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AlphaFold heralds a data-driven revolution in 
biology and medicine
Protein structures predicted using artificial intelligence will aid medical research, but the greatest benefit will come 
if clinical data can be similarly used to better understand human disease.

Janet M. Thornton, Roman A. Laskowski and Neera Borkakoti

The protein structure prediction 
problem is the question of how a 
protein’s sequence of amino acids 

results in its fully folded three-dimensional 
structure. This has presented a formidable 
computational challenge for many decades.

At the end of 2020, a significant 
advance was announced by DeepMind, a 
London-based artificial intelligence (AI) 
company now part of Google’s parent  
firm, Alphabet Inc. DeepMind’s AlphaFold 
2 program had significantly outperformed 
other methods in the biennial Critical 
Assessment of protein Structure Prediction 
(CASP)1, producing models of a quality 
approaching that of experimental 
determination. AlphaFold 2 has since  
been published2 and, more recently, the 
source code and almost 350,000 protein 
models from various species, including 
human, have been made public3. This trove 
of protein structures has implications for 
both experimental and computational 
structural biology, and beyond4–7, but here 
we consider its possible bearing  
on medicine.

AlphaFold 2 uses data gathered by 
structural biologists and made publicly 
available by the worldwide Protein Data 
Bank (wwPDB)8—which currently holds 
over 180,000 experimentally determined 
structures. It is commendable that 
DeepMind has released the code and 
predictions for everyone to use.

Over 350,000 protein models have  
been made available on the AlphaFold 
Protein Structure Database at the  
European Molecular Biology Laboratory–
European Bioinformatics Institute 
(EMBL-EBI), with tools to view and 
interrogate the structures3. These proteins 
come from 21 species, including the most 
common model organisms and some 
notable pathogens—Leishmania infantum, 
Mycobacterium tuberculosis, Plasmodium 
falciparum and Trypanosoma cruzi. Before 
the end of the year, DeepMind expect to 
release models covering UniRef90, a unique 
sample of all known protein sequences 
comprising 130 million proteins.

Although protein structures do not of 
themselves lead to new medicines, they 
often provide a better understanding of the 
molecular mechanisms of a protein and in 
so doing offer insights into how the protein 
works and how its modulation might lead 
to a disease or a therapy. Over the past 
50 years, protein structures have been an 
integral part of drug design efforts, with 
many large pharma companies establishing 
their own structural biology teams. 
Structural data have played a critical role 
both in determining the druggability of a 
given protein target9 and then in enabling 
the design of small-molecule drugs that will 
bind to it7.

Variable quality
The AlphaFold AI program rapidly 
generates models of protein structures from 
their amino acid sequence more accurately 
than had previously been achieved. The 
accuracy of the models is variable (both 
within and between models) depending on 
the protein, but, importantly, a confidence 
measure is provided at each residue position 
by the predicted local distance difference 
test (pLDDT) score.

The predictions for single-chain, 
structured proteins are remarkably good—
indeed, comparable in quality to those from 
experimental structure determination. 
However, the quality of the predictions 
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Fig. 1 | The good, the bad and the ugly. a, The good. A superposition of the AlphaFold model of human 
14-kDa phosphohistidine phosphatase (UniProt accession Q9NRX4) and the solution NMR structure 
of the same protein (PDB code 2ai6). The PDB structure is colored purple, while the AlphaFold model 
is colored according to the pLDDT score: dark blue for the most confidently predicted regions, via light 
blue and yellow to orange for the regions of very low confidence. The superposition is almost perfect 
except for the more disordered loop regions. b, The bad. Human insulin (UniProt accession P01308) 
represented by the most complete PDB structure (2kqp) in purple, and the AlphaFold model colored by 
confidence score (as in a). The AlphaFold model bears no resemblance to the PDB structure, possibly 
because it has missed the disulfide bonds that hold the protein together. c, The ugly. The AlphaFold 
model of human E3 ubiquitin-protein ligase PPP1R11 (UniProt accession O60927), an enzyme classed 
as EC 2.3.2.27, for which there is no PDB structure, not even of a homolog. One would expect it to be a 
globular protein, but the AlphaFold model is anything but.
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depends on the length of the protein and its 
flexibility.

Not all protein structure predictions are 
of equal value. Figure 1 highlights three 
example predictions, showing the good, 
the bad and the ugly. Figure 2a provides an 
overview of the coverage (experimental and 
predicted) and quality of structures for the 
human proteome. Figure 2b illustrates the 
distribution of quality scores for the human 
sequences.

A new structure prediction pipeline
Despite the varying quality of the new 
structures, SWISS-MODEL10 has already 
installed the code from AlphaFold to 
complement its existing structure  
prediction pipelines, while other  
groups have added the models to their 
databases of protein information, for 
example UniProt11 and PDBsum12. 
ColabFold13 provides tools for modeling 
multi-chain homo- and hetero-complexes 
using the AlphaFold and also RoseTTAFold 
models14. Another use of the models  
is in the interpretation of low-resolution 
electron microscopy data, especially  
where the protein shows flexibility  
between domains.

However, there are major limitations to 
the relevance of the AlphaFold data to the 
design of therapeutics. In particular, large 
multi-domain and flexible proteins still 
are not modeled very well, and the models 
lack any ligands (small molecules, DNA, 
cofactors, metals and other proteins) and 
therefore do not provide any interaction 
data, which are especially relevant for 
elucidating function.

Initially, the AlphaFold models 
will be used in exactly the same way 
as experimental structural data (and 
indeed will be used to help determine 
low-resolution experimental structures).  
We see four areas of immediate potential 
impact for medicine (see Fig. 3).

Therapeutic design
Most small-molecule drugs are designed 
with the benefit of structural insights15. 
Future design programs (whether for 
small molecules, biologics, biosimilars or 
proteolysis targeting chimeras (PROTAC) 
therapeutics) will use the models from 
AlphaFold whenever an experimental 
structure is not available.

For human sequences, the novel 
coverage is actually rather small (Fig. 2b), 
especially for those proteins for which 
drugs have already been developed. It is, of 
course, invaluable to know the prospective 
ligand-binding site, preferably with a 
structure of the complex with a ligand  
(Fig. 3a). As the predicted models lack all 

ligands, however, this requires docking 
approaches, with their varying reliability.

Comparative analyses of the target 
proteins with AlphaFold models of similar 
proteins may be used to generate more 
specific drugs, such as drugs with potentially 
fewer toxic side effects. In addition, 
AlphaFold data from different species may 
be studied to make more informed choices 
as to the most suitable animal model for 
testing potential medicines targeted  
towards humans.

Better drugs and more validated targets 
are always needed, and although protein 
structural data may contribute to this, 
designing small molecules using protein 
structures at the start of a drug development 

program is rarely the bottleneck in the time 
taken to launch a new drug onto the market.

Human pathogenic variants
Structural data help to identify pathogenic 
variants in humans—that is, those that cause 
disease16. A current challenge is to identify 
such pathogenic variants (for example, 
in developmental diseases or cancer 
progression) among the many variants 
observed in an individual’s genome. Almost 
50% of known variants are classified as 
variants of unknown significance (VUSs) in 
ClinVar17, a database of genomic variation 
and its relationship to human health.

AlphaFold has limited value for modeling 
the effects of individual mutations, although 
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Fig. 2 | Confidence scores for AlphaFold models. a, Distributions of confidence scores for AlphaFold 
models for four organisms: human, Trypanosoma cruzi, Mycobacterium tuberculosis and Escherichia coli. 
The scores are classified as very high (dark blue), confident (light blue), low (yellow) and very low 
(orange). The two bacterial species show over twice as many very highly confident residues as do 
the other species, possible because they tend to have shorter proteins that can be more confidently 
predicted. b, Distribution of average confidence score per AlphaFold model (obtained by averaging the 
individual residue confidences over the whole model) for human proteins with no close homolog in 
the PDB (dark blue) and those in which at least part of the sequence can be homology-modeled from 
a structure in the PDB (orange). The latter distribution is heavily skewed to higher average confidence 
scores, suggesting models of higher quality. For long proteins, only the model of the first fragment has 
been included in the data.
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reliable models may be used to identify 
likely binding sites, enzyme active sites, 
interfaces or structural constraints, and  
so identify those variants that are more  
likely to be pathogenic than those that  
can be benignly replaced by other amino 
acids (Fig. 3b).

Most functions predicted from sequences 
or structures rely on close or distant 
evolutionary relationships. Predicted 
structures potentially allow one to see 
further back in evolutionary time, to identify 
the most distant relatives—from which some 
functional inference may be drawn.

Drug targets in pathogens
Structural coverage of pathogens in the 
wwPDB is often much less than for model 
organisms. With the larger release of 
data promised for later in 2021, however, 
predicted structures for many new 
organisms will be made available.

Protein structures from pathogens  
such as viruses, bacteria and fungi can  
be used to assess druggability and  
possible cross-reactions with human 
proteins and to aid in the design of 
medications targeted toward multiple 
pathogens. Identifying drug targets in 
infectious agents may provide the most 
available low-hanging fruit in the short 
term, and indeed DeepMind is already 
collaborating with organizations such as 
Drugs for Neglected Diseases Initiative  
and other partners.

Enhance vaccine and antibody design
With the COVID-19 pandemic and the 
development of SARS-CoV-2 vaccines, 
knowledge of the antigenic spike protein 
structure has assisted in understanding 
the surface topology of the virus and its 
antigenicity.

Amazingly, as of 3 September 2021, there 
were 1,491 structures of SARS-CoV-2 proteins 
in the wwPDB18, contributed by laboratories 
all around the world. The possibility of 
predicting viral spike proteins accurately 
will provide very rapid analysis compared 
to experimental structure determination for 
emerging viruses in future pandemics.

A data-driven revolution
The impact of the protein structures from 
AlphaFold in medicine is potentially 
substantial. However, AlphaFold is most 
likely to be just the start of a revolution 
based on data-driven prediction in biology 
and medicine. Biological processes at all 
levels (intracellular, intercellular, organoid 
and organism) involve interactions between 
molecules.

Although current AlphaFold predictions 
are limited to single protein chains and 
do not provide explicit information 
about interactions with other molecules, 
new AI-based tools could predict such 
interactions across the proteome—delving 
into different complexes in different cell 
types, which change with the environment 
and over time. In the longer term, AI 

methods will be developed and applied 
to many aspects of protein structures to 
improve predictability.

Projects such as the Earth Biogenomes19 
and Darwin Tree of Life20 that ultimately 
seek to sequence all living organisms will 
generate masses of new protein sequence 
data. AlphaFold2 is the first step to 
generating the whole structural proteomes 
for all of these different species. The 
challenge is then to interpret these genomes 
in terms of each organism’s body shape, 
development, behavior and natural history, 
using genotype-to-phenotype studies. 
Natural products have been the basis for 
many drugs, so elucidating the genomes of 
many new species may ultimately lead to 
novel nature-inspired therapies. No doubt 
AI methods will be extensively employed in 
this quest.

From a medical perspective, the 
opportunities presented by AI are to 
follow in the footsteps of the DeepMind 
approach and use clinical data to understand 
diseases—their diagnosis and prognosis, 
and determination of what combinations 
of therapies are best suited for particular 
patients in a more holistic approach.

Protein Structure Prediction presented 
the perfect challenge for AI: the data for 
all known structures were freely available, 
well curated and organized in the wwPDB. 
The challenge was very specific, and the 
success of the outcome measurable and 
independently assessed in CASP.

The availability of biological research 
data from institutes such as the US National 
Center for Biotechnology Information 
(NCBI) and EMBL-EBI (with the many 
different types of data and available data 
resources) has transformed biological 
research in the last 20 years. The situation 
for clinical data is entirely different. Like 
biological data, clinical data are very 
heterogenous, but they are rarely easily 
available, often not quantitative, difficult 
to share across borders and described by 
limited ontologies and metadata. To add 
more complexity, such data cannot be 
made publicly available while maintaining 
personal confidentiality.

Consequently, to take advantage 
of the new, powerful AI methods, the 
imperative with clinical data should be 
to build the national and international 
infrastructures necessary to allow clinical 
data to be collected and shared, collated and 
standardized.

By analogy with AlphaFold’s success  
in predicting structures, this will accelerate 
the process of finding therapies that are 
effective and available to all. In the UK, 
Health Data Research UK is addressing 
this challenge by creating Trusted Research 
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Fig. 3 | Using AlphaFold for drug design and disease-associated variants. a, Application of AlphaFold 
models to drug design. The protein shown in stick representation is the AlphaFold model of 3-oxo-
5-alpha-steroid 4-dehydrogenase 2 (UniProt accession P31213). According to DrugBank, the protein is 
a target for several drugs, including spironolactone and finasteride. The colored mesh represents the 
surface of the largest cleft, which forms a deep tunnel. The colors correspond to residue conservation 
scores (from red for most highly conserved to blue for the least). The large red tunnel suggests a highly 
conserved binding site that could form a basis for further drug design. The AlphaFold model is virtually 
identical (root mean squared deviation of 0.4 Å on all C-alpha atoms) to a recent PDB structure of 
the protein (PDB code 7bw1). b, Disease-associated variants. The same protein as in a, here shown 
as a blue cartoon, representing the main chain. The residues shown as red sticks are some of the 
disease-associated variants (labeled) responsible for pseudovaginal perineoscrotal hypospadias. They 
mostly line the deep tunnel shown in a (here seen end-on) and presumably interfere with the binding of 
the protein’s natural substrate.
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Environments for clinical data, and 
worldwide, the Global Alliance for Global 
Health is establishing standards and 
protocols to enable swifter progress. For this 
to be successful, multi-disciplinary teams 
will be needed, involving clinicians, domain 
experts and machine learning experts, to 
develop the tools to exploit the data.

It has taken many years to establish the 
biological databases that are so widely used 
today—and the challenge for clinical data 
is even larger. This calls for immediate 
investment in creating a new health data 
infrastructure so that patients will be 
proud to contribute their data to improve 
human health and the world can face new 
pandemics with confidence. ❐
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Psychedelic therapy: a roadmap for wider 
acceptance and utilization
Psychedelics have shown great promise in treating mental-health conditions, but their use is severely limited by 
legal obstacles, which could be overcome.

Mason Marks and I. Glenn Cohen

The COVID-19 pandemic has 
exacerbated a national mental-health 
crisis in the United States. For two 

decades, drug-overdose deaths have risen 
exponentially, and suicide rates have steadily 
increased. These trends reflect deep-seated 
problems with the healthcare system, 
including low investment in preventative 
mental healthcare and a lack of innovation 
in psychiatry. In search of more effective 
treatments, clinicians are exploring the 
therapeutic use of psychedelic compounds, 
a promising avenue for addressing the 
mental-health crisis. However, there 
are social and legal obstacles to making 
psychedelics a viable treatment option1.

Schedule I controlled substances
Psychedelics are a class of natural 
and synthetic compounds that 
includes psilocybin, MDMA 
(3,4-methylenedioxymethamphetamine), 
ibogaine and DMT (dimethyltryptamine). 
Some psychedelics have been used by 
Indigenous communities for hundreds 
or thousands of years. Others were first 

synthesized in the early 20th century. By the 
middle of the 20th century, clinicians used 
psychedelics as adjuncts to psychotherapy, 
reporting a variety of benefits. However, in 
the 1970s they were categorized as schedule 
I controlled substances, which are said to 
have “no currently accepted medical use 
and a high potential for abuse”; this blocked 
mainstream research on these compounds 
for decades.

In the late 1990s, the US Drug 
Enforcement Administration (DEA) 
permitted some researchers to study limited 
amounts of psychedelics, which allowed 
research to resume. Clinical trials have now 
been conducted at leading universities, and 
a growing body of evidence supports the 
use of psychedelics, such as psilocybin and 
MDMA, in the treatment of depression2, 
post-traumatic stress disorder3 and anxiety 
toward the end of life4.

The schedule I status of most 
psychedelics imposes a ceiling on many 
policy recommendations. The evidence 
in support of rescheduling is strong, 
particularly for psilocybin, which is derived 

from fungi5. Unlike other schedule I 
substances such as heroin, and schedule II 
compounds, including cocaine and fentanyl, 
psilocybin exhibits a low risk of toxicity 
and a very low potential for dependence 
or addiction6. Psilocybin use is not 
criminalized in several countries, including 
Portugal and the Netherlands, and a study 
commissioned by the Dutch Ministry of 
Health found that over-the-counter sales 
posed minimal risk to individual people and 
the public7.

Acknowledging its therapeutic benefits, 
the Canadian government made psilocybin 
available to people with life-threatening 
illness through compassionate-use 
regulation. On the basis of clinical-trial 
data, the US Food and Drug Administration 
(FDA) designated psilocybin a breakthrough 
therapy for major depressive disorder and 
treatment-resistant depression8.

Rescheduling can occur through several 
means. The US Congress can amend the 
Controlled Substances Act, changing the 
categorization of any controlled substance9. 
Alternatively, the president or the federal 
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