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A pairwise cytokine code explains the 
organism-wide response to sepsis

Michihiro Takahama    1,2, Ashwini Patil    3, Gabriella Richey1, Denis Cipurko1, 
Katherine Johnson1, Peter Carbonetto4,5, Madison Plaster1, Surya Pandey1, 
Katerina Cheronis1, Tatsuki Ueda1, Adam Gruenbaum1, Tadafumi Kawamoto6, 
Matthew Stephens4,7 & Nicolas Chevrier    1 

Sepsis is a systemic response to infection with life-threatening 
consequences. Our understanding of the molecular and cellular impact 
of sepsis across organs remains rudimentary. Here, we characterize the 
pathogenesis of sepsis by measuring dynamic changes in gene expression 
across organs. To pinpoint molecules controlling organ states in sepsis, we 
compare the effects of sepsis on organ gene expression to those of 6 singles 
and 15 pairs of recombinant cytokines. Strikingly, we find that the pairwise 
effects of tumor necrosis factor plus interleukin (IL)-18, interferon-gamma 
or IL-1β suffice to mirror the impact of sepsis across tissues. Mechanistically, 
we map the cellular effects of sepsis and cytokines by computing changes 
in the abundance of 195 cell types across 9 organs, which we validate by 
whole-mouse spatial profiling. Our work decodes the cytokine cacophony 
in sepsis into a pairwise cytokine message capturing the gene, cell and tissue 
responses of the host to the disease.

Molecules, cells and tissues with immune functions are ubiquitous in 
the body. While the organismal nature of the immune system is vital 
for the host against infection, the systemic dysregulation of immune 
processes in response to infectious and noninfectious triggers can be 
harmful. For example, sepsis is a systemic host response to infection 
with life-threatening consequences1. The disease is a global health issue 
in need of targeted therapies addressing the short-term and long-term 
effects on the host2–4. Our knowledge of the mechanisms underlying 
the impact of sepsis on the body is rudimentary, as highlighted by 
expert consensus in the field of sepsis5. The timing and location of 
events that take place across organs other than blood during sepsis 
remain unclear. Sepsis is thus a clear example for which learning the 
multifactorial effects of the disease on the molecules, cells and tissues 
of the whole body is critically important for basic and clinical sciences.

A myriad of cells and molecules has been linked to sepsis. Numer-
ous studies have established immune and endothelial cells together 
with cytokines and the complement and coagulation systems as key 

cellular and molecular factors in the pathogenesis of sepsis6. However, 
the links between the molecular and cellular factors that produce 
the damaging impact of sepsis for the body have not been system-
atically mapped. For example, the uncontrolled, systemic activity of 
cytokines contributes to tissue injury and organ failure7, but it is unclear 
which cytokines—alone or in combination—impact which cells and tis-
sues across the body. This gap in knowledge is due to features of the 
cytokine language that make it hard to decode, such as the variations 
in concentrations (local and systemic), activities (pro-inflammatory, 
anti-inflammatory or both for any given cytokine), and interactions 
within a mixture of cytokines present in a tissue. As a result, we lack a 
unifying framework to understand how the cytokine network functions 
in sepsis, including the network’s target cells, hierarchy, interactions 
and feedback loops8.

In addition, many types of cells die or divide at abnormal rates 
during sepsis6,9,10. The number of lymphocytes drops11,12, while that of 
neutrophils surges in sepsis13, contributing to the negative effects of 
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spatiotemporal patterns of both known and previously unrecognized 
effects of sepsis on the body. Strikingly, our work uncovered a hierarchi-
cal cytokine circuit arising from the pairwise effects of tumor necrosis 
factor (TNF) with IL-18, interferon (IFN)-γ or IL-1β, which yielded nonlin-
ear effects on tissues through synergistic and antagonistic gene regula-
tion. Collectively, these three cytokine pairs sufficed to recapitulate 
most of the host transcriptional, physiological and fitness responses 
to sepsis, uncovering an emerging principle in the chaotic behavior 
of cytokines during sepsis. Overall, our results provided fundamental 

the disease on the immune system of survivors6,10,14. However, we have 
a limited understanding of which molecules, including cytokines, are 
responsible for the effects of sepsis on immune and nonimmune cells 
across various tissue contexts5. Therefore, to better understand the 
systemic effects of sepsis, we must build a mechanistic framework 
explaining the causal relationships between the key molecular and 
cellular factors of the disease at the level of the whole organism.

Here, we used mouse models of sepsis to obtain a dynamic, 
organism-wide map of the pathogenesis of the disease, revealing the 
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Fig. 1 | Whole-tissue gene expression reveals the molecular effects of sepsis 
and endotoxemia across organs. a, Schematic overview of the experimental 
workflow. b, Heat map of DEGs (rows) from whole-tissue mRNA profiles ordered 
by k-means clustering (horizontal lines), organ types (top; colors) and time 
periods (bottom; tick marks for 0.25, 0.5, 1, 2, 3, and 5 d) after sublethal LPS 
injection. Values are log2 fold changes relative to matching, untreated organ. 
Statistical analyses were performed with limma (false discovery rate (FDR)-
adjusted P value < 0.01; absolute fold change > 2). BM, bone marrow; SI, small 
intestine; iLN, inguinal lymph node. c, Normalized counts for indicated genes, 
cohorts and organs (color). Error bars indicate the s.e.m. (n = 3 biologically 

independent samples for BM 5 d, colon 0.25 d, iLN 2 d, liver 1 d or lung 3 d; n = 4 
for other groups). d, Structure plot of the estimated membership proportions 
for a topic model with k = 16 topics (colors) fit to 364 tissue samples across 13 
organ types (top) from LPS-injected mice (Methods). Each vertical bar shows the 
cluster membership proportions for a single tissue sample ordered over time 
(bottom, tick marks for 0, 0.25, 0.5, 1, 2, 3 and 5 d after sublethal LPS injection) for 
each organ type. e, Pathway enrichment analysis using DEGs in each topic from 
d. Shown are enrichment coefficients (x axis) for indicated Gene Ontology (GO) 
terms (y axis). MHC, major histocompatibility complex.
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insights that will help build a unified mechanistic framework for the 
effects of sepsis on the body.

Results
The organism-wide response to experimental sepsis
To study the organism-wide response to sepsis, we measured changes 
in gene expression across tissues in two models leading to (1) endotox-
emia using lipopolysaccharide (LPS) and (2) sepsis using cecal ligation 
and puncture (CLP)15 (Fig. 1a). We profiled gene expression changes 
in 13 tissues16,17, including bone marrow, brain, colon, heart, inguinal 
lymph nodes (iLNs), kidney, liver, lung, peripheral blood mononuclear 

cells (PBMCs), skin, small intestine, spleen and thymus, at 0.25, 0.5, 1, 
2, 3 and 5 d after LPS injection—covering early and late effects—and 
from untreated control mice. In total, we identified 10,003 genes that 
were differentially expressed in response to LPS (Fig. 1b and Supple-
mentary Table 1a). Interestingly, we found that nonlymphoid tissues 
returned to their transcriptional steady state within 5 d of LPS injection, 
whereas lymphoid tissues did not (Fig. 1b and Extended Data Fig. 1a), 
which is reminiscent of the reported link between sepsis and long-term 
immune defects14,18. At the gene level, several clinical biomarkers were 
upregulated such as Crp (liver), Calca (lung and kidney, early; and thy-
mus, late) and Spp1 (kidney; Fig. 1b,c). Costimulatory proteins Cd274 
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untreated mice for LPS or mice after sham surgeries for CLP. Statistical analyses 
were performed with limma (FDR-adjusted P value < 0.1). Shown are all the genes 
found to be differentially regulated in at least one of the LPS or CLP conditions for 

each time point. BM, bone marrow; iLN, inguinal lymph node. d, Percentages  
(x axis) of genes differentially expressed in tissues (rows) upon severe, moderate 
or mild CLP that match the genes regulated by sublethal LPS at 0.25, 0.5 and 
1 d after LPS or CLP. Positive and negative percentages indicate overlaps of 
upregulated and downregulated genes, respectively. e, Normalized counts for 
indicated genes, cohorts and organs (y axes) in LPS and CLP sepsis. Error bars 
indicate the s.e.m. (n = 4 biologically independent samples for LPS samples; n = 5 
biologically independent samples for CLP samples).
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(PD-L1), Ctla4 and Cd86 linked to the immune deficiencies observed in 
sepsis6,19 were upregulated across tissues (12/13 tissues for Cd274, 6/13 
tissues for Cd86 and 3/13 tissues for Ctla4; Fig. 1b,c). Cellular changes 
were reflected by the expression of marker genes, such as Bach2 for 
erythropenia20,21, S100a8 for neutrophil accumulation in lungs13, Cd3e 
and Cd19 for T and B cell lymphopenia22 and Adgre1 for multi-tissue 
accumulation of macrophages23 (Fig. 1b,c and Extended Data Fig. 1b). 
To systematically investigate how sepsis biomarkers varied in expres-
sion, we focused on 258 biomarker genes associated with sepsis in the 
literature24. We observed a range of effects including the lowest in brain 
with 9.7% (25/258) of biomarker genes regulated to the three highest 
in lung, thymus and PBMCs with 37.2% (96/258), 36.4% (94/258) and 
35.7% (92/258) of biomarker genes regulated, respectively (Extended 
Data Fig. 1c and Supplementary Table 1b). Thus, our data reveal both 
intra-tissue and cross-tissue expression patterns, including genes and 
pathways associated with sepsis and systemic inflammation.

Dynamic, tissue-level processes in sepsis by topic modeling
We analyzed the LPS time-series data using grade of membership mod-
els to examine the impact of sepsis on intra-tissue and cross-tissue 
states. Grade of membership models, also known as topic models, 
cluster samples by allowing each sample to have partial membership 
in multiple biologically distinct clusters or ‘topics’25, as opposed to 
traditional clustering methods that assign a sample or a gene to a single 
cluster. We first fit the grade of membership model to our LPS data 
using 16 topics, and generated structure plots of estimated member-
ship proportions for all 364 whole-tissue RNA-sequencing (RNA-seq) 
profiles encompassing 13 tissues and 6 time points after LPS injection in 
addition to control, untreated samples (Fig. 1d). Second, to determine 
which genes and processes explain each topic, we used the quantitative 
estimates of the mean expression of each gene in each topic as provided 
by the grade of membership models to perform gene-set enrichment 
analyses (Supplementary Methods). Several topics reflected expected 
tissue biology such as basic functions of the small intestine (k4), lungs 
(k7) and heart (k15; Supplementary Table 1c). Other topics captured pro-
cesses driven by LPS-induced sepsis (Fig. 1e). For example, some topics 
reflected an influx of granulocytes in PBMCs, which is linked to clinical 
deterioration26, and, to a lesser extent, in lungs and bone marrow (k1), 
or to acute inflammatory response of the liver (k6; Fig. 1e). Other topics 
captured erythropenia in the bone marrow (k2) and neutrophil prolif-
eration and recruitment in the spleen and lungs (k13; Fig. 1e). Lastly, 
topic k9 reflected organism-wide changes in interferon-stimulated 
genes (Fig. 1e). Topic modeling therefore delineated a dynamic view 
of key processes regulated by LPS across tissues.

Similar organism-wide responses between LPS and CLP sepsis
Next, we compared the organism-wide effects of LPS to those obtained 
with CLP (Extended Data Fig. 2a,b), a polymicrobial infection starting 
in the abdominal cavity which is considered the gold standard model 
for sepsis due to its high clinical relevance15. We found a high degree 
of similarity between the tissue expression profiles of LPS and CLP at 

0.25 d, 0.5 d and 1 d after sepsis, ranging from 29.5% in heart to 68% 
in thymus upon severe CLP sepsis at 0.5 d after surgery (Fig. 2a–d 
and Supplementary Table 2a–c). The severity of CLP correlated with 
the number of differentially expressed genes (DEGs) across tissues 
and, therefore, with the degree of overlap with LPS-induced genes  
(Fig. 2a–d, Extended Data Fig. 2c and Supplementary Table 2a–c). For 
example, genes capturing known changes in sepsis, such as the bio-
marker Calca or immune cell markers for neutrophils (S100a8) or T lym-
phocytes (Cd3e), followed similar changes across tissues in LPS and CLP  
(Fig. 2e). Taken together, our data provide an organism-wide view of 
the host response to LPS and CLP sepsis, including the spatiotemporal 
expression patterns of genes well known or previously unrecognized 
in sepsis (Figs. 1 and 2 and Extended Data Figs. 1 and 2).

Pairwise cytokine effects mimic sepsis effects on tissues
To examine how much of the effects of sepsis on tissues are explained 
by cytokines, which are key systemic factors in sepsis and cytokine 
storm syndromes6,7, we compared changes in tissue gene expression 
in response to sepsis and recombinant cytokines (Fig. 3a). We focused 
on six cytokines that play a major role in sepsis: IFN-γ, IL-1β, IL-6, IL-10, 
IL-18 and TNF6. Plasma and tissue cytokine expression patterns mostly 
mirrored one another and both lymphoid and nonlymphoid tissues 
were the source of plasma cytokines (Fig. 3b). Bimodal cytokine expres-
sion in plasma reflected different timing in cytokine mRNA induction 
in tissues, such as IL-10 in thymus and other tissues early on followed 
by spleen later, and TNF in most tissues and thymus at early and late 
time points, respectively (Fig. 3b). Next, we measured the effects of 
the six recombinant cytokines used alone or pairwise (15 pairs) on 
tissue gene expression (Fig. 3a). All cytokine singles and pairs led to 
significant changes on tissue states, ranging from 14 (IL-10) to 431 (IL-1β) 
DEGs across all tissues tested for singles and 12 (IL-6 + IL-10) to 7,083 
(TNF + IL-18) for pairs (Extended Data Fig. 3a–c and Supplementary 
Table 3a–d). Strikingly, of the 6 singles and 15 pairs tested, we found 
a strong agreement between the genes regulated by LPS and three 
cytokine pairs: TNF plus IL-18 (14.9% in LNs to 56.8% in kidney), IFN-γ 
(3.6% in LNs to 38.2% in thymus) or IL-1β (1.9% in LNs to 28.2% in thymus; 
Fig. 3c,d). For comparison, the transcriptional effects of injecting naive 
mice with plasma from LPS-injected mice overlapped well with LPS 
effects (4.74% in colon to 20.5% in liver; Fig. 3c), suggesting that pairwise 
cytokine effects recapitulated most of the transcriptional response to 
sepsis. The effects of TNF plus IL-18, IFN-γ or IL-1β encompassed a high 
proportion of sepsis biomarker genes, 45.7% (118/258), 43.8% (113/258) 
or 32.6% (84/258), respectively, compared to the other 12 cytokine pairs 
tested (8.1% ± 7.3% s.d.; Extended Data Fig. 3d). Of the 15 cytokine pairs 
tested, we found that TNF plus IL-18, IFN-γ or IL-1β regulated the most 
genes across all organs with 7,083, 4,071 or 2,452 genes, respectively, 
compared to the average number of DEGs, 382 ± 298 s.d., for the other 
12 pairs tested (Fig. 3d,e and Extended Data Fig. 3e).

Next, we used a linear modeling approach to classify the effects 
of cytokine pairs on regulated genes as synergistic, antagonistic or 
additive relative to their composite singles (Methods). The three 

Fig. 3 | The pairwise effects of TNF plus IL-18, IFN-γ or IL-1β recapitulate the 
transcriptional responses of organs to sepsis. a, Schematic overview of the 
experimental workflow. Mice were intravenously injected with 6 singles, or 
15 pairs of recombinant cytokines followed by RNA-seq on indicated organs. 
b, Normalized counts (top) and blood concentration (bottom) for indicated 
cytokine genes and proteins upon sublethal LPS injection at indicated time 
points. Error bars indicate the s.e.m. (n = 3 biologically independent samples for 
normalized counts in BM 5 d, colon 0.25 d, iLNs 2 d, liver 1 d or lung 3 d; n = 4 for 
other groups). BM, bone marrow; iLN, inguinal lymph node; SI, small intestine. 
c, Percentages (circle) and numbers (color scale) of genes differentially expressed 
upon injection with indicated recombinant cytokines (rows) across organs 
(columns) that match the genes regulated by sublethal LPS at 12 h after sepsis 
induction. ‘Plasma’ indicates naive mice injected with plasma from LPS-injected 

mice. d, Heat map (left) of DEGs (rows) from whole-tissue mRNA profiles ordered 
by k-means clustering and organ types (top, colors) at 12 h after sublethal LPS 
injection. Values are log2 fold changes relative to matching, untreated organs. 
Statistical analyses were performed with limma (FDR-adjusted P value < 0.01; 
absolute fold change > 2; n = 4). Genes upregulated and downregulated 
by indicated recombinant cytokine pairs in at least one of the nine tissues 
profiled are indicated in red and blue, respectively. e, Numbers of genes (x axis) 
differentially regulated by indicated cytokine pairs (rows) but not by matching 
single cytokines. Statistical analyses were performed with limma (FDR-adjusted 
P value < 0.01; absolute fold change > 2; n = 4). f, Percentages (x axis) of genes 
differentially expressed in tissues (rows) upon injection of the indicated three 
cytokine pairs that match the genes regulated by bacterial (LPS, CLP; top) or viral 
(WR; bottom) sepsis. WR, vaccinia virus strain Western Reserve.
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cytokine pairs tested led to synergistic and antagonistic gene expres-
sion changes across all nine tissues tested (Extended Data Fig. 4a,b 
and Supplementary Table 4). For example, liver displayed some of the 
highest proportions of synergistic and antagonistic genes across all 
three cytokine pairs: 10.2% and 30.3% for TNF + IL-18, 6.8% and 15.9% 
for TNF + IFN-γ and 2.7% and 8.7% for TNF + IL-1β, respectively, whereas 
bone marrow displayed the lowest numbers of synergistic and antago-
nistic genes (2.1% to 10.3% across all three pairs; Extended Data Fig. 4c). 
A gene-centric analysis revealed that the pairwise effects of cytokines 
explained the changes in expression observed for sepsis biomarkers in 
LPS and CLP sepsis (Extended Data Fig. 4d–g). In addition, these three 
cytokine pairs regulated genes showing both shared and pair-specific 
patterns of expression, as in liver and kidney (mostly shared), and heart, 
spleen and LNs (mostly pair-specific; Extended Data Fig. 5). Moreover, 
we found that, as in LPS, the tissue effects of TNF plus IL-18, IFN-γ or 
IL-1β collectively mirrored a large fraction of the effects of CLP and viral 
sepsis on tissues (Fig. 3f), using previous data on the Western Reserve 
strain of vaccinia virus16. Taken together, these results supported a 
model whereby nonlinear, pairwise cytokine effects yield tissue states 
that closely resemble those induced by bacterial and viral sepsis.

