, S. A. Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol. Rev. 257, 56–71 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by an LSBR fellowship and an NWO Vidi grant to K.J.P.M.v.G. and by an NWO Veni grant to P.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derk Amsen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amsen, D., van Gisbergen, K.P.J.M., Hombrink, P. et al. Tissue-resident memory T cells at the center of immunity to solid tumors. Nat Immunol 19, 538–546 (2018). https://doi.org/10.1038/s41590-018-0114-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-018-0114-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer