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Deep learning-aided decision support for 
diagnosis of skin disease across skin tones

Matthew Groh    1,2  , Omar Badri    3, Roxana Daneshjou    4,5, Arash Koochek6, 
Caleb Harris2, Luis R. Soenksen    7, P. Murali Doraiswamy2,8 & Rosalind Picard    2

Although advances in deep learning systems for image-based medical 
diagnosis demonstrate their potential to augment clinical decision-making, 
the effectiveness of physician–machine partnerships remains an open 
question, in part because physicians and algorithms are both susceptible 
to systematic errors, especially for diagnosis of underrepresented 
populations. Here we present results from a large-scale digital experiment 
involving board-certified dermatologists (n = 389) and primary-care 
physicians (n = 459) from 39 countries to evaluate the accuracy of 
diagnoses submitted by physicians in a store-and-forward teledermatology 
simulation. In this experiment, physicians were presented with 364 images 
spanning 46 skin diseases and asked to submit up to four differential 
diagnoses. Specialists and generalists achieved diagnostic accuracies of 
38% and 19%, respectively, but both specialists and generalists were four 
percentage points less accurate for the diagnosis of images of dark skin 
as compared to light skin. Fair deep learning system decision support 
improved the diagnostic accuracy of both specialists and generalists by 
more than 33%, but exacerbated the gap in the diagnostic accuracy of 
generalists across skin tones. These results demonstrate that well-designed 
physician–machine partnerships can enhance the diagnostic accuracy 
of physicians, illustrating that success in improving overall diagnostic 
accuracy does not necessarily address bias.

The future of machine learning in medicine is unlikely to involve sub-
stituting machines for physicians, but instead will involve physician–
machine partnerships where domain-specific interfaces built on top of 
machine learning models may support clinical expertise in providing 
more accurate diagnoses for patients1–9. However, an emerging litera-
ture on human and artificial intelligence (AI) collaboration reveals that 
physician–machine partnerships are not guaranteed to be better than 
either physicians or machines alone10–14. In particular, experts may have 
trouble recognizing when to override or defer to algorithmic advice, 
which may be systematically biased in ways unknown to the expert15. 

Initial research in store-and-forward teledermatology suggests clinical 
decision support based on a deep learning system (DLS) can improve 
diagnostic accuracy by generalists1, but open questions remain about 
how physician–machine partnerships perform across levels of physi-
cian expertise and across underrepresented populations16.

Racial bias in medicine is well documented17–21. In dermatology 
there is a lack of representation of diverse skin tones that perme-
ates textbooks22,23, residency programs24, dermatology research25, 
non-specialists’ diagnostic accuracy26,27 and training data for machine 
learning algorithms28. Although deep learning models show promise 
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65% of wrong classifications to be correct classifications, resulting in 
84% top-1 accuracy. The treatment DLS is designed to anticipate future 
DLS systems that may be substantially more accurate than today’s lead-
ing systems. The goal of this experimental set-up is not to assess the 
DLSs themselves, but rather to understand the impact of the DLSs on 
human decision-making. The control clinical decision support inter-
face consists of three buttons in the following order: ‘Update my top 
prediction with [disease]’, ‘Update my differential to include [disease]’ 
and ‘Keep my differential’. The treatment interface consists of the same 
three buttons in reverse order, as shown in Supplementary Fig. 4. For 
full details of the DLS and the interface for clinical decision support, 
see the DLS development section in the Methods.

The experiment began by presenting participants with seven 
pre-survey questions, instructions, and the diagnostic accuracy task, 
where we ask participants to provide a differential diagnosis of up to 
three diseases (Supplementary Figs. 1 and 2 and Fig. 1 provide screen-
shots of the experimental interface). Next, we presented physicians 
with clinical decision support and asked them to decide whether or not 
to include the suggested diagnosis in their differential (Supplementary 
Fig. 4). In this experiment, we motivated participant engagement by 
informing them on the reference disease after each trial and displaying 
their overall performance after ten trials, which allowed physicians 
to learn about the content (for example, Which images correspond 
to which disease? How often is the decision support correct?) and 
themselves (for example, Did the participant diagnose the image cor-
rectly? How accurate is the participant compared to other specialists, 
generalists and the DLS?).

