Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

BRAF somatic mutation contributes to intrinsic epileptogenicity in pediatric brain tumors

Abstract

Pediatric brain tumors are highly associated with epileptic seizures1. However, their epileptogenic mechanisms remain unclear. Here, we show that the oncogenic BRAF somatic mutation p.Val600Glu (V600E) in developing neurons underlies intrinsic epileptogenicity in ganglioglioma, one of the leading causes of intractable epilepsy2. To do so, we developed a mouse model harboring the BRAFV600E somatic mutation during early brain development to reflect the most frequent mutation, as well as the origin and timing thereof. Therein, the BRAFV600E mutation arising in progenitor cells during brain development led to the acquisition of intrinsic epileptogenic properties in neuronal lineage cells, whereas tumorigenic properties were attributed to high proliferation of glial lineage cells. RNA sequencing analysis of patient brain tissues with the mutation revealed that BRAFV600E-induced epileptogenesis is mediated by RE1-silencing transcription factor (REST), which is a regulator of ion channels and neurotransmitter receptors associated with epilepsy. Moreover, we found that seizures in mice were significantly alleviated by an FDA-approved BRAFV600E inhibitor, vemurafenib, as well as various genetic inhibitions of Rest. Accordingly, this study provides direct evidence of a BRAF somatic mutation contributing to the intrinsic epileptogenicity in pediatric brain tumors and suggests that BRAF and REST could be treatment targets for intractable epilepsy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mouse model of ganglioglioma with BrafV637E somatic mutations arising in neural progenitor cells during early brain development.
Fig. 2: BRAFV600E mutations arising in neural progenitor cells during embryonic brain development lead to epileptic seizures.
Fig. 3: Increased neuronal REST expression underlies the intrinsic epileptogenicity induced by BRAFV600E.
Fig. 4: BRAFV600E and REST as treatment targets for intractable epilepsy.

Similar content being viewed by others

Data availability

We deposited the whole-exome sequencing data reporting variants in each individual and RNA sequencing data reporting the tumor-specific transcriptome in the BioProject repository under accession numbers PRJNA481075 and PRJNA480934, respectively.

References

  1. van Breemen, M. S., Wilms, E. B. & Vecht, C. J. Epilepsy in patients with brain tumours: epidemiology, mechanisms, and management. Lancet Neurol. 6, 421–430 (2007).

    PubMed  Google Scholar 

  2. Thom, M., Blumcke, I. & Aronica, E. Long-term epilepsy-associated tumors. Brain Pathol. 22, 350–379 (2012).

    PubMed  Google Scholar 

  3. Blumcke, I. et al. Low-grade epilepsy-associated neuroepithelial tumours—the 2016 WHO classification. Nat. Rev. Neurol. 12, 732–740 (2016).

    PubMed  Google Scholar 

  4. Kerkhof, M. & Vecht, C. J. Seizure characteristics and prognostic factors of gliomas. Epilepsia 54, 12–17 (2013).

    PubMed  Google Scholar 

  5. Aronica, E. et al. Differential expression patterns of chloride transporters, Na+–K+–2Cl-cotransporter and K+–Cl-cotransporter, in epilepsy-associated malformations of cortical development. Neuroscience 145, 185–196 (2007).

    CAS  PubMed  Google Scholar 

  6. Aronica, E. et al. Expression and localization of voltage dependent potassium channel Kv4.2 in epilepsy associated focal lesions. Neurobiol. Dis. 36, 81–95 (2009).

    CAS  PubMed  Google Scholar 

  7. Lim, J. S. et al. Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat. Med. 21, 395–400 (2015).

    CAS  PubMed  Google Scholar 

  8. Lim, J. S. et al. Somatic mutations in TSC1 and TSC2 cause focal cortical dysplasia. Am. J. Hum. Genet. 100, 454–472 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yuan, T. L. & Cantley, L. C. PI3K pathway alterations in cancer: variations on a theme. Oncogene 27, 5497–5510 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hardt, M., Chantaravisoot, N. & Tamanoi, F. Activating mutations of TOR (target of rapamycin). Genes Cells 16, 141–151 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, J. et al. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat. Genet. 45, 602–612 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Blumcke, I. & Wiestler, O. D. Gangliogliomas: an intriguing tumor entity associated with focal epilepsies. J. Neuropathol. Exp. Neurol. 61, 575–584 (2002).

    PubMed  Google Scholar 

  13. Semple, B. D., Blomgren, K., Gimlin, K., Ferriero, D. M. & Noble-Haeusslein, L. J. Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog. Neurobiol. 106–107, 1–16 (2013).

    PubMed  Google Scholar 

  14. Sauvageot, C. M. & Stiles, C. D. Molecular mechanisms controlling cortical gliogenesis. Curr. Opin. Neurobiol. 12, 244–249 (2002).

    CAS  PubMed  Google Scholar 

  15. Aridon, P. et al. Increased sensitivity of the neuronal nicotinic receptor alpha 2 subunit causes familial epilepsy with nocturnal wandering and ictal fear. Am. J. Hum. Genet. 79, 342–350 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Srivastava, S. et al. A novel variant in GABRB2 associated with intellectual disability and epilepsy. Am. J. Med. Genet. A 164A, 2914–2921 (2014).

    PubMed  Google Scholar 

  17. Cossette, P. et al. Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat. Genet. 31, 184–189 (2002).

    CAS  PubMed  Google Scholar 

  18. Dibbens, L. M. et al. GABRD encoding a protein for extra- or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. Hum. Mol. Genet. 13, 1315–1319 (2004).

    CAS  PubMed  Google Scholar 

  19. Wallace, R. H. et al. Mutant GABAA receptor γ2-subunit in childhood absence epilepsy and febrile seizures. Nat. Genet. 28, 49–52 (2001).

    CAS  PubMed  Google Scholar 

  20. Lemke, J. R. et al. GRIN2B mutations in West syndrome and intellectual disability with focal epilepsy. Ann. Neurol. 75, 147–154 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Goldberg, E. M. & Coulter, D. A. Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction. Nat. Rev. Neurosci. 14, 337–349 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. McClelland, S. et al. The transcription factor NRSF contributes to epileptogenesis by selective repression of a subset of target genes. eLife 3, e01267 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. Samadani, U., Judkins, A. R., Akpalu, A., Aronica, E. & Crino, P. B. Differential cellular gene expression in ganglioglioma. Epilepsia 48, 646–653 (2007).

    CAS  PubMed  Google Scholar 

  24. Mittapalli, R. K., Vaidhyanathan, S., Sane, R. & Elmquist, W. F. Impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on the brain distribution of a novel BRAF inhibitor: vemurafenib (PLX4032). J. Pharmacol. Exp. Ther. 342, 33–40 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sakji-Dupre, L. et al. Cerebrospinal fluid concentrations of vemurafenib in patients treated for brain metastatic BRAF-V600 mutated melanoma. Melanoma Res. 25, 302–305 (2015).

    CAS  PubMed  Google Scholar 

  26. Noh, K. M. et al. Repressor element-1 silencing transcription factor (REST)-dependent epigenetic remodeling is critical to ischemia-induced neuronal death. Proc. Natl Acad. Sci. USA 109, E962–E971 (2012).

    CAS  PubMed  Google Scholar 

  27. Ballas, N. et al. Regulation of neuronal traits by a novel transcriptional complex. Neuron 31, 353–365 (2001).

    CAS  PubMed  Google Scholar 

  28. McClelland, S. et al. Neuron-restrictive silencer factor-mediated hyperpolarization-activated cyclic nucleotide gated channelopathy in experimental temporal lobe epilepsy. Ann. Neurol. 70, 454–464 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Aronica, E. et al. Inhibitory networks in epilepsy-associated gangliogliomas and in the perilesional epileptic cortex. Epilepsy Res. 74, 33–44 (2007).

    CAS  PubMed  Google Scholar 

  30. Zurolo, E. et al. Activation of Toll-like receptor, RAGE and HMGB1 signalling in malformations of cortical development. Brain 134, 1015–1032 (2011).

    PubMed  Google Scholar 

  31. Nadeau, H. & Lester, H. A. NRSF causes cAMP-sensitive suppression of sodium current in cultured hippocampal neurons. J. Neurophysiol. 88, 409–421 (2002).

    CAS  PubMed  Google Scholar 

  32. Nava, C. et al. De novo mutations in HCN1 cause early infantile epileptic encephalopathy. Nat. Genet. 46, 640–645 (2014).

    CAS  PubMed  Google Scholar 

  33. Endele, S. et al. Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat. Genet. 42, 1021–1026 (2010).

    CAS  PubMed  Google Scholar 

  34. Stodberg, T. et al. Mutations in SLC12A5 in epilepsy of infancy with migrating focal seizures. Nat. Commun. 6, 8038 (2015).

    PubMed  PubMed Central  Google Scholar 

  35. Epi4K Consortium. Epi4K: Gene discovery in 4,000 genomes. Epilepsia 53, 1457–1467 (2012).

    Google Scholar 

  36. Louis, D. N. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 131, 803–820 (2016).

    PubMed  Google Scholar 

  37. Park, Y. S., Kim, D. S., Shim, K. W., Kim, J. H. & Choi, J. U. Factors contributing to resectability and seizure outcomes in 44 patients with ganglioglioma. Clin. Neurol. Neurosurg. 110, 667–673 (2008).

    PubMed  Google Scholar 

  38. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strainw1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).

    CAS  Google Scholar 

  39. Mercer, K. et al. Expression of endogenous oncogenic V600EB-raf induces proliferation and developmental defects in mice and transformation of primary fibroblasts. Cancer Res. 65, 11493–11500 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dhomen, N. et al. Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell. 15, 294–303 (2009).

    CAS  PubMed  Google Scholar 

  41. Beaudoin, G. M. 3rd et al. Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. Nat. Protoc. 7, 1741–1754 (2012).

    CAS  PubMed  Google Scholar 

  42. Royer, S. et al. Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat. Neurosci. 15, 769–775 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Vajda, I. et al. Low-frequency stimulation induces stable transitions in stereotypical activity in cortical networks. Biophys. J. 94, 5028–5039 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Odawara, A., Katoh, H., Matsuda, N. & Suzuki, I. Physiological maturation and drug responses of human induced pluripotent stem cell-derived cortical neuronal networks in long-term culture. Sci. Rep. 6, 26181 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Spurlock, C. F. 3rd et al. Expression and functions of long noncoding RNAs during human T helper cell differentiation. Nat. Commun. 6, 6932 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mei, Y. et al. Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature 530, 481–484 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Perucca, E. The management of refractory idiopathic epilepsies. Epilepsia 42, 31–35 (2001).

    PubMed  Google Scholar 

  50. Kim, S. K. et al. Human histone H3K79 methyltransferase DOT1L protein [corrected] binds actively transcribing RNA polymerase II to regulate gene expression. J. Biol. Chem. 287, 39698–39709 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. S. Kim at the School of Medicine in Chungnam National University for breeding the Braflsl-V637E/+ mice, G. Mandel at Howard Hughes Medical Institute in Oregon Health and Science University for providing plasmid DNA of dnREST, and S. M. Park and W. K. Kim at the Korea Advanced Institute of Science and Technology (KAIST) for coordinating the clinical information. This work was supported by the Suh Kyungbae Foundation (to J.H.L.) and grants from the Citizens United for Research in Epilepsy (to J.H.L.) and the Korean Health Technology Research and Development (R&D) Project, Ministry of Health & Welfare, Republic of Korea (H15C3143 to J.H.L. and H16C0415 to D.S.K. and J.H.L.), KAIST (G04170025 to J.H.) and IBS-R002-D1 (to J.H.L).

Author information

Authors and Affiliations

Authors

Contributions

H.Y.K. organized the project and performed the genetic studies and the bioinformatics analysis with J.S.L. S.H.K. and J.C. performed the pathological studies. H.Y.K. performed the immunostaining, the biochemical in vitro work and in vivo studies with M.S. The in vivo chromatin immunoprecipitation assay was done by S.H. and H.Y.K. with D.L. Electrical signaling using multielectrodes in brain slices was recorded by H.Y.K. and analyzed by J.J. and S.-B.P. H.Y.K. performed the in vivo single-unit recording with H.K. and H.J.L. H.Y.K. performed the video EEG recording and the analysis of seizures. G.S., B.O.P., W.D.H. and J.H. prepared the viral constructs. D.S.K. performed the surgeries, collected patient samples and managed patient information and tissues samples with S.H.K. and H.-C.K. H.Y.K. and J.H.L. led the project and oversaw the manuscript preparation.

Corresponding author

Correspondence to Jeong Ho Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1–7

Reporting Summary

Supplementary Video 1

Video-EEG monitoring of wildtype Braf (left) or somatic Braf V637E mutation carrying (right) mice

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koh, H.Y., Kim, S.H., Jang, J. et al. BRAF somatic mutation contributes to intrinsic epileptogenicity in pediatric brain tumors. Nat Med 24, 1662–1668 (2018). https://doi.org/10.1038/s41591-018-0172-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-018-0172-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer