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Epidemic nowcasting broadly refers to assessing the current state 
by understanding key pathogenic, epidemiologic, clinical and 
socio-behavioral characteristics of an ongoing outbreak (Fig. 1).  

Here we share our views on the functional aims, rationale, data 
requirements and challenges of nowcasting at different stages of an 
epidemic, drawing on the ongoing COVID-19 experience. Given the 
broad scope and highly multidisciplinary nature of epidemic research 
generally, and the overwhelming volume of work on COVID-19 in 
particular, we focus on the most directly relevant and salient aspects 
in epidemic nowcasting, illustrated by representative examples.

What is the causative pathogen, and where did it emerge?
When an emerging outbreak is first detected, the overriding nowcast 
priority is to identify the etiologic pathogen and its origin (which is 
often zoonotic for novel pathogens; for example, severe acute respi-
ratory syndrome coronavirus (SARS-CoV)1,2, Middle East respi-
ratory syndrome coronavirus (MERS-CoV)3,4 and SARS-CoV-2  
(refs. 5,6)). To this end, public health practitioners and researchers 
conduct meticulous outbreak investigations that would ideally yield 
detailed line lists containing essential demographic (for example, 
age and occupation), epidemiologic (for example, exposure, travel 
history and contact lists), laboratory (for example, viral and sero-
logic test results) and clinical (for example, medical records of symp-
toms, disease course, treatment outcomes and long-term prognosis) 
data of not only infected individuals but also those without disease 
who have been investigated7, as well as their contacts. The most 
fundamental step in these initial investigations is the determina-
tion of case definitions, because all downstream operations, clinical 
management and data analyses are based on them. As the epidemic 
unfolds, health officials might revise these definitions to improve 
disease surveillance and control as they progressively learn more 
about the disease. For example, during the first wave of COVID-19  
in China, the case definition was progressively broadened several 
times to allow more infections to be detected8. Each time the case 
definition was updated, the proportion of confirmed infections  

increased three- to sevenfold. As such, when interpreting case 
counts from different time periods or disparate health jurisdictions, 
caution should be taken to account for any temporal or contextual 
differences in case definitions.

Identifying the causative pathogen, its host population and 
the place of first emergence is critical for outbreak control and 
re-emergence prevention. Caution should be taken to distinguish 
the epicenter where cases were first reported from the place of first 
emergence; the two are not necessarily the same9. For instance, 
SARS-CoV was first detected and identified to be the causative 
agent of SARS in Hong Kong10, but retrospective studies later traced 
its origin to Guangdong province in mainland China11,12. Advances 
in genomic epidemiology have rendered phylogenetics an indis-
pensable tool for origin tracing. As such, data-sharing platforms 
that support real-time open access to pathogen sequences (for 
example, GISAID; https://www.gisaid.org/) are instrumental for 
epidemic nowcasting. Phylogenetics infers virus evolutionary his-
tory to elucidate13: (1) the time of emergence, as reflected by the 
depth of the tree root; and (2) whether the outbreak was caused by 
continual zoonoses or sustained human-to-human transmission. 
Although COVID-19 cases were first detected in Wuhan, the ori-
gin of SARS-CoV-2 remains elusive to date, mostly because animal 
and environmental samples from the early days of the outbreak have 
not been available for viral sequencing. In contrast, there is some 
evidence that SARS-CoV-2 might have emerged and circulated 
elsewhere unnoticeably before that14,15. Origin tracing thus requires 
global perspectives and multidisciplinary efforts, as demonstrated 
by the ongoing World Health Organization (WHO) mission that 
aims to resolve the origin of SARS-CoV-2 (ref. 16).

Does the agent spread efficiently between humans?
A key question following identification of the etiological pathogen 
is whether transmission is limited to zoonosis or taking place effi-
ciently between humans. Clusters of cases within families or trans-
mission within health care settings are early clues indicating the latter. 
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However, the detection of clusters does not prove human-to-human 
transmission, because exposure to a common source or multiple 
zoonotic sources may also explain such observations.

Detailed epidemiological investigations are crucial. Conclusive 
evidence of efficient human-to-human transmission for COVID-19  
was provided through the investigation of a patient in Shenzhen 
(Guangdong province, China) who had no travel history to Wuhan 
and acquired infection through close contact with family mem-
bers who had recently returned from Wuhan in early January 2020. 
Some of the other family members returning from Wuhan were also 
confirmed to have infection17. Since this family had no exposure to 
animals, game animal restaurants or the first recognized epicenter, 
Huanan Seafood Market in Wuhan, and they probably acquired 
infection from their relatives or others in Wuhan, this incident con-
firmed at least two generations of human-to-human infection.

In contrast, there are examples of very limited human-to-human 
transmission of zoonotic viruses, such as H5N1 influenza, with-
out evidence of such a virus achieving sustained human-to-human 
transmission18. With MERS-CoV, there have been repeated explo-
sive clusters of human-to-human transmission, particularly in 
nosocomial settings, both within the zoonotic epicenter (the 
Arabian Peninsula) and beyond (for example, the Republic of 
Korea in 2015), with some involving >100 infections and four or 
more generations of human-to human spread19. However, it has 
not become a pandemic, possibly because of early detection and 
implementation of aggressive containment measures and/or per-
haps due to its inconsistent ability to spread efficiently from human 
to human in non-superspreading settings. The transition between 
exclusive zoonotic transmission and efficient human-to-human 
spread can be prolonged, throughout which, the strength of  
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Fig. 1 | Main targets for epidemic nowcasting. The main targets of epidemic nowcasting are shown, highlighting the interconnectivity between all of the 
elements. H2H, human to human.
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epidemiologic evidence would change in a crescendo pattern such 
that cross-sectional assessment at any single point in time could be 
inconclusive.

Is there effective clinical treatment?
For the first few dozen, or even 100, individuals infected with a 
novel pathogen, clinical management other than supportive treat-
ment is usually based on past experience with similar microbes 
and previous animal or human experimental studies if available. 
Clinical therapeutics against COVID-19 took reference from SARS 
and MERS, as well as more generally, with consequences of immune 
dysregulation (for example, cytokine storm) seen with infections of 
different influenza strains.

Early randomized trials from Beijing and Hong Kong showed 
that lopinavir–ritonavir20 and remdesivir, respectively, as single 
agents21 did not have significant clinical benefit for hospitalized 
patients with severe disease, but an antiviral plus immunomodula-
tory triple combination might be effective for hospitalized patients 
with mild-to-moderate disease22. Nevertheless, open-label design, 
insufficient power or short follow-up periods posed methodological 
challenges to these findings.

Subsequently, the WHO launched the global SOLIDARITY 
trial, which found that four repurposed drugs (that is, remdesivir, 
hydroxychloroquine, lopinavir and interferon beta-1a) had little 
or no effect on reducing the overall mortality risk, ventilation ini-
tiation or duration of hospital stay among hospitalized patients23, 
although the patient profile and timing of administration differed 
between different study sites and from the earlier Chinese trials.

In parallel, the United Kingdom led the world in robustly 
evaluating therapeutics against SARS-CoV-2 infection with the 
RECOVERY trial. Dexamethasone was found to confer a lower 28-d 
mortality risk among patients hospitalized with respiratory sup-
port24, but lopinavir–ritonavir25, hydroxychloroquine26 and azithro-
mycin27 failed to show clinical benefit.

The SOLIDARITY and RECOVERY trials have been defining 
exemplars of best practice during the exigencies of the COVID-19  
pandemic, and set a new benchmark for robust clinical science. 
Corollary activities, including rapid institutional review of pro-
tocols, operational execution of multi-country and multi-site 
studies, pervasive technology support and resource mobilization, 
including financing and study personnel, would be co-requisites 
of success.

In addition, emergency use authorization was rapidly granted 
by the US Food and Drug Administration for two monoclonal 
antibody regimens found to be efficacious in mild-to-moderate 
(mostly early-stage) COVID-19 disease28,29. Trials evaluating their 
prophylactic use (for example, in rare instances of vaccine contrain-
dication) are ongoing. The role of novel biologics that are precisely 
designed for particular microbial threats will probably expand in 
future significant epidemics.

Finally, there will be instances where randomized evidence 
cannot be acquired quickly or realistically. During the 2009 H1N1 
pandemic, there was intense, mostly misguided, controversy over 
the effectiveness of oseltamivir, particularly in those suffering from 
moderate-to-severe illness. This instance illustrates how careful 
interpretation of observational data is critical to informing public 
health practice, where inappropriate skepticism can be as dam-
aging as casual acceptance of study findings30,31. For COVID-19,  
despite the success of the SOLIDARITY and RECOVERY tri-
als and the monoclonal antibody trials, knowledge gaps remain 
regarding the timing of administration of single agents and 
combination treatment. For instance, propensity score-adjusted 
observational data of consecutive Chinese patients of Anhui and 
Hong Kong found that early administration of interferon beta-1b 
alone or in combination with oral ribavirin might reduce mortal-
ity and serious complications, as well as hasten recovery32.

How easily does the pathogen spread?
The epidemic potential of a pathogen is characterized by its repro-
ductive number, R, which is defined as the average number of 
secondary cases generated by a typical primary case33. The basic 
reproductive number, R0, is a special case of R, namely when the 
entire population is susceptible. If R < 1, the outbreak will die out 
without causing widespread transmission. Otherwise, the out-
break could grow exponentially, the probability and speed of which 
increase with R. Early estimates of R are inevitably fraught with 
substantial uncertainties due to data paucity and limited under-
standing of the natural history and transmission dynamics of the 
disease. Conventional approaches estimate R from line list data or 
case incidence time series and require careful considerations for 
under-reporting or other ascertainment biases (for example, larger 
clusters might be more likely to be identified)34. R can be estimated 
from the line list if it contains sufficient data for reconstructing the 
transmission chains or compiling the cluster size distribution35,36. 
However, for most outbreak settings, line list data are not suffi-
ciently detailed to support these approaches, in which case, math-
ematical models can be used to estimate R from case incidence time 
series37,38. These modeling approaches typically require knowledge 
about the generation time (time between infection in an infector–
infectee pair) or serial interval (time between symptoms onsets in an 
infector–infectee pair). The serial interval is often used to approxi-
mate the generation time because the onset time is more readily 
identifiable than the time of infection39. Robust estimation of the 
generation time and serial interval requires reliable contact-tracing 
data and adjustments for right truncation, the effect of interven-
tions (for example, isolation), susceptible depletion and other fac-
tors40,41. Uncertainty regarding real-time estimates of generation 
time and serial interval was one of the main sources of uncertainty 
in nowcasted R estimates of COVID-19 (ref. 42). For example, the 
first published estimate of the serial interval for COVID-19 was 
based on only six infector–infectee pairs in the Wuhan line list (the 
original epicenter of COVID-19), hence the high uncertainty in the 
resulting R estimate (95% credible interval = 1.4–3.9)43. To accel-
erate and broaden data availability for epidemic nowcasting, the 
Open COVID-19 Data Curation Group was launched during the 
early months of the pandemic to create a daily-updated open-access 
repository of individual-level information on laboratory-confirmed 
cases around the globe44.

R can also be estimated from the growth rates of effective infected 
population sizes inferred from coalescent models45 or directly from 
transmission models for the virus phylogeny and sequence data46,47. 
The R estimates for SARS-CoV-2 obtained by these genomic-based 
approaches were comparable to those obtained using traditional 
case-based approaches48,49. Genomic-based approaches are partic-
ularly useful when case reports are unavailable or unreliable, and 
the sequence-inferred genealogy among the viral strains preserves 
information of transmission history (for example, when transmis-
sion had been taking place unnoticed before the first reported 
case). However, the robustness of genomic-based methods is lim-
ited by the phylogenetic signal and resolution presented by the viral 
sequences.

Can the pathogen be contained locally?
Pathogens with pandemic potential could spread from the epicenter 
to other locations before or soon after the outbreak is first detected. 
This was the case for both the 2009 influenza pandemic (which 
emerged in Mexico, but the first case was detected in the United 
States50) and the COVID-19 pandemic (which was first reported 
in China and then detected in Thailand and Japan within a few 
weeks51). Disease transmission models could be used to estimate R 
and epidemic sizes at the epicenter from international case exporta-
tion time series and air travel data52. If near-real-time, aggregated 
human mobility data are available at high spatio-temporal resolution,  
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spatial transmission models can be used to nowcast the geographi-
cal spread of the pathogen beyond its epicenter before those epi-
demics become apparent in their localities53. The digital footprints 
underlying our everyday activities on mobile devices can be used 
to compile such data, a resource that did not exist until the cur-
rent age of mobile ubiquity. Shortly after Wuhan was locked down 
on 23 January 2020, nowcasts based on mobility data provided 
by Tencent revealed that: (1) dozens to hundreds of COVID-19 
cases had already spread to multiple major cities in China; and (2) 
nationwide epidemics would be inevitable within weeks unless local 
prevalence could be suppressed to near-elimination levels54. These 
findings prompted national authorities to implement a stringent 
national and subnational network of cordon sanitaires, with inten-
sive active-case finding and contact tracing in all major cities55.

How severe is the disease?
The clinical severity of infectious diseases is typically measured in 
terms of infection fatality risk (IFR) and symptomatic case fatality 
risk56. These severity estimates are used to project how health care 
demand and deaths would scale with epidemic size. Nowcasting 
severity and its risk factors is therefore crucial for helping health 
officials to strike the optimum balance between the socioeco-
nomic costs of control measures and the health threat posed by an 
unmitigated epidemic57. However, real-time accurate estimation of 
severity is challenging because it requires reliable counts of severe 
cases and deaths, accurate estimation of epidemic size and careful 
adjustments for various sources of bias (for example, preferential 
ascertainment of severe cases and delayed reporting of death)56. 
For example, the Wuhan COVID-19 death toll was revised upward 
by 50% weeks after China lifted its nationwide lockdown because 
deaths from COVID-19 were difficult to count during the first wave 
in the absence of widespread testing58. Shortly after COVID-19 
began to spread around the globe, its IFR in China was estimated 
to be 0.66%, with an increasing gradient with age59. Based on these 
age-specific IFRs and the nowcasted R estimates, it was projected 
that an unmitigated COVID-19 epidemic in the United Kingdom 
and United States would result in more than 510,000 and 2.2 mil-
lion deaths, respectively60. These findings forewarned policymak-
ers of the necessity for stringent public health and social measures 
(PHSMs) until safe and effective vaccines had become widely avail-
able, in order to prevent hospital overloads and mass deaths. By 
the same token, tens of billions of US dollars were invested to initi-
ate national and cross-national programs (for example, Operation 
Warp Speed in the United States) that aim to facilitate and acceler-
ate the development, manufacturing and distribution of COVID-19 
vaccines, therapeutics and diagnostics61.

Can pathogen spread be interrupted?
Health protection and the precautionary principle in public health 
mandate swift containment of emerging outbreaks regardless of 
their eventual epidemic potential. Containment measures invari-
ably comprise isolation of cases and quarantine of exposed individ-
uals who have not (yet) exhibited evidence of infection62. The main 
purposes of quarantine are to: (1) prevent potentially asymptomatic 
and presymptomatic individuals from unknowingly infecting other 
people; and (2) isolate and treat cases as soon as they are detected 
during quarantine. Health officials determine the quarantine dura-
tion based on the incubation period, which is the time from infec-
tion to symptom onset63. The 95th percentile of the incubation 
period distribution of COVID-19 was estimated to be around 12 d64. 
Accordingly, most jurisdictions require a quarantine duration of at 
least 14 d to ensure that nearly all quarantined individuals who are 
infected and would go on to show symptoms would be detected 
before release. If testing is co-implemented in quarantined persons, 
asymptomatically infected individuals would also be identified.  
The line list is typically the first source of data for estimating the 

incubation period and its dependence on age, disease severity and 
other factors. This highlights the importance of collating tem-
poral information on exposure and symptoms during outbreak 
response—an essential task that is often overlooked or underappre-
ciated when investigators or tracers are overwhelmed. Notably, only 
ten of the first 425 confirmed cases on the Wuhan line list provided 
the data necessary for estimating the incubation period43.

The effectiveness of control measures initiated by symptoms 
onset (that is, including isolation and quarantine) can be substan-
tially reduced if a large proportion of disease transmission occurs 
when the infectors have no symptoms (that is, when they are pres-
ymptomatic or asymptomatic)65,66. As such, nowcasting the contri-
bution of presymptomatic and asymptomatic individuals to overall 
disease transmission is essential for gauging the speed and coverage 
of case finding and contact tracing needed to contain the epidemic. 
The proportion and infectiousness of asymptomatic COVID-19 
cases remains poorly understood to date due to immense difficul-
ties in detecting them and tracking their viral loads or infectees67. In 
contrast, it was estimated early on that symptomatic cases infected 
about 40% of their infectees before showing symptoms68,69, thus 
implying that contact tracing would need to be very fast and effi-
cient to be effective65,66. These findings prompted the rapid develop-
ment and deployment of various platforms of digital contact tracing 
around the world. Although digital contact tracing is one of the pil-
lars for successful COVID-19 control in countries such as China, 
Singapore and South Korea, the uptake of this intervention in some 
other jurisdictions—most notably, the United States and Europe—
has been low due to privacy concerns and technical issues70.

How many people have been or are currently infected?
As the epidemic unfolds, real-time estimation of cumulative inci-
dence becomes the centerpiece of epidemic nowcasting, because 
knowledge about epidemic size is a prerequisite for inference of 
severity, population-level immunity and the time to and magnitude 
of the epidemic peak. Nowcasting the size of a growing epidemic 
is challenging because reported case counts are inevitably biased 
by the proportion of infections that are symptomatic, care-seeking 
behavior, the availability of tests and so on. Seroepidemiological 
studies, which use measurements of antibody response (for exam-
ple, neutralization assays and enzyme-linked immunosorbent assay) 
to infer infective exposure to the pathogen, arguably provide the 
most direct and reliable data for estimating cumulative incidence71. 
Shortly after COVID-19 began its global spread, population-based 
seroepidemiological studies from multiple countries revealed that 
the cumulative incidence of COVID-19 was far below the poten-
tial herd immunity threshold, and yielded IFR estimates that were 
similar to previous model-based estimates70,72, thus strengthening 
the evidence base for the necessity for sustained, stringent PHSMs. 
Even in places where the theoretical herd immunity threshold has 
been exceeded, it has been known to remain susceptible to further 
infection waves. The resurgence of COVID-19 in Manaus, Brazil is 
a case in point73, from which lessons have been learned74.

Real-time, large-scale serosurveillance has been mostly infeasible 
during the COVID-19 pandemic because the throughput, accuracy 
and reproducibility of commonly used serologic assays (especially 
the labor-intensive neutralization assays, which are regarded as 
the gold standard) are limited. Nevertheless, recent long-awaited 
advances in high-throughput multiplex serology (for example, 
VirScan and Sioma75,76) have set the stage for implementing sero-
surveillance as a standard arm of future epidemic surveillance.

Several innovative strategies have also been trialed to mitigate 
the biases of reporting behavior, reporting delay, testing capacity 
and other factors that distort the convergence between surveillance 
data and true infection incidence. One promising strategy is to infer 
disease prevalence by quantitative monitoring of pathogen genomes 
in wastewater systems77,78. Digital participatory surveillance is 
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another potentially cost-effective substitute or complement for 
conventional syndromic and virologic surveillance, especially in 
resource-limited settings with weak health systems79,80. An integra-
tive framework of next-generation epidemic nowcasting will prob-
ably employ advanced analytics to assimilate the myriad streams of 
conventional and novel surveillance data.

How effective are PHSMs?
Governments worldwide have implemented a wide range of PHSMs 
to suppress COVID-19, including travel restriction, physical dis-
tancing, rapid contact tracing and testing, school and workplace 
closure, curfews and targeted or nationwide lockdowns81,82. While it 
was clear a priori that these PHSMs would carry high economic and 
social costs, there remain large uncertainties about their effective-
ness. As such, nowcasting the effectiveness of PHSMs is essential 
for informing countries how to optimally adjust their PHSM port-
folios subject to their particular temporal and contextual feasibility 
constraints (for example, inertia to mask wearing, public fatigue to 
curfews and physical distancing, and social and political unrest in 
response to economic shutdown). For example, given the massive 
disruption to trade and commerce associated with sustained inter-
national travel restrictions, nowcasting of the optimal timing and 
duration of their implementation (which can be done by making 
integrative use of the above-mentioned data and analytics on global 
and local spread) is critical for guiding economic resumption83.

The effectiveness of PHSMs in suppressing local transmissibility 
is typically inferred from temporal changes in R84,85. As such, these 
analyses are subject to all of the limitations and uncertainties that 
are inherent in the nowcasting of R. The effectiveness of PHSMs 
will not immediately manifest in case-based estimates of R because 
there is a delay of around 10 d between infection and reporting for 
COVID-19. One solution is to use physical contact mixing levels 
of the population as a proxy for disease transmissibility and moni-
tor the former using conventional social contact surveys or digi-
tal human mobility data. Cross-sectional social contact surveys 
have been carried out in Wuhan and Shanghai, as well as in several 
European countries (for example, the CoMix study)86,87. These sur-
veys aim to record the daily number of contacts of each participant 
before and after PHSMs are introduced or lifted. They are some-
times used to compare the geographical differences when localized 
interventions are implemented88. Aggregate data of human mobil-
ity trends have been made publicly available in near-real time by 
several technology enterprises, including Apple, Baidu, Google and 
Facebook. The impacts of individual PHSMs can be estimated more 
efficiently and accurately by considering mobility data from mul-
tiple sources in the reconstruction of transmission dynamics88,89.

What are the socio-behavioral corollaries of epidemic 
control?
The success of PHSMs ultimately relies on the goodwill, and thus 
adherence, of the people. Therefore, it would be important to extend 
surveillance to include psychological and emotional wellbeing, as 
well as attitudes and beliefs90. Misalignment of individual and col-
lective interests could hinder collective adherence, which could be 
further exacerbated over time by pandemic fatigue90. Behavioral 
studies have indeed shown that PHSMs that were effective in earlier 
waves may not be as effective in later waves91, hence necessitating 
nowcasts of public adherence and socioeconomic impact to inform 
relaxation, reintroduction, sustainability and compensatory mea-
sures of PHSMs92.

Metrics for nowcasting and epidemic control should include 
outcomes beyond mortality and morbidity, such as human flourish-
ing and population wellbeing93. Psychobehavioral surveillance can 
detect unintended consequences of PHSMs and identify vulner-
able groups and gaps. For example, stay-at-home orders and other 
measures have led to the largest enforced isolation period in human 

history94. This has contributed to reduced physical activity, social 
support and spiritual support, which in turn affects physical, men-
tal and social wellbeing95–97. Schools were preemptively suspended 
early in the first waves of the COVID-19 pandemic by most coun-
tries. However, as the pandemic has lengthened, the long-term ped-
agogical, emotional and developmental downsides of school closure 
are increasingly recognized98. In addition, many older adults, who 
are at higher risk of death from COVID-19, are living alone or insti-
tutionalized and are failing to thrive due to policies that prohibit 
visitors or cross-household mixing99.

To date, studies have predominantly employed online conve-
nience samples, which are often unreliable for prevalence estimates 
of behaviors and disease burden100. Most studies have also been 
cross-sectional; thus, it is unclear whether mental health outcomes 
were due to the epidemic or preceded the outbreak. In contrast, 
population-representative panel studies can identify longitudinal 
determinants and improve causal inference, thus providing robust 
evidence to drive precision policy planning and evaluation95,100,101. 
However, prospective cohorts are resource intensive and not 
readily available, and respondent fatigue can preclude intensive 
follow-up102. Cohort studies can therefore be complemented by 
serial cross-sectional surveys that randomly sample the general 
population92, and social media platforms (for example, Twitter and 
Weibo) might be harnessed for real-time monitoring of attitudes 
and wellbeing102.

Are vaccines available?
Rapid development of COVID-19 vaccines had been particularly 
challenging because there was no previous licensed vaccine against 
any human coronavirus. The Ebola crisis in 2014 led to the for-
mation of the Coalition for Epidemic Preparedness Innovations 
in 2017, with the mandate of developing vaccines—particularly 
generic platform technologies—to stop future epidemics. The 
Coalition for Epidemic Preparedness Innovations, in coordina-
tion with the WHO ACT Accelerator and national and commer-
cial initiatives (for example, Operation Warp Speed), has facilitated 
unprecedented progress in developing multiple vaccines against 
SARS-CoV-2 through phase 3 clinical trials and emergency use 
authorization, and thus rollout for a handful of vaccines in several 
countries.

The duration of immunity remains unknown at present because 
the currently available data pertain to the first few months after vac-
cination. Serum neutralizing antibodies were found to persist for 
at least 1 year after severe or mild disease103. Since many of these 
vaccines produce neutralizing antibody titers at least comparable to 
that found after natural infection, it is reasonable to expect at least 
a similar duration of protection from vaccines. Natural infection 
appears to protect from both symptomatic infection and, to a lesser 
degree, asymptomatic infection, and both appear to last for at least 
5 months104. It is unclear whether vaccines administered systemi-
cally via intramuscular injection would provide comparable protec-
tion from infection and disease.

Published data on vaccine efficacy pertain to protection from 
clinically symptomatic disease rather than evidence of infection, 
save for a subset of data from the AstraZeneca vaccine so far. 
Evidence of protection from clinical disease may not necessarily 
protect from transmission to a comparable degree105. Thus, vacci-
nated individuals, while protected from overt disease, may possibly 
be susceptible to asymptomatic or mildly symptomatic infection 
and may be able to transmit infection to others, with the corollary 
that PHSMs including travel restrictions may not be substantially 
relaxed.

In the absence of head-to-head comparison of different vaccines, 
it is difficult to compare vaccine efficacy data from different clinical 
trials, given that such trials have been carried out in regions with 
different forces of infection. While there are data on older adults for 
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some vaccines, suggesting that vaccine efficacy is not compromised 
by age, this remains to be established for others. There are also no 
clinical trial data as yet concerning pregnant women, children, the 
immunocompromised and other high-risk populations.

The emergence of different variant strains with enhanced trans-
missibility has been detected separately in the United Kingdom, 
South Africa and Brazil, suggesting convergent evolution. While 
it is unlikely that such antigenic change will completely evade 
vaccine-induced protection from disease, some reduction of efficacy 
is possible, and needs to be monitored106. Equitable vaccine alloca-
tion and delivery between and within countries have remained huge 
challenges. This may well become the Achilles heel of global human 
security in the coming year.

Future directions
The global scientific community has collectively risen to the chal-
lenge of COVID-19 by innovating and deploying in real time a wide 
range of collaborative tools and platforms to facilitate epidemic 
nowcasting, including the COVID-19 dashboards by Johns Hopkins 
University, the Coronavirus Government Response Tracker by the 
Oxford Martin School, the SARS-CoV-2 sequence repository at 
GISAID and its partners, and human mobility trend reports by 
Apple, Baidu and Google. In contrast, ineffective leadership, lack of 
coordination and inconsistent risk communication have seriously 
undermined epidemic nowcasting (and, more broadly, pandemic 
response), especially at the national level in some high-income 
countries, as attested by the almost inverse correlation between 
pre-COVID-19 assessed preparedness and actual performance in 
COVID-19 control across countries. As such, perhaps the most 
important lesson learned from our experience with COVID-19  
is that the disconnect among policymakers, practitioners and sci-
entists must be remedied in order to align evidence synthesis with 
public health operations and policies, with political implementation 
for the ongoing COVID-19 pandemic as well as future emergencies.

Going forward, epidemic nowcasting will require scientists 
to distill informative or actionable insights from an increasingly 
diverse range of data. Misinterpretation, misrepresentation or  
otherwise misuse of these nowcasts will fuel infodemics, as we 
have learned to our detriment during the ongoing pandemic.  
Such infodemics can be mitigated by developing sophisticated 
information systems that are professionally designed to robustly 
collate and curate epidemic nowcasts for policymakers and public 
health professionals, much like how the Bloomberg terminals pro-
vide real-time financial and economic nowcasts for professionals in 
the world of finance. Such systems will probably reduce the friction 
and latency in cross-disciplinary communication and consumption 
of epidemic intelligence. Once installed and made routine, these 
systems can strengthen our response not only to pandemics but also 
to less catastrophic but more frequent epidemics (such as influenza 
and Ebola), as well as non-infectious disease crises (such as climate 
change and environmental pollution).

However, the initial and continuous development of such sys-
tems will be challenging because it competes for the same pool of 
technical talents (most notably, in data science and software engi-
neering) that are highly sought after by enterprises and startups in 
technology, finance and other industries that can support much 
more generous remunerative packages. In view of the massive eco-
nomic damage imposed by pandemics, which was estimated to be 
US$16 trillion for COVID-19 (ref. 107), world leaders should devise 
innovative incentives to support the development of such systems 
and other pandemic products, instead of relying on ad-hoc unco-
ordinated efforts of the research and development community for 
delivery. The US National Academy of Medicine-led Global Health 
Risk Framework, which was set up to create an effective global archi-
tecture for mitigating the threat of pandemics, made the same rec-
ommendation in 2016, alongside dozens of other recommendations  

that would have better prepared us for COVID-19 had these lessons 
been adopted and implemented more widely108.
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