Cytokine pairs explain the physiological effects of sepsis
We investigated the effects of functionally perturbing the four cytokines 
found to be key to sepsis on tissue states and host physiology and fitness 
during LPS and CLP sepsis (Fig. 4a). First, we found that TNF deletion 
or neutralization strongly decreased the number of genes regulated by 
LPS across tissues, ranging from 9.2% (knockout) and 6.6% (blockade) 
in thymus to 25.5% (knockout) in liver and 23% (blockade) in kidney  
(Fig. 4b, Extended Data Fig. 6a,b and Supplementary Table 5a, b). Sec-
ond, we found that pairwise cytokine perturbations counteracted most 
of the gene expression changes due to CLP sepsis, with total overlaps 
in DEGs ranging from 31.9% (2,267/7,106 genes) for anti-TNF + Il1b−/−, 
45.6% (3,242/7,106 genes) for anti-TNF + Il18−/−, to 63.3% (4,497/7,106 
genes) for anti-TNF + Ifng−/− (Fig. 4c and Supplementary Table 5c). 
Interestingly, TNF neutralization alone induced little to no statisti-
cally significant changes in tissue expression during CLP, although, in 
log fold-change space, we observed that many genes showed a trend in 
expression that was opposite to that of CLP effects without cytokine 
neutralization (Extended Data Fig. 6c and Supplementary Table 5d). 
Third, neutralizing antibodies against IL-18, IFN-γ or IL-1β all rescued 
mice injected with a lethal dose of LPS from a severe body temperature 
drop, albeit to a lesser extent than blocking TNF alone, which sufficed 
to completely prevent temperature loss presumably by abrogating key 

pairwise cytokine interactions (Fig. 4d). Moreover, blocking TNF or 
IL-1β led to 100% survival in mice challenged with a lethal dose of LPS, 
whereas blocking IL-18 or IFN-γ led to partial survival (Fig. 4e). Fourth, 
Il18−/−, Ifng−/− or Il1b−/− mice injected with TNF-neutralizing antibodies 
kept body temperatures near steady-state levels upon LPS or CLP chal-
lenge (Fig. 4f,g). Lastly, we found that injecting recombinant cytokine 
pairs led to an increase in tissue injury markers in plasma (Fig. 4h)  
and a drop in body temperature for TNF plus IL-18 or IL-1β (Fig. 4i,j). 
TNF plus IL-1β displayed a dose-dependent relationship between the 
quantity of recombinant cytokines administered and the decrease in 
body temperature and survival of the host (Fig. 4j). Taken together, 
the similarities in tissue transcriptional states between sepsis and the 
three key cytokine pairs reflected similarities in physiological effects, 
including tissue injury, body temperature and survival.

Cytokine pairs lead to cellular changes mirroring sepsis
The effects of TNF plus IL-18, IFN-γ or IL-1β on tissue states are likely 
driven by how pairwise cytokine signaling impacts the state and abun-
dance of cell types across organs. For example, all three cytokine pairs 
led to an increase in the expression level of the neutrophil marker 
encoded by S100a8 in lung, whereas TNF plus IL-18 or IFN-γ decreased 
the expression of the thymocyte and T cell marker encoded by Thy1 in 
thymus (Extended Data Fig. 4a and Supplementary Table 4). We thus 
sought to quantify the effects of cytokine pairs and LPS on cell-type 
abundances across the body (Extended Data Fig. 7a). To infer the 
abundance of specific cell types from tissue-level measurements 
(Extended Data Fig. 7b and Supplementary Methods), we computed 
a cell-type specificity score for each gene expressed in 195 cell types 
across 9 organs. Resulting gene-centric specificity scores were used to 
define ranked gene sets for each cell type, which were used to calculate 
cell-type abundance scores across tissues upon injection of LPS or 
cytokine pairs (Fig. 5 and Supplementary Table 6). Notably, cytokine 
pairwise effects on cells mirrored those of LPS in most of the cell types 
tested and ranged from 23.3% (14/60 cellular effects by LPS at day 0.5)  
in bone marrow to 100% (42/42 at day 0.5) in kidney, with an aver-
age overlap in effects of 48.7% ± 26.9% s.d. across all 9 organs tested 
(Extended Data Fig. 7c). LPS and cytokine pairs led to several cellular 
changes, which are well described in sepsis, but lack causal factors. 
For example, we detected a significant decrease in B and T cell-type 
scores across lymphoid tissues (spleen, thymus and bone marrow; 
Fig. 5 and Extended Data Fig. 7d,e), which reflects lymphopenia, a 
hallmark of sepsis6. For T cells, all three cytokine pairs led to a strong 
decrease in thymocytes as in LPS (Fig. 5 and Extended Data Fig. 7d), 

Fig. 4 | Cytokine pairs explain the physiological and fitness effects of sepsis. 
a, Schematic overview of the experimental workflow. The impact of cytokine 
perturbations using neutralizing antibodies and genetic deletions during 
LPS or CLP sepsis was assessed by measuring tissue gene expression and host 
physiological parameters. b, Heat maps of DEGs (rows) from whole-tissue mRNA 
profiles ordered by k-means clustering and organ types (top; colors) at 12 h 
after sublethal LPS injection with or without (control) anti-TNF pretreatment. 
Values are log2 fold changes relative to matching organs from untreated mice 
for LPS without anti-TNF. Statistical analyses were performed with limma 
(FDR-adjusted P value < 0.01–0.05, absolute fold change > 2). Shown are all 
the genes found to be differentially regulated in at least one of the indicated 
conditions (row annotations in black). BM, bone marrow; iLN, inguinal lymph 
node. c, Heat maps of DEGs (rows) from whole-tissue mRNA profiles ordered by 
k-means clustering and organ types (top, colors) at 0.5 d after CLP (severe grade) 
in wild-type mice injected with isotype control antibodies or Il18−/−, Ifng−/− or 
Il1b−/− mice injected with anti-TNF (left to right). Values are log2 fold changes 
relative to matching organs from sham-operated mice for wild-type, or wild-
type mice after severe CLP surgeries for Ifng−/−, Il18−/− and Il1b−/− mice. Statistical 
analyses were performed with limma (FDR-adjusted P value < 0.1). Shown are 
all the genes found to be differentially regulated in at least one of the indicated 
conditions (row annotations in black). d, Measurements of rectal temperature 
in mice of indicated genotypes with or without indicated neutralizing antibody 

pretreatment at 24 h after lethal LPS injection. Statistical differences were 
determined by one-way analysis of variance (ANOVA) with Tukey–Kramer test. 
Error bars indicate the s.e.m. (n = 10 biologically independent samples for LPS 
control; n = 5 biologically independent samples for other groups). e, Survival 
curves of mice injected with a lethal dose of LPS with or without indicated 
neutralizing antibody pretreatment (n = 5 biologically independent samples). 
f,g, Measurements of rectal temperature in mice of indicated genotypes with or 
without indicated neutralizing antibody pretreatment at 0.5 d after lethal LPS 
injection (f) or severe CLP surgery (g). Statistical differences were determined 
by one-way ANOVA with Tukey–Kramer test. Error bars indicate the s.e.m. (n = 4 
biologically independent samples). h, Serum levels of indicated organ injury 
markers at 24 h after injection of a sublethal LPS dose or PBS as control, or 12 h 
after injection of indicated recombinant cytokine pairs. Statistical differences 
were determined by one-way ANOVA with Tukey–Kramer test. Error bars indicate 
the s.e.m. (n = 4 biologically independent samples). ALT, alanine transaminase; 
BUN, blood urea nitrogen. i, Measurement of rectal temperature at 16 h after 
injection of a sublethal LPS dose, indicated cytokines or PBS as control. Error bars 
indicate the s.e.m. (n = 4 biologically independent samples). j, Measurements 
of rectal temperature (y axis; left and right) relative to time after injection (left) 
or varying doses (right, x axis) of recombinant (r)IL-1β in combination with rTNF 
(1 µg). Error bars indicate the s.d. (n = 2 biologically independent samples).
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which is in agreement with the well-described phenomena of T cell 
depletion and thymic involution during sepsis9. However, cytokine 
pairs did not mirror the effects of LPS on splenic T cells (Fig. 5 and 
Extended Data Fig. 7d). For B cells, TNF plus IL-18 led to a decrease 
in several splenic B cell types, whereas in the bone marrow, none of 
the three pairs tested recapitulated LPS effects on B cells (Fig. 5 and 
Extended Data Fig. 7e). Lastly, LPS and cytokine pairs led to an increase 

in abundance of endothelial cell types associated with the heart, kidney 
and liver (Fig. 5 and Extended Data Fig. 7f), which is corroborated by 
recent work27, and our results identify the cytokine factors driving 
this effect on the endothelium across tissues. Overall, these results 
provide an organism-wide view of the impact of cytokine pairs and 
LPS at the cellular level and a mechanistic basis for both well-described 
and less-studied cellular phenomena in sepsis.
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Spatial analysis validates the cellular effects of cytokine
We aimed to validate experimentally the functional associations between 
LPS and cytokine pairs and changes in cell-type abundances that were 
predicted by our computational analyses. We measured changes in gene 
expression across whole-mount sections using a custom, large-format 
spatial transcriptomics method (Fig. 6a). First, we focused on epithelial 
and neuronal cell types in liver, kidney and colon tissues and found that 
marker genes for hepatocytes, kidney epithelia and colon neurons were 
downregulated by LPS sepsis, in agreement with our computational 
scoring method (Fig. 6b–k and Extended Data Fig. 8a,b). We also showed 
that hepatocytes were negatively impacted by LPS and cytokine pairs 
using TUNEL staining (Extended Data Fig. 8c,d). In kidney, we confirmed 
the prediction that LPS negatively impacted proximal tubule epithelial 
cells using a commercial spatial transcriptomics platform (Extended 
Data Fig. 8e–k). Second, we monitored changes in immune cells across 
the body. We found neutrophil accumulation in all 17 tissues profiled by 
whole-mouse sections and in the vasculature, as indicated by the upregu-
lation of S100a8 transcripts, a neutrophil marker gene (Fig. 7a–c). These 
results were corroborated in lung using immunohistochemistry, where 
we observed a higher recruitment of neutrophils upon recombinant TNF 
plus IL-18 or IFN-γ injection than in LPS (Fig. 7d,e). Macrophages were 
also found to be upregulated across tissues (Extended Data Fig. 9a), in 
agreement with previous work on a subset of tissues23, which we validated 
by whole-mouse profiling of Marco and immunohistochemistry for the 
macrophage marker F4/80 (Extended Data Fig. 9b–e). In spleen, we 
found that TNF combined with IL-18 to deplete B cell subsets including 
follicular and, even more so, marginal zone B cells, by spatial transcrip-
tomics (Fig. 7f–h) and flow cytometric analysis (Fig. 7i,j). These effects 
on splenic B cells were in agreement with work using CLP28, although 
the causal factors for this phenotype were not previously known. In the 
bone marrow, we confirmed that TNF plus IL-1β are sufficient to decrease 
the abundance of cell types from the erythroid lineage (Extended Data  
Fig. 9f–h), which help to explain anemia, a well-described phenomenon 
in sepsis. Lastly, we found that injecting LPS in Il18−/−, Ifng−/− and Il1b−/− 
mice treated with TNF-neutralizing antibodies abrogated the cellular 
effects validated above in all cases but lung granulocytes, suggesting 
that other pathways are likely at play for specific processes triggered 
by sepsis (Extended Data Fig. 10).

Overall, by mapping the effects of LPS and cytokine pairs on 
cell-type abundances, we provided a mechanistic basis for known 

and previously unreported cellular effects of sepsis on tissues. For 
example, the relative abundance scores of immune cell types are posi-
tively and negatively regulated by at least one of the three cytokine 
pairs across all nine organs tested (Fig. 8). While endothelial cell types 
were mostly upregulated, epithelial and mesenchymal cell types were 
equally upregulated or downregulated across tissues (Fig. 8). Of the 
three recombinant cytokine pairs tested, TNF plus IL-18 was the one 
impacting the most cell types across the most tissues, reflecting its 
wider impact on tissue transcriptional states compared to the other 
two cytokine pairs at the doses tested (Fig. 8). Taken together, our 
data uncover a pairwise cytokine code that explains most of the host 
response to sepsis ranging from genes to cells to tissue physiology 
and host fitness.

Discussion
While sepsis remains a leading cause of death in intensive care units 
worldwide, our understanding of the pathogenesis of sepsis across 
most tissues and organs of the body is lacking. To begin to address this 
fundamental gap in knowledge, we mapped the organismal response 
to sepsis over time by measuring changes in gene expression across 
tissues in mouse models of the disease. Using cytokine injections and 
perturbations in vivo, we discovered a hierarchical cytokine mod-
ule composed of TNF, IL-18, IFN-γ and IL-1β that sufficed to explain 
most of the organism-wide response to sepsis, ranging from genes 
to cells to tissue physiology and host fitness. Our work decodes the 
chaos in systemic cytokine signaling during sepsis into a simplify-
ing, pairwise cytokine message and provides spatiotemporal data 
key to build a mechanistic framework for the impact of sepsis on the 
whole organism.

What did organism-wide maps of gene expression tell us about 
sepsis? First, our data revealed a plethora of changes that come with 
the initiation and resolution of sepsis, both at the molecular and cel-
lular levels. These changes were detected in all organ systems tested 
and encompassed most known, if not all, biomarkers and physiological 
events linked to sepsis. For example, of the 872 genes with a PubMed 
Gene Reference into Function (geneRIF) annotation containing the 
keyword ‘sepsis’, 69.7% (608/872 genes as of 18 March 2023) were regu-
lated in at least one tissue and time point in our LPS and CLP sepsis data. 
Future work is needed to elucidate which regulated genes are causal or 
bystander and beneficial or detrimental during sepsis.

Fig. 7 | The impact of TNF plus IL-18, IFN-γ or IL-1β on hematopoietic cell types 
provides a mechanistic basis for sepsis effects on the immune system. 
 a,f, Cell-type abundance scores computed for indicated cell types (rows) 
and tissues (colors) upon injection of a sublethal dose of LPS in wild-type 
(left) or injected with indicated recombinant cytokine pairs (right; columns). 
Black borders indicate significance (z-score > 1). b,c, Whole-mouse spatial 
transcriptomics analysis (b) of S100a8 mRNA levels overlaid on a grayscale  
H&E staining. Shown are whole-mount sections and spatial transcriptomics  
data from 5-week-old mice injected with a sublethal dose of LPS (5 mg per kg  
body weight) or left untreated as control. Bar plot (c) of average expression  
of S100a8 across all spatial transcriptomics array spots covering indicated 
tissues from Fig. 7b. Error bars indicate the s.e.m. (n > 10, the number of  
spatial transcriptomics array spots covering indicated tissues). d,e, Images 

(×40 magnification; d) from Ly6G immunohistochemistry in lungs from mice 
injected with LPS, indicated cytokines or left untreated as controls. Bar graph (e) 
shows quantifications of Ly6G+ cells per field of view. Scale bars, 100 µm. Error 
bars indicate the s.e.m. (n = 10 independent field of view). g,h, Whole-mouse 
spatial transcriptomics data (g) from control and LPS conditions (columns) were 
magnified to only show spleen tissue. Cr2 normalized expression was overlaid as 
cell-type markers on a grayscale H&E image. Bar plot (h) of average expression of 
Cr2 across all spatial transcriptomics array spots covering indicated tissues. Error 
bars indicate the s.e.m. (n > 10, the number of spatial transcriptomics array spots 
covering indicated tissues). i,j, Flow cytometry analysis (i) of splenic B cells from 
mice injected with a sublethal dose of LPS or indicated cytokines. Bar graphs (j) 
show quantifications in absolute count per tissue. Error bars indicate the s.e.m. 
(n = 2 biologically independent samples).

Fig. 6 | TNF plus IL-18, IFN-γ or IL-1β are responsible for the cellular effects of 
sepsis on epithelial and neuronal cells across tissues. a, Schematic overview 
of the experimental workflow for whole-mouse sectioning followed by large-
format spatial transcriptomics. b, Whole-mouse spatial transcriptomics analysis 
of indicated tissue clusters overlaid on a grayscale hematoxylin and eosin (H&E) 
staining. Shown are whole-mount sections and spatial transcriptomics data from 
5-week-old mice injected with a sublethal dose of LPS (5 mg per kg body weight) or 
left untreated as control. c,f,i, Cell-type abundance scores computed for indicated 
cell types (rows) and tissues (colors) upon injection of a sublethal dose of LPS 

in wild-type (left) or injected with indicated recombinant cytokine pairs (right; 
columns). Black borders indicate significance (z-score > 1). d,e,g,h,j,k, Whole-
mouse spatial transcriptomics data (d, g and j) from control and LPS conditions 
(columns) were magnified to show liver (d), kidney (g) and colon (j) tissues. 
Normalized expression for cell-type marker genes Serpina1c, Eci3 or Nrn1 was 
overlaid as on a grayscale H&E image. Bar plots (e, h and k) of average expression 
of indicated genes across all spatial transcriptomics array spots covering 
indicated tissues. Error bars indicate the s.e.m. (n > 10, the number of spatial 
transcriptomics array spots covering indicated tissues). i.p., intraperitoneal.
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Second, we found that nonlymphoid tissues regained homeostasis 
sooner than lymphoid ones in endotoxemia. This result is reminiscent 
of how some organs reverse dysfunction in sepsis, including those 
poor at regenerating such as heart, lung, kidney or brain, whereas the 

immune system suffers long-term dysregulation with life-threatening 
consequences for survivors14,18. Further mining of our data might help 
to identify factors that safeguard nonlymphoid tissues, such as IL-10 for 
microglia29 or GDF15 for heart30 which are both present in our data, or 

f

Memory B cell
Marginal zone B cell

Germinal center B cell
Follicular B cell

Bm4 B cell
Bm3 B cell

B cell

rT
N

F 
+ 

rIF
N

-γ
rT

N
F 

+ 
rIL

-1
8

rT
N

F 
+ 

rIL
-1

β

2 3 50.
25

0.
5

1

LPS (d)

ba

g

rT
N

F 
+ 

rIF
N

-γ
rT

N
F 

+ 
rIL

-1
8

rT
N

F 
+ 

rIL
-1

β

2 3 50.
25

0.
5

1

LPS (d)

Neut-
rophil

Lung

Liver
Bone marrow

Kidney

Spleen
Colon

Heart
Lymph node

Untreated LPS

Spleen (B cells)

LP
S

C
r2

 e
xp

re
ss

io
n

0

0.06

0.12

U
nt

re
at

ed

1.8

0

C
r2

4.8

0S1
00

a8

Ly
6G

Control rTNF + rIFN-γrTNF + rIL-18 rTNF + rIL-1βLPS
250

125

0Ly
6G

+  c
el

ls
/F

O
V

C
on

tr
ol

LP
S

rT
N

F 
+ 

rIF
N

-γ
rT

N
F 

+ 
rIL

-1
8

rT
N

F 
+ 

rIL
-1

β

dc

S1
00

a8
ex

pr
es

si
on

1.4

0.7

0

Untreated
LPS

Lu
ng

C
ol

on

Sp
le

en

H
ea

rt
Li

ve
r

Bo
ne

 m
ar

ro
w

Ly
m

ph
 n

od
e

Ki
dn

ey

i

CD21

C
D

23

0

103 104 105 1060

103

104

105
Untreated

80.8

6.67

0 103 104 105 106

LPS
87.3

2.52

103 104 105 1060

rTNF + rIL-18
85.9

2.26
0

1

2

Fo
lli

cu
la

r B
 c

el
ls

(×
 10

7 )

0

1

2

M
ar

gi
na

l z
on

e
B 

ce
lls

 (×
 10

6 )

C
on

tr
ol

LP
S

rT
N

F 
+ 

rIL
-1

8

C
on

tr
ol

LP
S

rT
N

F 
+ 

rIL
-1

8

O
th

er
Pa

nc
re

as
M

us
cl

e
Th

ym
us

Br
ow

n 
ad

ip
os

e

Br
ai

n
St

om
ac

h
Sk

in

Sm
al

l i
nt

es
tin

e

−1 0 1

Cell-type abundance score

0 0.5 1

Absolute 
abundance score

FalseTrue
Significance 

Untreated LPS

e

h j

All tissues (neutrophils)

0.0373
0.0000

0.0000
0.0000

http://www.nature.com/natureimmunology


Nature Immunology | Volume 25 | February 2024 | 226–239 237

Article https://doi.org/10.1038/s41590-023-01722-8

those that damage lymphoid tissues and cells, such as pairwise effects 
in the cytokine network. Future work is needed to assess the dynamics 
of tissue recovery, if any, during CLP sepsis with or without antibiotics 
treatment mimicking human patient treatment regimens.

Third, we built an organism-wide map of sepsis effects at the 
resolution of cell types by computing abundance scores for 195 cell 
types across 9 organ types. In addition to revealing the scope of the 
cellular effects of sepsis on tissues, our analysis provided a causal 
linkage between specific cytokine pairs and cell types across tissue 
contexts. Notably, all seven associations between cytokines and cell 
types selected for further study were validated by experiments, encom-
passing hepatocytes, kidney epithelia, colon neuronal cells, splenic B 
cells, bone marrow erythroid cells and whole-body neutrophils and 
macrophages. Most of these cellular effects were previously observed 
in sepsis or endotoxemia, such as an increase in thymic macrophages31, 
erythropenia20, splenic B cell loss9 or changes in kidney tubules32 but, 
crucially, lacked causal factors. Future work is needed to test other pre-
dictions and define the mechanisms underlying cellular changes, such 
as alterations in the proliferation, death, migration or intracellular state 
of the cells affected by sepsis. Taken together, our spatiotemporal data 
provide detailed insights in the quest toward defining a mechanistic 
framework to explain sepsis.

What sense can be made of the cytokine cacophony taking place 
in the blood during sepsis? While uncontrolled cytokine signaling is 
harmful to the body, we lack knowledge about which cytokine signal-
ing events impact which cell types in the context of which tissues. By 
measuring the impact of six cytokines alone or in pairwise combina-
tions on tissue mRNA expression profiles, we captured the net output 
of tissue-level responses to cytokine inputs—as opposed to focusing on 
the response of a single cell type. Our data support a model whereby a 
few elements of cytokine information—TNF plus IL-18, IFN-γ or IL-1β—
suffice to explain a large fraction of the molecular and cellular effects 
of sepsis across tissues. In addition, this model reveals the existence of 
a simplifying hierarchy among the cytokines upregulated in blood dur-
ing sepsis, which will help to build a unifying mechanistic framework 
for sepsis and other cytokine storms7. Notably, the proposed cytokine 
hierarchy relies on nonlinear interactions between TNF and IL-18, IFN-γ 
or IL-1β signaling, a notion well supported by four decades of work on 
cytokine interactions in vitro and in vivo. For example, TNF has been 
shown to combine synergistically or antagonistically with IFN-γ or IL-1β 
to impact secretion, cell death or proliferation and cell states in immune 

and nonimmune cells in culture33–37. While the interaction between TNF 
and IL-18 had not been reported to our knowledge, TNF plus IFN-γ38–41 
or IL-1β42–44 worsen the outcome of sepsis and other inflammatory 
disorders in vivo. The cytokines of this module also influence each 
other’s production7, which further supports the hierarchy uncovered 
by our pairwise cytokine screening data.

Future investigations are needed to define the direct and indirect 
effects of each cytokine pair on each cell type. For example, it is likely 
that some cytokine pairwise effects act through downstream factors, 
including through the release of other cytokine or non-cytokine 
diffusible factors that are directly sensed by the cells and tissues. 
In addition, while our data linked one of the three cytokine pairs or 
more with 52% (178/342 at day 0.5) of the target cell types tested in 
at least one organ type and impacted with LPS, the other half of the 
cellular effects of LPS on tissues remained unexplained by the three 
cytokine pairs used here. Thus, further work on other cytokines and 
non-cytokine factors, such as the complement or coagulation sys-
tems, is needed to pinpoint the causative factors responsible for the 
observed cellular effects of sepsis on tissues. The detailed signaling 
events mediating cytokine interactions at the level of cells also remain 
to be elucidated, such as the putative rewiring of the MAPK, NF-kB, 
IRF and Jak/STAT pathways that have previously been linked to the 
interaction between TNF and IFN-γ36,39,45,46.

Why is TNF the central node of this cytokine module recapitulating 
many of the effects of sepsis? After half a century since the first isola-
tion of TNF as a factor that could kill tumor cells47, TNF has been impli-
cated in the pathogenesis of countless infectious and noninfectious 
diseases48,49. In sepsis, TNF is one of the earliest cytokines produced in 
mice and humans, peaking in the blood in less than 2 h with a circulating 
half-life of less than 20 min in mice50,51. TNF antibodies protect against 
lethal sepsis when present before or early on upon the start of the dis-
ease52,53, but not later in the disease, which helps to explain the failure of 
anti-TNF therapy in humans with sepsis2,54. Interestingly, pretreatment 
with anti-TNF leads to beneficial effects in humans, such as in the sup-
pression of the Jarisch–Herxheimer reaction occurring in response to 
antibiotic treatment of louse-borne relapsing fever55,56. Conversely, the 
infusion of recombinant TNF in humans suffices to trigger flu-like symp-
toms57. Lastly, our findings about the central role of TNF in a cytokine 
circuit controlling sepsis are reminiscent of the existence of a cytokine 
hierarchy defining human chronic inflammatory diseases across  
tissues58. Inhibiting TNF has shown remarkable therapeutic benefits  
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in patients with psoriasis, psoriatic arthritis, Crohn’s disease, ulcerative 
colitis, ankylosing spondylitis, juvenile arthritis and many other less 
prevalent diseases. However, targeting cytokines such as IL-6, IL-1 or 
IL-17/IL-23 showed a much narrower range of efficacy, suggesting that 
TNF combines with select cytokines in select organs in the pathogenesis 
of inflammatory disorders58. The multi-tissue effects of TNF in inflam-
mation are likely a product of the existence of numerous TNF receptors 
that are ubiquitously expressed49. Taken together, these observations 
in sepsis and beyond help to contextualize the organism-wide effects of 
the three TNF-centered cytokine pairs identified by our data as critical 
to explain sepsis.

Overall, our work provides fundamental insights to help build 
a mechanistic framework explaining the organism-wide effects of 
sepsis, which will fuel therapeutic innovation for a disease lacking 
targeted drugs.
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Methods
Mice
Female C57BL/6J mice (wild-type, stock 000664), B6.129S7-Ifngtm1Ts/J 
(Ifng KO, stock 002287), B6.129P2-Il18tm1Aki/J (Il18 KO, stock 004130), 
C57BL/6J-Il1bem2Lutzy/Mmjax (Il1b KO, stock 068082-JAX) and 
B6.129S-Tnftm1Gkl/J (Tnf KO, stock 005540) were obtained from the 
Jackson Laboratories. Animals were housed in specific pathogen-free 
and BSL2 conditions at The University of Chicago, and all experiments 
were performed in accordance with the US National Institutes of Health 
Guide for the Care and Use of Laboratory Animals and approved by The 
University of Chicago Institutional Animal Care and Use Committee.

Mouse models of endotoxemia and sepsis
For LPS endotoxemia, mice were injected intraperitoneally with 
either lethal (10–15 mg per kg body weight) or sublethal (3–5 mg per 
kg body weight) doses of LPS derived from Escherichia coli O55:B5 
(Sigma-Aldrich) diluted in PBS. Dosing was established for each lot of 
LPS by in vivo titration. CLP was performed as described by others59,60. 
Briefly, mice were anesthetized with isoflurane. A 1- to 2-cm midline 
laparotomy was performed and the cecum was exposed. The cecum 
was ligated with 6-0 silk sutures (Ethicon) and perforated as follows 
to vary disease severity: (1) mild sepsis: ligate at distal 33% position 
and perforate once with a 21-gauge needle; (2) moderate sepsis: ligate 
at distal 40% position and perforate twice with a 19-gauge needle; (3) 
severe sepsis: ligate immediately below the ileocecal valve and perfo-
rate twice with a 19-gauge needle. The cecum was tucked back into the 
peritoneum and gently squeezed to extrude a small amount of fecal 
content. The peritoneal wall was closed using absorbable suture. The 
skin was closed with surgical staples. To resuscitate animals, 1 ml of 
saline was injected subcutaneously. Mice were temporarily placed on 
a heating pad for recovery. Sham-operated mice underwent the same 
procedure except that the cecum was neither tied nor perforated.

Recombinant cytokine injections
C57BL/6J mice were injected intravenously with 2.5 µg of recombinant 
TNF, IL-1β, IL-6, IL-10, IL-18 or IFN-γ used alone (6 singles) or in pairwise 
combinations (15 pairs).

Neutralizing antibody and drug treatments
For neutralizing antibodies, C57BL/6J or indicated knockout mice were 
injected intraperitoneally with 50 µg of TNF (clone BE0058, BioXCell), 
IL-18 (clone BE0237, BioXCell), IFN-γ (clone BE0055, BioXCell) or IL-1β 
(clone BE0246, BioXCell) neutralizing antibodies in 100 µl of PBS 1 h 
before LPS injection.

Blood analysis
Mouse whole blood was harvested by cardiac puncture and plasma and 
serum were isolated using lithium heparin-coated Microtainer blood 
collection tubes (BD, 365965) and Microtainer blood collection tubes 
(BD, 365978), respectively. For flow cytometric, bead-based immunoas-
says, plasma was diluted and processed using the LEGENDplex Mouse 
Inflammation Panel (BioLegend, 740446) and Mouse Macrophage/
Microglia Panel (BioLegend, 740846) kits. Data were acquired on the 
NovoCyte flow cytometer (Acea Biosciences/Agilent) and analyzed 
using the LEGNEDplex software v8 (BioLegend). To measure tissue 
injury marker levels in sera, samples were processed with the following 
kits for BUN (BioAssay Systems DIUR-100), ALT (Cayman Chemical, 
700260) and troponin-I (Life Diagnostics, CTNI-1-HS) levels according 
to the manufacturer’s instructions.

Tissue harvest
Tissues were harvested, frozen and stored as previously described16,17. 
Mice were anesthetized with 2,2,2-tribromoethanol (250–500 mg 
per kg body weight) and perfused transcardially with PBS containing 
10 mM EDTA (to avoid signal contamination from blood in tissues). 

Before perfusion, blood was collected by cardiac puncture and 
stored on ice and, immediately after perfusion, tissues were placed in 
RNA-preserving solution (5.3 M ammonium sulfate, 25 mM sodium cit-
rate, 20 mM EDTA) and kept at 4 °C overnight before transfer at −80 °C 
for storage. For each mouse, we harvested up to 13 tissues in total: iLNs, 
flank skin, thymus, heart, lung, spleen, kidney, small intestine, colon, 
liver, brain, bone marrow and PBMCs. Small intestine and colon were 
cut longitudinally and washed extensively in PBS to completely remove 
feces contamination. Bone marrow cells were collected from femora 
and tibiae, stored overnight in RNA-preserving solution at 4 °C, centri-
fuged at 5,000g for 5 min at 4 °C and cell pellets were stored at −80 °C.

Whole-tissue RNA extraction
Whole-tissue RNA extraction was performed as described previously17. 
Briefly, tissues stored in RNA-preserving solution were thawed and 
transferred to 2-ml tubes containing 700–1,500 µl (depending on 
tissue) of PureZOL (Bio-Rad, 7326890) or homemade TRIzol-like solu-
tion (38% phenol, 0.8 M guanidine thiocyanate, 0.4 M ammonium 
thiocyanate, 0.1 M sodium acetate, 5% glycerol). Tissues were lysed 
by adding 2.8-mm ceramic beads (OMNI International, 19–646) and 
running 1–3 cycles of 5–45 s at 3,500 r.p.m. on the PowerLyzer 24 (QIA-
GEN). For liver, brain and small intestine samples, tissues were lysed 
with 3–5 ml using M tubes (Miltenyi Biotec, 130-096-335) and run-
ning 1–4 cycles of the RNA_02.01 program on the gentleMACS Octo 
Dissociator (Miltenyi Biotec). Next, lysates were processed in deep 
96-well plates (USA Scientific, 1896–2000) by adding chloroform for 
phase separation by centrifugation, followed by precipitation of total 
RNA in the aqueous phase using magnetic beads coated with silane 
(Dynabeads MyOne Silane; Thermo Fisher Scientific, 37002D), buffer 
RLT (QIAGEN, 79216) and ethanol. Genomic DNA contamination was 
removed by on-bead DNase I (Thermo Fisher Scientific, AM2239) treat-
ment at 37 °C for 20 min. After washing steps with 80% ethanol, RNA 
was eluted from beads. This RNA extraction protocol was performed 
on the Bravo Automated Liquid Handling Platform (Agilent)17. Sample 
concentrations were measured using a Nanodrop One (Thermo Scien-
tific). RNA quality was confirmed using a Tapestation 4200 (Agilent 
Technologies). The samples with low RNA quality were excluded from 
the subsequent experiments.

RNA sequencing
For each tissue sample, full-length cDNA was synthesized in 20 µl 
final reaction volume containing the following: (1) 10 µl of 10 ng µl–1 
RNA; (2) 1 µl containing 2 pmol of a custom RT primer biotinylated 
in 5′ and containing sequences from 5′ to 3′ for the Illumina read 1 
primer, a 6-bp sample barcode (up to 384), a 10-bp unique molecular 
identifier (UMI) and an anchored oligo(dT)30 for priming61; and (3) 
9 µl of RT mix containing 4 µl of 5× RT buffer, 1 µl of 10 mM dNTPs, 
2 pmol of template switching oligo and 0.25 µl of Maxima H Minus 
Reverse Transcriptase (Thermo Scientific, EP0753). First, barcoded 
RT primers were added to RNA, which were then denatured at 72 °C 
for 1 min followed by snap cooling on ice. Second, the RT mix was 
added and plates were incubated at 42 °C for 120 min. For each library, 
double-stranded cDNA from up to 384 samples were pooled using 
DNA Clean & Concentrator-5 columns (Zymo Research, D4013) and 
residual RT primers were removed using exonuclease I (New England 
Biolabs, M0293). Full-length cDNAs were amplified with 5 to 8 cycles of 
single-primer PCR using the Advantage 2 PCR Kit (Clontech, 639206) 
and cleaned up using SPRIselect magnetic beads (Beckman Coulter, 
B23318). cDNA was quantified with a Qubit dsDNA High Sensitivity 
Assay Kit (Thermo Fisher Scientific, 32851) and 50 ng of cDNA per pool 
of samples was tagmented using the Tagment DNA Enzyme I (Illumina, 
20034197) and amplified using the NEBNext Ultra II Q5 Master Mix 
(New England BioLabs, M0544L). Libraries were gel purified using 2% 
E-Gel EX Agarose Gels (Thermo Fisher Scientific, G402002), quanti-
fied with a Qubit dsDNA High Sensitivity Assay Kit (Thermo Fisher 
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Scientific, Q32851) and a Tapestation 4200 (Agilent Technologies) 
and sequenced on the NextSeq 550 platform (Illumina).

Custom, whole-mouse spatial transcriptomics using Array-seq
Mice injected with LPS or left untreated as control were euthanized 
with CO2, frozen in a dry ice–hexane bath after removing all body hair 
and teeth and stored at −80 °C until use. Frozen section preparation 
and section transfer were carried out by modifying Kawamoto’s film 
method62–64. Frozen mice were embedded in a cryo-embedding medium 
and sectioned (10-µm thickness) using a Leica CM3600-XP cryomac-
rotome. Resulting whole-mouse sections were transferred onto cus-
tom, large-format microarrays (30-µm spot diameter with 36.65 µm 
center-to-center distance between spots), which were repurposed for 
spatial transcriptomics measurements using the Array-seq method. 
After transfer, sections were fixed in methanol, stained with H&E and 
imaged on an Olympus VS2000 slide scanner (×20 magnification). Sec-
tions were permeabilized (1% pepsin), incubated for in-tissue reverse 
transcription and treated with proteinase K for tissue removal. Result-
ing full-length, single-stranded cDNAs were denatured and retrieved 
from the array using potassium hydroxide and purified by column 
clean up (Zymo Research). cDNA was processed for single-primer PCR 
amplication followed by sequencing library construction using tag-
mentation (Nextera DNA Library Prep Kit) and final PCR amplification. 
Resulting libraries were sequenced on the NovaSeq 6000 (Illumina) 
and sequencing data was preprocessed using STAR/STARsolo (version 
2.7.10a)79 (https://github.com/alexdobin/STAR/blob/master/docs/
STARsolo.md/) for read alignment using the GRCm39 mouse reference 
genome, spatial barcode demultiplexing and UMI counting. Resulting 
spatial transcriptomics data was normalized, processed for differential 
expression analysis, and visualized using custom Python 3.8.5 (https://
www.python.org/) scripts and existing packages, including Scanpy 
(version 1.9.1)65, scikit-image (version 1.1.3)66 and Seaborn (version 
0.11.2)67,68 and scikit-learn (version 0.24.2). Cell-type deconvolution 
for each spatial transcriptomics spot was done using the CARD pack-
age (version 1.0.0)69.

Commercial, kidney spatial transcriptomics using Visium
Mouse kidneys were dissected from LPS-injected or control mice 
without transcardial perfusion and frozen in optimal cutting tem-
perature media. In total, 10-µm frozen tissue sections were cut with 
a CM1850 Cryostat (Leica) and mounted onto a Visium Spatial Gene 
Expression library preparation slide (10x Genomics). Samples were 
processed to generate spatial transcriptomics sequencing libraries 
according to the manufacturer’s instructions. In brief, sections were 
fixed in 100% methanol and stained with H&E reagents. H&E-stained 
sections were imaged using a CRi Panoramic MIDI Whole Slide Scanner 
with ×20 magnification. Sections were then permeabilized with 0.1% 
pepsin in 0.01 M HCl for 14 min at 37 °C and processed for in-tissue 
reverse transcription followed by on-slide second-strand synthesis. 
Resulting cDNA was used to construct sequencing libraries that were 
sequenced on the NextSeq 550 platform (Illumina), with 28 bases for 
read 1 and 56 for read 2 and at a depth of 78–114 million total reads 
per sample. The output data of each sequencing run (Illumina BCL 
files) were converted into FASTQ files using Bcl2Fastq v.2.19.1. The 
Space Ranger software (v.1.2.0, 10x Genomics) was used to process, 
align and summarize the FASTQ files against a GRCm39 mouse refer-
ence genome. Raw UMI count spot matrices, spot coordinates and 
images were imported into Python using Scanpy (v.1.9.1)65. Raw UMI 
counts were log10 normalized and clustered using a Louvain algorithm 
(resolution of 0.35). Differential expression between control and 
LPS-treated samples was performed using Scanpy’s rank_genes_groups 
function using a Wilcoxon rank-sum test. Spatially resolved counts 
of differentially expressed genes were overlaid with corresponding 
grayscale H&E images and visualized using Seaborn v.0.11.2 (https://
github.com/mwaskom/seaborn/).

Histology
Tissue processing, embedding, sectioning, immunohistochemistry 
using purified mouse Ly6G (clone 1A8, BioLegend) and F4/80 (clone 
BM8, BioLegend) antibodies, or TUNEL (terminal deoxynucleotidyl 
transferase dUTP nick end labeling) staining was performed by the 
Human Tissue Resource Center at the University of Chicago. Section 
images were obtained using the Slideview VS200 Research Slide Scan-
ner (Olympus). Image analysis and quantification (Ly6G+, TUNEL+ 
and F4/80+ areas) were performed using ImageJ (https://imagej.nih.
gov/ij/).

Flow cytometry
To analyze splenic B cells, total splenocytes were obtained by 
mashing spleens on 70-µm filters followed by red blood cell lysis 
(Lonza). To analysis red blood cell content in the bone marrow, 
total bone marrow cells were flushed out of femora and tibiae 
using PBS. Single-cell suspensions were stained in the presence of 
Fc receptor-blocking antibodies (mouse CD16/32, clone 93) using 
the following antibodies (BioLegend): CD19-FITC (clone 1D3/CD19, 
152403), B220-PerCP (clone RA3-6B2, 103233), CD93-PE (clone AA4.1, 
136503), CD23-APC (clone B3B4, 101619), CD21-Pacific Blue (clone 
7E9, 123413), Ter119-FITC (clone TER-119, 116205) and CD45-APC-Cy7 
(clone 30-F11, 103115). Cell viability was measured using Zombie Yel-
low Fixable Viability kit (423103) or DAPI. Flow cytometry data were 
acquired on the NovoCyte flow cytometer (Acea Biosciences/Agilent 
Technologies) using NovoExpress (version 1.3.0) and analyzed using 
FlowJo (BD).

RNA-seq data analysis
Sequencing read files were processed to generate UMI70 count  
matrices using the Python toolkit from the bcbio-nextgen project 
version 1.1.5 (https://bcbio-nextgen.readthedocs.io/en/latest/).  
In brief, reads were aligned to the mouse mm10 transcriptome  
with RapMap71. Quality-control metrics were compiled with a com-
bination of FastQC (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/), Qualimap and MultiQC (https://github.com/
ewels/MultiQC/)72,73. Samples were demultiplexed using barcodes 
stored in read 1 (first 6 bases), and raw UMI count matrices were com-
puted using UMIs stored in read 1 (bases 7 to 16; https://github.com/ 
vals/umis/).

Differential expression analysis was done using custom scripts in 
R version 4.2.0 (https://www.r-project.org/). Raw count matrices were 
filtered to keep genes with at least 20 counts per million or five UMIs in 
two samples and normalized across samples using the calcNormFactor 
function in edgeR74. We identified genes with at least a twofold expres-
sion difference and indicated Benjamini and Hochberg FDR-adjusted P 
value and fold expression difference by comparing treated tissues and 
matching control tissues using limma. Data analysis was also performed 
with existing packages, including tidyverse (version 2.0.0), data.table 
(version 1.14.8), cmapR (version 1.8.0), RColorBrewer (version 1.1–3), 
enrichR (version 3.1), ggrepel (version 0.9.3), patchwork (version 1.1.2), 
cowplot (version 1.1.0), glue (version 1.4.2), fs (version 1.3.2) and Matrix 
(version 1.2–18).

To assess the expression profiles of known sepsis biomarkers, we 
used a set of 258 genes reported as sepsis biomarkers by others24. We 
defined the absolute average log2 fold change of these 258 genes within 
each RNA-seq profile as the sepsis biomarker score.

Heat maps for RNA-seq data display the indicated numbers of 
transcripts, and color intensities are determined by log2 fold-change 
value for each heat map. The rows of each heat map were ordered 
by k-means clustering of log2 fold-change values in R or Morpheus 
(https://software.broadinstitute.org/morpheus/). All heat maps were 
generated using ComplexHeatmap (version 2.12.1; https://github.com/
jokergoo/ComplexHeatmap/) and circlize (version 0.4.15; https://
github.com/jokergoo/circlize/) packages in R75,76.
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Statistical modeling of cytokine pairwise effects on tissue 
gene expression
To assess the extent to which pairwise administration of cytokines (that 
is, TNF plus IL-18, IFN-γ or IL-1β) resulted in nonadditive changes (that 
is, synergistic or antagonistic interactions) in gene expression levels 
across tissues in mice, we developed an interaction scoring method 
based on a linear modeling method adapted from previous work77, 
using custom scripts in R (https://www.r-project.org/).

First, raw, tissue RNA-seq count matrices were normalized across 
samples using the calcNormFactor function in edgeR74 and subsequently 
filtered to keep genes with at least 15 counts per million in two samples. 
Data were log-transformed and a linear model was fit using the limma 
package78. We then computed the following contrasts for each pair (AB) of 
interest and its component singles (A, B) and unstimulated control mice:

Single 1 effect = A − control,

Single 2 effect = B − control,

Pair effect = AB − control,

Additive effect = [A − control] + [B − control], and

Interaction effect = (AB − control) − [(A − control) + (B − control)].

Where, ‘pair effect’ is equivalent to the observed gene expression value 
for a given pair, while ‘additive effect’ is equivalent to the predicted 
gene expression value for that pair if it is assumed to be equal to the 
sum of the component singles. The ‘interaction effect’ is equal to the 
difference between these two values and is used as the score for assess-
ing nonadditive interactions.

We identified genes with significantly different expression within 
each contrast and across all contrasts using a Benjamini and Hochberg 
correction for multiple-hypothesis testing and an FDR of 0.1. We next 
classified each gene, for each organ and pair treatment, as ‘synergis-
tic’, ‘antagonistic’ or ‘additive’, depending on its score and the gene 
expression values of the pair and its component singles. Genes without 
>0.5 absolute difference in log2 fold change in at least two of the three 
experimentally measured treatment conditions for a given pair and 
organ (single 1 effect, single 2 effect, pair effect) were considered to 
have roughly the same expression across all samples and were excluded 
from further classification to avoid classifying genes with very high or 
low baseline expression in the singles (and, therefore, very high or low 
predicted additive effects but no additional increase or decrease in 
gene expression at the pair level) as synergistic or antagonistic.

Using the standard deviation for each contrast determined via 
limma, we calculated an error value, E, for each gene, as the average of 
the standard deviations for all experimentally measured samples for 
that gene. Where the score was >2 × E, and the score was significant 
(FDR < 0.1) OR score > 1 (>2-fold difference between predicted and 
observed gene expression values), the gene was classified as synergis-
tic. The gene was only classified as significantly synergistic if the score 
was determined to be significant at the chosen FDR (0.1). Following the 
same logic, if the score < −2 × E and score significant (FDR < 0.1) OR 
score < −1, the gene was classified as antagonistic in a particular pair and 
organ. Again, only if the score was determined to be significant at the 
chosen FDR (0.1), was the gene classified as significantly antagonistic.

The total number of DEGs was calculated by totaling any gene 
that showed significant differential expression (FDR < 0.1) in single 1, 
single 2 or pair, compared to control. The percentage of all DEGs for 
a given pair and organ that were classified as synergistic, additive or 
antagonistic was then calculated.

Public RNA-seq data
To compare the expression profile of bacterial sepsis (this study) with 
that of viral sepsis induced using tissues from mice infected with a lethal 
dose of vaccinia virus strain Western Reserve16, we used our previously 
published bulk RNA-seq data (GSE87633).

Statistics
Statistical analyses were performed by R, using limma, or one-way 
ANOVA with Tukey–Kramer test. Data collection and analysis were not 
performed blind to the conditions of the experiments. No statistical 
methods were used to predetermine sample sizes, but our sample sizes 
are similar to those reported in previous publications16. Data distribu-
tion was assumed to be normal, but this was not formally tested. For 
experiments that require treatments, age-matched and sex-matched 
animals were randomly assigned into each group.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The sequencing data generated during this study have been deposited 
in the Gene Expression Omnibus under accession number GSE224146. 
Preprocessed datasets are available at https://doi.org/10.5281/
zenodo.10158368.

Code availability
All scripts are publicly available at https://doi.org/10.5281/
zenodo.10158368.
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Extended Data Fig. 1 | Multi-Tissue Expression Analysis of LPS-Induced 
Sepsis. a, Heatmaps showing the total numbers of up- (left) and down-
regulated (right) genes across time post-LPS (columns) for each organ (rows). 
b, Normalized counts for indicated genes and organs (color). BM, bone marrow; 
iLN, inguinal lymph node; PBMCs, peripheral blood mononuclear cells; SI, small 

intestine. n = 2 biologically independent samples for PBMC 2 days, or 3 days; n = 3 
for BM 5 days, colon 0.25 day, iLN. 2 days, liver 1 day, lung 3 days; n = 4 for other 
groups. c, Expression of sepsis biomarker genes (score) in each organ (rows) at 
each time point post-sublethal LPS injection (columns). Rows are ordered from 
top to bottom by high to low scores and by lymphoid and non-lymphoid tissues.
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Extended Data Fig. 2 | Comparative, Multi-Tissue Expression Analysis across 
Bacterial Sepsis Models. a, b, Measurements of rectal temperature (a) and 
survival (b) after LPS injection at sublethal (5 mg/kg) or lethal (15 mg/kg) doses 
(left, n = 4 biologically independent samples), or cecal ligation and puncture 
(CLP) surgeries leading to severe sepsis and sham control (Methods) (right, n = 5 
biologically independent samples). c, Dot plots showing log2 fold-change in gene 

expression in tissues collected at 0.5 day after sublethal LPS injection (x-axis) or 
severe CLP (y-axis) relative to matching organs from untreated mice for LPS and 
mice after sham surgery for CLP. Colored dots represent genes regulated in LPS 
only with FDR < 0.01 and absolute fold change > 2 (LPS-specific; blue), CLP only 
with FDR < 0.1 (CLP-specific; green), and LPS and CLP (both; orange). BM, bone 
marrow; iLN, inguinal lymph node.
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Extended Data Fig. 3 | See next page for caption.

http://www.nature.com/natureimmunology


Nature Immunology

Article https://doi.org/10.1038/s41590-023-01722-8

Extended Data Fig. 3 | Recombinant Cytokines Injected Alone or in Pairwise 
Combinations Impact Tissue Transcriptional States. a–c, Heatmaps 
of differentially expressed genes (rows) from whole-tissue mRNA profiles 
ordered by k-means clustering and organ types (top, colors) at 16 hours after 
injection with indicated recombinant cytokines used alone (a), in three pairwise 
combinations (b), or in other pairwise combinations (c). Values are log2 fold-
changes relative to matching organs from untreated, control mice. Statistical 
analyses were performed with limma (FDR-adjusted p-value < 0.05, absolute fold 

change > 2). BM, bone marrow; iLN, inguinal lymph node. d, Sepsis biomarker 
score average (scaled by condition) across all 9 organs profiled in a, b, and c in 
indicated recombinant cytokine conditions (x axis). Dashed line indicates one 
standard deviation. Sepsis biomarker score is the average, absolute log2 fold-
change values for all 258 genes identified as sepsis biomarker in the literature. 
e, Numbers of genes (y axis) regulated in each tissue type by indicated cytokine 
pairs and composite singles.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | The Cytokine PairsComposed of TNF plus IL-18, IFN-γ, 
or IL-1β Yield Nonlinear Effects on Tissue Transcriptional States. a, Heatmap 
(left) of differentially expressed genes (rows) from whole-tissue mRNA profiles 
ordered by k-means clustering and organ types (top, colors) at 16 hours after 
injection of indicated recombinant cytokine pairs. Values are log2 fold-changes 
relative to matching, untreated organs. Statistical analyses were performed with 
limma (FDR-adjusted p-value < 0.1). Genes synergistically or antagonistically 
regulated by the indicated recombinant cytokine pairs relative to matching 
single cytokines in at least of one of the 9 tissues profiled are indicated in orange 
and green, respectively (right). BM, bone marrow; iLN, inguinal lymph node. 
b, Percentages (y axis) of differentially expressed genes in each tissue type 
displaying synergistic (orange) or antagonistic (green) in indicated cytokine 

pairs relative to matching single cytokines. c, Dot plots of the observed  
(y axis) and calculated (x axis) pairwise cytokine interaction effects relative to 
matching single cytokines on DEGs (dots) in indicated organs (top). Percentages 
and absolute counts of DEGs classified as synergistic (orange) or antagonistic 
(green) upon pairwise cytokine injection relative to matching singles. d–g, Log2 
fold-changes (d-e) or normalized counts (f-g) for indicated tissues and genes 
with nonlinear regulation (orange, synergistic; green, antagonistic) in mice 
injected with indicated cytokines (d-e) or upon LPS or CLP sepsis (f-g). Error 
bars, SEM (n = 3 biologically independent samples for liver: rTNF plus rIL-18, 
thymus: rTNF, rTNF plus rIL-18, rTNF plus IFN-γ and colon: rTNF; n = 5 for CLP; 
n = 4 for other groups).
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Extended Data Fig. 5 | The Cytokine Pairs Composed of TNF plus IL-18, IFN-γ, 
or IL-1β Yield Nonlinear Interactions at the Gene Expression Level across 
Organs. Heatmaps of differentially expressed genes (rows) from whole-tissue 
mRNA profiles for each indicated organ ordered by k-means clustering at 
16 hours after injection of indicated recombinant cytokines. Values are log2 

fold-changes relative to matching, untreated organs. Statistical analyses were 
performed with limma (FDR-adjusted p-value < 0.05; absolute fold change > 2). 
Genes synergistically or antagonistically regulated by the indicated recombinant 
cytokine pairs relative to matching single cytokines are indicated in orange and 
green, respectively. LN, lymph node.
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Extended Data Fig. 6 | The Effect of TNF on the Transcriptional Responses of 
Organs across Bacterial Sepsis. a, Heatmaps of differentially expressed genes 
(rows) from whole-tissue mRNA profiles ordered by k-means clustering and 
organ types (top, colors) at 0.5 day after sublethal LPS injection in wild-type (left) 
or Tnf − /− mice (right). Values are log2 fold-changes relative to matching organs 
from untreated mice for wild-type, or LPS-treated wild-type mice for Tnf − /−. 
Statistical analyses were performed with limma (FDR-adjusted p-value < 0.01, 
absolute fold change > 2, or FDR-adjusted p-value < 0.05, absolute fold change 
> 2). Shown are all the genes found to be differentially regulated in at least one 
of the indicated conditions (row annotations in black). BM, bone marrow; iLN, 
inguinal lymph node. b, Percentages (x axis) of genes differentially expressed in 
tissues (rows) upon sublethal LPS injection in Tnf − /− mice (left) or mice treated 

with anti-TNF antibodies (1 h prior to LPS; right) that match the genes regulated 
by LPS in wild-type mice. c, Heatmaps of differentially expressed genes (rows) 
from whole-tissue mRNA profiles ordered by k-means clustering and organ 
types (top, colors) at 0.5 day after cecal ligation and puncture (CLP) with pre-
treatment with anti-TNF (right) or isotype control (left) antibodies. Values are 
log2 fold-changes relative to matching organs from sham operated mice for CLP 
with isotype control antibodies, or CLP operated mice for CLP with anti-TNF 
antibodies. Statistical analyses were performed with limma (FDR-adjusted 
p-value < 0.1, or FDR-adjusted p-value < 0.1). Shown are all the genes found 
to be differentially regulated in at least one of the indicated conditions (row 
annotations in black).
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Extended Data Fig. 7 | The Pairwise Effects of TNF plus IL-18, IFN-γ, or IL-1β 
Lead to Well-Known Sepsis Effects on Cells from Lymphoid and Non-
Lymphoid Tissues. a, Schematic overview of the analytical workflow to predict 
changes in cell type abundances during sepsis or upon recombinant cytokine 
injections from bulk, whole-tissue gene expression data. b, Schematic overview 
of the method to computationally estimate the relative abundance of cell 
types in organs from treated (LPS, recombinant cytokines) versus untreated, 
control mice by combining cell type-specific gene sets and whole-tissue gene 

expression measurements. c, Percentages (black bars; x axis) of the effects of 
LPS on cell type abundance scores across tissues (y axis) mirrored by at least one 
of the three cytokine pairs tested: TNF plus IL-18, IFN-γ, or IL-1β. d–f, Cell type 
abundance scores computed for indicated cell types (rows) and tissues (colors; 
top) upon injection of a sublethal dose of LPS in wild-type (left) or injection of 
indicated recombinant cytokine pairs (right) (columns). Black borders indicate 
significance (z-score > 1). EM, effector memory; TD, terminally differentiated;  
NT, naive thymus; DP, double positive; EC, epithelial cell.
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Extended Data Fig. 8 | Experimental Validation of Changes in Cell Type 
Abundance Scores Computed from Whole-Tissue Gene Expression Profiles 
in Kidney and Liver. a, b, Whole-mouse spatial transcriptomics (ST) data (a) 
from control and LPS conditions (columns) were magnified to only show kidney 
tissues. Slc5a12 normalized expression was overlaid as cell type markers on a 
greyscale H&E image. Bar plot (b) of average expression of indicated genes across 
all ST array spots covering indicated tissues. Error bars, SEM (n > 10, the number 
of ST array spots covering kidney). c, d, Images (40X magnification; c) from 
TUNEL staining in liver from mice injected with LPS, indicated cytokines, or left 
untreated as controls. Bar graph (d) shows quantifications of TUNEL+ areas (µm2) 
per field of view. Scale bars, 100 µm; Error bar, SEM (n = 10 independent field of 

view). e–k, Grey-scale H&E images from mouse kidney sections (n = 2) from PBS- 
(control) or LPS-treated mice processed for commercial spatial transcriptomics 
platform and overlaid with the numbers of genes (e) or UMIs (g) detected per spot, 
or with spatial clusters annotated with known kidney histological regions (i).  
Violin plots show the matching distributions of the numbers of genes (f) and 
UMIs (h) per spot. Overlayed box plots (f, h) show the median, 25th and 75th 
percentiles. Spatial gene expression analysis ( j) of indicated genes (rows) from 
control or LPS-treated mice (columns) overlaid on grey-scale H&E images 
from mouse kidney sections. Bar graphs (k) show the mean expression of each 
gene (top) across spatial transcriptomics spots and replicate sections (n = 2 
biologically independent samples).
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Experimental Validation of Changes in Cell Type 
Abundance Scores Computed from Whole-Tissue Gene Expression Profiles 
in Lung, Spleen, and Thymus. a, Cell type abundance scores computed for 
macrophages upon injection of a sublethal dose of LPS in wild-type (left) or 
injected with indicated recombinant cytokine pairs (right) (columns).  
b, c, Whole-mouse spatial transcriptomics (ST) analysis (b) of Marco mRNA levels 
overlaid on a greyscale H&E staining. Shown are whole-mount sections and ST 
data from 5-weeks old mice injected with a sublethal dose of LPS (5 mg/kg) or 
left untreated as control. Bar plot (c) of average expression of Marco across all 
ST array spots covering indicated tissues. Error bar, SEM (n > 10, the number 
of ST array spots covering indicated tissues). d, e, Images (40X magnification; 

d) from F4/80 immunohistochemistry in thymus tissues from mice injected 
with LPS, indicated cytokines, or left untreated as controls. Bar graph (e) shows 
quantifications of F4/80+ areas per field of view (FOV) from (d). Scale bars, 
100 µm; Error bar, SEM (n = 15 independent field of view). f, Cell type abundance 
scores computed for red blood cells upon injection of a sublethal dose of LPS 
in wild-type (left) or injected with indicated recombinant cytokine pairs (right) 
(columns). g, h, Flow cytometry analysis (g) of bone marrow erythrocytes 
from mice injected with a sublethal dose of LPS or indicated cytokines. Bar 
graph (h) shows quantifications in absolute count per tissue (n = 4 biologically 
independent samples). i, j, Flow cytometry plots of gating strategy used for 
splenic B cells (i) and erythrocytes ( j).
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Extended Data Fig. 10 | The Effects of perturbation on Cell Type Abundance 
Scores Computed from Whole-Tissue Gene Expression Profiles. Cell type 
abundance scores computed for indicated cell types (row) upon injection of a 

sublethal dose of LPS in wild-type (left) or indicated knockout animals pre-
treated with indicated neutralizing antibodies (right) or injected with indicated 
recombinant cytokine pairs (center) (columns). BM, bone marrow.
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