In the results presented here, we evaluate how accurately the 
specialist and generalist physicians diagnose images of inflammatory- 
appearing skin disease. We consider three measures of accuracy: top-1 
accuracy (Does the participant’s leading diagnosis match the skin  
disease in the image?), top-3 accuracy (Do any of the participant’s  
initial three differential diagnoses match the skin disease in the image?) 
and top-4 accuracy (Do any of the participant’s initial three differ-
ential diagnoses or the decision support suggestion—if included by 
the participant—match the skin disease in the image?). We further 
evaluate how diagnostic accuracy differs across different skin tones 
in the images, as well as the physicians’ experience with different skin 
tones. Finally, we consider how DLS-based decision support influences 
diagnostic accuracy.

Physician characteristics
In our digital, diagnostic accuracy experiment, we collected 14,261 dif-
ferential diagnoses from 1,118 individuals on 364 images. This included 
5,365 differentials from 389 board-certified dermatologists (BCDs), 
1,691 differentials from 116 dermatology residents, 5,458 differentials 
from 459 individual primary-care physicians (PCPs) and 1,747 differen-
tials from 154 other physicians. The first image shown in the experiment 
was an image of a woman with acne; this served as an attention check 
that physicians at all levels of expertise should be able to diagnose 
accurately. In total, 98% of BCDs, PCPs, and other physicians passed the 
attention check, and 96% of dermatology residents passed the atten-
tion check. Moreover, 76% of BCDs and PCPs, 73% of other physicians, 
and 72% of dermatology residents passed the attention check and pro-
vided differential diagnoses on at least ten images. After participants 
provided ten differential diagnoses, we thanked each participant for 
completing the experiment, revealed the aggregate performance of 
the other participants to the participant, and offered the participant an 
opportunity to continue diagnosing skin diseases in the experiment. 
Figure 1 provides an illustration of the experimental design.

In the sections on diagnostic accuracy, we focus our analysis on the 
first ten differentials provided by participants who passed the atten-
tion check and provided at least ten differentials. This includes 2,660 
differentials from 296 BCDs, 747 differentials from 83 dermatology 
residents, 3,150 differentials from 350 PCPs and 1,015 differentials from 

for enhancing clinical decision-making in dermatology29,30, algorith-
mic audits of deep learning models for dermatology reveal that these 
applied models often exhibit systematic errors on subsets of the 
data, especially on dark skin31,32. Recent research in machine learning 
applied to dermatology has focused on increasing the transparency 
in large-scale dermatology image datasets by annotating images with 
the estimated Fitzpatrick skin type (FST)33, developing new datasets 
with a focus on diversity32 and creating synthetic images with diffu-
sion models34. These solutions can address some of the current issues 
of transparency and performance disparities35, but an open question 
remains of how accurately specialist and generalist physicians diagnose 
skin disease across skin tones in a store-and-forward teledermatology 
context, as well as how a physician–machine partnership may help to 
reduce (or possibly exacerbate) any potential differences in diagnostic 
accuracy across skin tones.

Methods from digital experiments in social sciences can be used 
for evaluating the accuracy and bias in medical decision-making 
and human–computer interactions. Similarly to how crowdworkers 
on MTurk enabled the transformation of experimentation in social 
and behavioral science a decade ago36,37, physician platforms offer 
an opportunity to recruit large numbers of physicians for surveys 
and diagnostic accuracy experiments38. We recruited a large number 
of physician participants by paying a nominal fee and designing the 
experiment to be a fun learning experience drawing on insights from 
gamified behavioral experiments39. In addition, we followed guidance 
from integrative experimentation40 and identified a reproducible 
experimental design space that covers the following dimensions: skin 
diseases, skin tones, physician expertise, physician–machine partner-
ships, clinical decision support accuracy, and user interaction designs. 
Our experiment focuses on measuring diagnostic accuracy with and 
without AI assistance across light and dark skin, and follows methods 
from algorithmic auditing41, which serves as a useful tool for systemati-
cally evaluating errors, exposing bias, and promoting transparency in 
machine learning algorithms42. We also build on recent work in diag-
nosing physician error43,44 to demonstrate that diagnostic accuracy 
experiments can offer insights into the performance of physicians and 
physician–machine partnerships.

Results
Study design
We designed a custom, digital experiment to evaluate physicians’ diag-
nostic accuracy on images of inflammatory-appearing skin diseases. 
This image-based experimental set-up mimics store-and-forward 
teledermatology and the types of patient images physicians are sent 
through electronic health record messaging systems, which often have 
minimal clinical context. We curated 364 images of 46 skin diseases. The 
vast majority of images (78%) depict the following eight main diseases, 
with at least 29 images for each disease: atopic dermatitis, cutane-
ous T-cell lymphoma (CTCL), dermatomyositis, lichen planus, Lyme 
disease, pityriasis rosea, pityriasis rubra pilaris, and secondary syphi-
lis. The selected images represent a near uniform distribution across 
skin tones as measured by estimated FST. We hosted these images in 
an image-only, simulated store-and-forward experiment (outlined in 
Fig. 1), a setting that limits the amount of information available to the 
physician relative to the information available in an in-person clinical 
visit. Supplementary Figs. 1–5 provide additional screenshots of the 
experiment’s user interface.

The experiment begins with the randomized assignment of partici-
pants to two sets of conditions: two versions of the DLS and two inter-
faces for clinical decision support. The control DLS is a neural network 
architecture trained to classify nine classes (the eight main diseases 
and another class to represent all other diseases), has a top-1 accuracy 
of 47%, and is a fair classifier in the sense that accuracy is highly similar 
across FSTs. The treatment DLS is a Wizard of Oz classifier—a syntheti-
cally enhanced version of the control DLS, where we randomly re-assign 
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113 other physicians. Our results are robust to other selection criteria, 
such as only participants from the United States, participants who 
provided fewer than ten differentials, and all participants who pass the 
attention check (Supplementary Tables 1–4). This experiment included 
physicians living in 39 countries, half of whom live in the United States.

Image quality
To ensure that the skin disease reference labels accurately represent 
the skin diseases in the images, we followed a five-step quality-control 
process with three BCDs, conducted a post hoc quality review, and 
evaluated the accuracy rates across image sources, as described in 
the Methods.

Overall diagnostic accuracy
In the experiment, participants did not know which skin diseases would 
appear, and, as such, the accuracy of random guessing was near 0% 
(more details are provided in the Experimental interface subsection 
in the Methods). The top-3 accuracies of the BCDs, dermatology resi-
dents, PCPs and other physicians, as measured by any of their three 

differential diagnoses matching the reference label, were 38%, 36%, 19% 
and 18%, respectively, across all images in the experiment (excluding 
the attention check image) and 37%, 35%, 17% and 16%, respectively, 
across images of the eight main diseases in the experiment.

The top-1 accuracies, the accuracy of the leading diagnosis only, 
for the BCDs, dermatology residents, PCPs and other physicians were 
27%, 24%, 14% and 13%, respectively, across all images in this experi-
ment (excluding the attention check image) and 27%, 24%, 13% and 
12%, respectively, across images of the eight main diseases in this 
experiment.

Figure 2a presents the mean diagnostic accuracies of the par-
ticipants split by their primary, secondary and tertiary diagnoses for 
images of the eight main diseases in this experiment.

Figure 2b presents the top-3 accuracies of the BCDs’ and PCPs’ full 
differential diagnoses across the eight main diseases and a category 
labeled ‘Other’, which aggregates the auxiliary 38 skin diseases into 
a single category. The BCDs significantly outperformed the PCPs at 
visually diagnosing skin diseases from images across seven of the eight 
skin diseases and the Other category. Extended Data Tables 1 and 2  

Physician
participants
(N = 1,120)

Survey
(seven questions)

Control 
DLS

Treatment
DLS

Control interface

Image-based 
di erential
diagnosis

(physician provides
up to three
di erential
diagnoses)

DLS support interface
(physician selects one of 

three options: ignore the DLS
suggestion, include it in the

di erential, or include it 
as the leading diagnosis)

Treatment interface

Control interface

Treatment interface

Randomized conditions Pre-experiment Experiment (repeat for ten images )

Compare accuracy to
other physicians 

and DLS 

Post-experiment

a

b

Fig. 1 | Experimental design flowchart and user interface. a, Flowchart describing 
the experimental design, including the number of participants, the randomly 
assigned conditions, the pre-experiment survey, the experiment, and the final 

stage, in which participants can see how they compare to other participants.  
b, Screenshot of the user interface for the image-based differential diagnosis 
portion of the experiment. Panel b reproduced with permission from Refinery29.
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show confusion matrices for how the consensus labels match the lead-
ing diagnoses of the BCDs and PCPs, respectively.

We found that the majority of BCDs and PCPs chose to respond 
with a default confidence of 50%. For participants who did not choose 
the default confidence, we found that top-1 and top-3 accuracies are 
positively correlated with confidence for the BCDs and PCPs, with 
Pearson correlation coefficients between 0.14 and 0.17. In Extended 
Data Fig. 1, we show participant accuracy by reported confidence.

We found that the most common leading diagnosis for each image 
by BCDs and PCPs is correct in 48% and 33% of observations, respec-
tively. At least one BCD identified the reference label in their differential 
diagnosis in 77% of images, and at least one PCP identified the reference 
label in their differential diagnosis in 58% of images. After seeing a 
correct DLS prediction, at least one BCD included the reference label 
in their differential diagnosis in 98% of images.

Diagnostic accuracy and clinical decision-making across light 
and dark skin
Across all images, we found that skin diseases in dark skin (estimated 
FST 5 and 6) are diagnosed less accurately than skin diseases in light 
skin (estimated FST 1–4). Across all participants, we found the top-1 and 
top-3 accuracies for skin diseases in dark skin to be four percentage 
points (P < 0.001 and P = 0.001, respectively) lower than for skin dis-
eases in light skin. All statistical comparisons in this Article are based on 
ordinary least-squares regression with robust standard errors clustered 
at the participant level unless otherwise noted. When we examined 
the physician types separately, we found the top-1 accuracies of BCDs, 
dermatology residents, PCPs and other physicians to be lower by five 

percentage points (P = 0.011), five percentage points (P = 0.114), three 
percentage points (P = 0.006) and five percentage points (P = 0.012) 
for images of dark skin than light skin, respectively. Similarly, the top-3 
diagnostic accuracies of BCDs, dermatology residents, PCPs and other 
physicians were lower by three percentage points (P = 0.117), five per-
centage points (P = 0.113), four percentage points (P = 0.008) and four 
percentage points (P = 0.092) for images of dark skin than light skin, 
respectively. We found qualitatively similar results in a series of robust-
ness checks including only participants who live in the United States, 
participants who provided fewer than ten responses, and all responses 
from all participants who passed the attention check revealed similar 
results (Supplementary Tables 1, 2, 3 and 4).

Fig. 3c,d presents the top-3 diagnostic accuracy across skin dis-
eases for BCDs and PCPs, respectively (Extended Data Fig. 2 presents 
the top-1 diagnostic accuracy across skin diseases). BCDs diagnosed 
seven out of eight skin diseases and the Other category with higher 
accuracy for light skin than dark skin images. The only skin disease in 
which BCDs were more accurate on dark skin than light skin is lichen 
planus. We do not find statistically significant differences in top-3 accu-
racy across skin tones across individual skin diseases for BCDs, but we 
find statistically significant differences in BCDs’ top-1 accuracy across 
light and dark skin images in four diseases—atopic dermatitis, Lyme 
disease, pityriasis rosea and CTCL—18 percentage points (P = 0.007), 
20 percentage points (P < 0.001), 19 percentage points (P = 0.001) and 
10 percentage points (P = 0.009) lower on dark skin, respectively (these 
p-values are based on ordinary least-squares regressions with robust 
standard errors clustered at the participant level, which are nearly 
but not exactly the same as the p-values from the t-test presented in 
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Fig. 2 | Diagnostic accuracy across skin diseases. a, Diagnostic accuracy of 
physician participants on the eight main skin diseases. Shades of blue indicate 
the diagnostic accuracy of the first, second and third differentials, respectively. 
‘Resident’ refers strictly to dermatology residents. Other MD/DO refers to other 
physicians who have a doctor of medicine or doctor of osteopathic medicine 
degree. b, Top-3 diagnostic accuracy of BCDs (N = 296 physicians and N = 2,660 

observations) and PCPs (N = 350 physicians and N = 3,150 observations) on 
each of the eight main skin diseases and the auxiliary 38 diseases, which are 
aggregated in the ‘Other’ category. All observations are represented as 1 or 0 for 
whether the submitted diagnoses match the consensus label or not. P values are 
calculated with a two-sided t-test. NS (not significant) indicates P > 0.05. Error 
bars represent the 95% confidence interval of the true mean.
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Extended Data Figure 2). We find statistically significant and large dif-
ferences in the top-3 and top-1 diagnostic accuracies of PCPs across 
light and dark skin images in three diseases: atopic dermatitis, Lyme 
disease and pityriasis rosea, respectively.

We found that accuracy disparities across skin tones are moder-
ated by the diversity of patients seen by PCPs and PCP training. In 
particular, we found that PCPs who report seeing mostly or all white 
patients are seven percentage points (P = 0.009) less accurate (top-3) 
on dark skin images than light skin images. We did not find statisti-
cally significant differences for BCDs based on self-reported patient 
diversity (a bar chart is provided in Extended Data Fig. 3). Likewise, we 
found that PCPs who reported sufficient training were five percentage 

points (P = 0.079) more accurate (top-3) than PCPs who reported insuf-
ficient training on images of dark skin than light skin. We did not find 
statistically significant differences in BCDs’ top-1 or top-3 accura-
cies with respect to their self-reported sufficient training on dark 
skin. Similarly, we did not find statistically significant differences in 
BCDs’ or PCPs’ top-1 or top-3 accuracies with respect to their years of 
experience or self-reported difficulty with white patients relative to 
non-white patients.

We also asked participants whether they would refer a patient for 
biopsy and asked non-BCDs whether they would refer the patient for 
a second opinion by the dermatologist. Figure 4 presents biopsy and 
dermatologist second opinion referral rates. BCDs indicate they would 
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of the true mean. b, Top-3 diagnostic accuracies of physician participants across 
estimated FSTs on the eight main diseases. c, Top-3 diagnostic accuracy of BCDs 
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refer a patient for biopsy in 28% of observations. In contrast, PCPs 
indicate they would refer a patient for biopsy in only 7% of observa-
tions and refer a patient to a dermatologist in 28% of observations. We 
found that BCDs refer common, non-life-threatening diseases (atopic 
dermatitis (P = 0.008) and pityriasis rosea (P = 0.015) for biopsy at sig-
nificantly higher rates for dark skin than light skin, and refer pityriasis 
rubra pilaris (a rare disease; P = 0.033) and CTCL (a rare and potentially 
life-threatening diseases; P = 0.001) for biopsy at significantly lower 
rates for dark skin than light skin. We did not find statistically significant 
differences for BCDs’ biopsy referral rates across skin tones in other 

skin diseases, and we did not find statistically significant differences 
for PCPs’ biopsy referral rates except for CTCL (P = 0.011). We found 
that PCPs are 4.4 percentage points (P = 0.012) more likely to refer 
patients with dark skin than patients with light skin for a dermatolo-
gist second opinion.

DLS assistance
We found that DLS decision support significantly increases diagnos-
tic accuracy, while leading to the inclusion of relatively few incorrect 
diagnoses. With access to suggestions from the control DLS, BCDs’ and 
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PCPs’ top-1 accuracy on the main eight diseases increases from 27% to 
36% (P < 0.001, t-test) and from 13% to 22% (P < 0.001, t-test), respec-
tively. In other words, BCDs with DLS assistance are 33% more accu-
rate in their leading diagnoses, and PCPs with DLS assistance are 69% 
more accurate in their leading diagnoses. More specifically, we found 
that BCD’s sensitivity for diagnosing CTCL increases from 18% to 26% 
(P = 0.039, t-test) with the control DLS and 31% (P = 0.001, t-test) with 
the treatment DLS, whereas the BCDs’ specificity remained generally 
constant at 99% without DLS assistance and 99% with the control DLS 
or with the treatment DLS. Extended Data Fig. 4 reports the sensitivity 
and specificity of BCDs and PCPs with and without access to the control 
DLS across each of the eight main skin diseases in this experiment.

