Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Principles of and strategies for germline gene therapy

Abstract

Monogenic disorders occur at a high frequency in human populations and are commonly inherited through the germline. Unfortunately, once the mutation has been transmitted to a child, only limited treatment options are available in most cases. However, means of correcting disease-causing nuclear and mitochondrial DNA mutations in gametes or preimplantation embryos have now been developed and are commonly referred to as germline gene therapy (GGT). We will discuss these novel strategies and provide a path forward for safe, high-efficiency GGT that may provide a promising new paradigm for preventing the passage of deleterious genes from parent to child.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Embryo selection following PGD for families in which one parent carries an autosomal dominant mutation.
Fig. 2: Possible repair outcomes in embryos homozygous for a germline mutation in the MYBPC3 gene.
Fig. 3: Repair outcomes in embryos heterozygous for a germline mutation in the MYBPC3 gene41.

Similar content being viewed by others

References

  1. Genes and Human Disease (World Health Organization); https://www.who.int/genomics/public/geneticdiseases/en/index2.html.

  2. Cornu, T. I., Mussolino, C. & Cathomen, T. Refining strategies to translate genome editing to the clinic. Nat. Med. 23, 415–423 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Rossidis, A. C. et al. In utero CRISPR-mediated therapeutic editing of metabolic genes. Nat. Med. 24, 1513–1518 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Massaro, G. et al. Fetal gene therapy for neurodegenerative disease of infants. Nat. Med. 24, 1317–1323 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Genovese, P. et al. Targeted genome editing in human repopulating haematopoietic stem cells. Nature 510, 235–240 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Koch, L. Genetic engineering: in vivo genome editing — growing in strength. Nat. Rev. Genet. 17, 124 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Liu, R. et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367–377 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Haworth, K. G., Peterson, C. W. & Kiem, H. P. CCR5-edited gene therapies for HIV cure: Closing the door to viral entry. Cytotherapy 19, 1325–1338 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Tebas, P. et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370, 901–910 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cyranoski, D. First CRISPR babies: six questions that remain. Nature (2 December 2018).

  11. Carlson, L. M. & Vora, N. L. Prenatal diagnosis: screening and diagnostic tools. Obstet. Gynecol. Clin. North Am. 44, 245–256 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Handyside, A. H., Kontogianni, E. H., Hardy, K. & Winston, R. M. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature 344, 768–770 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Lee, V. C. Y., Chow, J. F. C., Yeung, W. S. B. & Ho, P. C. Preimplantation genetic diagnosis for monogenic diseases. Best. Pract. Res. Clin. Obstet. Gynaecol. 44, 68–75 (2017).

    Article  PubMed  Google Scholar 

  14. 2016 IVF Outcomes Per Egg Retrieval Cycle (Society for Assisted Reproductive Technology (SART), 2016); https://www.sartcorsonline.com/rptCSR_PublicMultYear.aspx?ClinicPKID=0

  15. Steffann, J., Jouannet, P., Bonnefont, J. P., Chneiweiss, H. & Frydman, N. Could failure in preimplantation genetic diagnosis justify editing the human embryo genome? Cell Stem Cell 22, 481–482 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Mitalipov, S., Amato, P., Parry, S. & Falk, M. J. Limitations of preimplantation genetic diagnosis for mitochondrial DNA diseases. Cell Rep. 7, 935–937 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wolf, D. P., Mitalipov, N. & Mitalipov, S. Mitochondrial replacement therapy in reproductive medicine. Trends Mol. Med. 21, 68–76 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Tachibana, M. et al. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature 461, 367–372 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ma, H. et al. Functional human oocytes generated by transfer of polar body genomes. Cell Stem Cell 20, 112–119 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Craven, L. et al. Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature 465, 82–85 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee, H. S. et al. Rapid mitochondrial DNA segregation in primate preimplantation embryos precedes somatic and germline bottleneck. Cell Rep. 1, 506–515 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tachibana, M. et al. Towards germline gene therapy of inherited mitochondrial diseases. Nature 493, 627–631 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Kang, E. et al. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature 540, 270–275 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Paull, D. et al. Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature 493, 632–637 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. HFEA. HFEA statement on mitochondrial donation. https://www.hfea.gov.uk/about-us/news-and-press-releases/2017-news-and-press-releases/hfea-statement-on-mitochondrial-donation/ (2017).

  26. Alikani, M., Fauser, B. C. J., Garcia-Valesco, J. A., Simpson, J. L. & Johnson, M. H. First birth following spindle transfer for mitochondrial replacement therapy: hope and trepidation. Reprod. Biomed. Online 34, 333–336 (2017).

    Article  PubMed  Google Scholar 

  27. Adashi, E. Y. & Cohen, I. G. Preventing mitochondrial disease: a path forward. Obstet. Gynecol. 131, 553–556 (2018).

    Article  PubMed  Google Scholar 

  28. Wolf, D. P., Hayama, T. & Mitalipov, S. Mitochondrial genome inheritance and replacement in the human germline. EMBO J. 36, 2659 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gammage, P. A. et al. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat. Med. 24, 1691–1695 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bacman, S. R. et al. MitoTALEN reduces mutant mtDNA load and restores tRNA(Ala) levels in a mouse model of heteroplasmic mtDNA mutation. Nat. Med. 24, 1696–1700 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Reddy, P. et al. Selective elimination of mitochondrial mutations in the germline by genome editing. Cell 161, 459–469 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yusa, K. et al. Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478, 391–394 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Suzuki, K. et al. Targeted gene correction minimally impacts whole-genome mutational load in human-disease-specific induced pluripotent stem cell clones. Cell Stem Cell 15, 31–36 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schwank, G. et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653–658 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Kowalczykowski, S. C. An overview of the molecular mechanisms of recombinational DNA repair. Cold Spring Harb. Perspect. Biol. 7, a016410 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Spies, M. & Fishel, R. Mismatch repair during homologous and homeologous recombination. Cold Spring Harb. Perspect. Biol. 7, a022657 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L. & Corn, J. E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR–Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34, 339–344 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Doudna, J. A. & Charpentier, E., Genome editing. The new frontier of genome engineering with CRISPR–Cas9. Science 346, 1258096 (2014).

    Article  PubMed  CAS  Google Scholar 

  40. Chen, J. M., Cooper, D. N., Chuzhanova, N., Ferec, C. & Patrinos, G. P. Gene conversion: mechanisms, evolution and human disease. Nat. Rev. Genet. 8, 762–775 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Ma, H. et al. Correction of a pathogenic gene mutation in human embryos. Nature 548, 413–419 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Cho, S. W., Kim, S., Kim, J. M. & Kim, J. S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230–232 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Kim, H. & Kim, J. S. A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 15, 321–334 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ma, H. et al. Ma et al. reply. Nature 560, E10–E23 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Egli, D. et al. Inter-homologue repair in fertilized human eggs? Nature 560, E5–E7 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Adikusuma, F. et al. Large deletions induced by Cas9 cleavage. Nature 560, E8–E9 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Matsoukas, I. G. Commentary: programmable base editing of A.T to G.C in genomic DNA without DNA cleavage. Front. Genet. 9, 21 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gaudelli, N. M. et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jin, S. et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364, 292–295 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR–Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cho, S. W. et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 24, 132–141 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR–Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim, D. et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat. Methods 12, 237–243 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Kim, D., Kim, S., Kim, S., Park, J. & Kim, J. S. Genome-wide target specificities of CRISPR–Cas9 nucleases revealed by multiplex Digenome-seq. Genome Res. 26, 406–415 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim, S., Kim, D., Cho, S. W., Kim, J. & Kim, J. S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24, 1012–1019 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Varga, T. & Aplan, P. D. Chromosomal aberrations induced by double strand DNA breaks. DNA Repair (Amst.) 4, 1038–1046 (2005).

    Article  CAS  Google Scholar 

  61. Yoshimi, K., Kaneko, T., Voigt, B. & Mashimo, T. Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR–Cas platform. Nat. Commun. 5, 4240 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Ihry, R. J. et al. p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat. Med. 24, 939–946 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Haapaniemi, E., Botla, S., Persson, J., Schmierer, B. & Taipale, J. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 24, 927–930 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Tang, L. et al. CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Mol. Genet. Genom. 292, 525–533 (2017).

    Article  CAS  Google Scholar 

  65. Liang, P. et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6, 363–372 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tu, Z. et al. Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos. Sci. Rep. 7, 42081 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hashimoto, M., Yamashita, Y. & Takemoto, T. Electroporation of Cas9 protein/sgRNA into early pronuclear zygotes generates non-mosaic mutants in the mouse. Dev. Biol. 418, 1–9 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Song, J. et al. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat. Commun. 7, 10548 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wilde, J.J. et al. RAD51 enhances zygotic interhomolog repair. Preprint at https://doi.org/10.1101/263699 (2018).

  70. Chan, S. et al. Genome editing technologies and human germline genetic modification: the hinxton group consensus statement. Am. J. Bioeth. 15, 42–47 (2015).

    Article  PubMed  Google Scholar 

  71. Human Genome Editing: Science, Ethics, and Governance (The National Academies Press, 2017).

  72. Ormond, K. E. et al. Human germline genome editing. Am. J. Hum. Genet. 101, 167–176 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Genome Editing and Human Reproduction: Social and Ethical Issues (Nuffield Council on Bioethics, 2018).

  74. Lander, E. S. et al. Adopt a moratorium on heritable genome editing. Nature 567, 165–168 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Ishii, T. The ethics of creating genetically modified children using genome editing. Curr. Opin. Endocrinol. Diabetes Obes. 24, 418–423 (2017).

    Article  PubMed  Google Scholar 

  76. Cohen, J. An ‘epic scientific misadventure’: NIH head Francis Collins ponders fallout from CRISPR baby study. Science (30 November 2018).

  77. Scheufele, D. A. et al. U.S. attitudes on human genome editing. Science 357, 553–554 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. McCaughey, T. et al. A global social media survey of attitudes to human genome editing. Cell Stem Cell 18, 569–572 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Ishii, T. Reproductive medicine involving mitochondrial dna modification: evolution, legality, and ethics. EMJ Repro. Health 4, 88–99 (2018).

    Google Scholar 

  80. O’Sullivan, B. P. & Freedman, S. D. Cystic fibrosis. Lancet 373, 1891–1904 (2009).

    Article  PubMed  Google Scholar 

  81. US National Library of Medicine. Tay–Sachs disease https://ghr.nlm.nih.gov/condition/tay-sachs-disease (2018).

  82. National Institute of Neurological Disorders and Stroke. Huntington’s disease information page https://www.ninds.nih.gov/Disorders/All-Disorders/Huntingtons-Disease-Information-Page (2016).

  83. National Heart, Lung, and Blood Institute. Marfan Syndrome https://www.nhlbi.nih.gov/health-topics/marfan-syndrome (2019).

  84. Petrucelli, N., Daly, M. B. & Pal, T. in GeneReviews (eds Adam, M. P. et al.) (University of Washington, 1998).

  85. National Eye Institute. Color blindness https://nei.nih.gov/health/color_blindness (2015).

  86. Wallace, D. C. & Chalkia, D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb. Perspect. Biol. 5, a021220 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. U.S. National Library of Medicine. Leigh syndrome https://ghr.nlm.nih.gov/condition/leigh-syndrome (2018).

  88. Wallace, D. C. et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242, 1427–1430 (1988).

    Article  CAS  PubMed  Google Scholar 

  89. Galanello, R. & Origa, R. Beta-thalassemia. Orphanet J. Rare Dis. 5, 11 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  90. U.S. National Library of Medicine. Beta thalassemia https://ghr.nlm.nih.gov/condition/beta-thalassemia (2015).

  91. U.S. National Library of Medicine. Spinal muscular atrophy https://ghr.nlm.nih.gov/condition/spinal-muscular-atrophy (2018).

  92. Davies, J. C., Alton, E. W. & Bush, A. Cystic fibrosis. Br. Med. J. 335, 1255–1259 (2007).

    Article  Google Scholar 

  93. Ratjen, F. & Doring, G. Cystic fibrosis. Lancet 361, 681–689 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Sosnay, P. R. et al. Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene. Nat. Genet. 45, 1160–1167 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoukhrat M. Mitalipov.

Ethics declarations

Competing interests

S.M. is a co-founder and shareholder of Mitogenome Therapeutics, Inc. The other authors declare no competing financial interests

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, D.P., Mitalipov, P.A. & Mitalipov, S.M. Principles of and strategies for germline gene therapy. Nat Med 25, 890–897 (2019). https://doi.org/10.1038/s41591-019-0473-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-019-0473-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research