We found even larger accuracy gains when moving from top-3 
accuracy without DLS support to top-4 accuracy with control DLS 
support on the main eight diseases: the BCDs’ accuracy increased 
from 37% to 60%, and the PCPs’ accuracy increased from 17% to 47%. 
Alternatively, if we replaced participants’ third differential diagnosis 
with the DLS suggestions that participants include in their differen-
tial diagnoses, we found that the BCDs’ top-3 accuracy was 59% and 
the PCPs’ top-3 accuracy was 46%. For simplicity and conciseness, 
throughout this Article we report top-4 accuracy when including 
DLS suggestions rather than top-3 accuracy with replacement of the 
third differential diagnosis. Figure 5 shows physicians’ top-1 accuracy  
(Fig. 5a) and top-3 and top-4 accuracies (Fig. 5b) before and after they 
see the DLS-based suggestions.

When we restricted our analysis to the 236 images on which the 
control and treatment DLSs make the same predictions, we found that 
the BCDs and PCPs update their differential in 40% and 54% of diag-
noses with the control DLS and in 47% and 61% of diagnoses with the 
treatment DLS, and these differences are significant at the P = 0.009 
and P = 0.001 levels, respectively.

On images where the DLS made an incorrect suggestion, we found 
minimal effects on BCDs’ and PCPs’ top-1 accuracies, which both 
decrease by 1.2 percentage points (P = 0.517 and 0.312, respectively, 

t-test). In instances where the DLS provided an incorrect suggestion, 
we found that the BCDs and PCPs overrode their correct leading diag-
nosis with an incorrect suggestion in fewer than 2% of observations. In 
contrast, when the decision support provided an incorrect suggestion 
and the BCDs’ and PCPs’ three differential diagnoses were all incorrect, 
we found that the BCDs and PCPs included incorrect suggestions as 
leading diagnoses in 10% and 14% of observations, respectively. The 
BCDs’ top-4 accuracy with decision support included 1.58 incorrect 
diagnoses per observation and top-3, top-2 and top-1 accuracies with-
out decision support included 1.40, 1.05 and 0.59 incorrect diagnoses 
per image, respectively. In contrast, the PCPs’ top-4 accuracy with the 
decision support included 1.72 incorrect diagnoses per observation, 
whereas the top-3, top-2 and top-1 accuracies without decision support 
included 1.55, 1.26 and 0.82 incorrect diagnoses per image, respectively.

With respect to top-1 accuracy, we found that the BCDs without 
decision support were five percentage points (P < 0.001, t-test) more 
accurate than PCPs with control DLS decision support, but four per-
centage points (P = 0.022, t-test) less accurate than PCPs with treatment 
DLS decision support.

Extended Data Table 3 presents ordinary least-square regressions 
on diagnostic accuracy based on the following independent variables: 
physician expertise, skin tone in an image, DLS suggestions and interac-
tions between these variables. This regression table, where we focus on 
BCDs and PCPs, presents top-1 accuracy in the first column and top-4 
accuracy in the second column. For top-1 accuracy, BCDs are 13 percent-
age points more accurate than PCPs (P < 0.001), participants are three 
percentage points less accurate on images of dark skin (P = 0.006), 
the DLS suggestions leads to eight percentage points higher perfor-
mance overall (P < 0.001), and the treatment DLS leads to an additional 
eight percentage point increase in accuracy (P = 0.002). Likewise, we 
find the control DLS suggestion exacerbates the accuracy disparities 
in PCPs’ diagnoses by five percentage points (P = 0.008 and 0.048, 
respectively, for top-1 and top-4 accuracies), but we do not find statisti-
cally significant evidence that accuracy disparities increase for BCDs.  
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The three-way interaction between BCDs, dark skin and the DLS sug-
gestion shows that the DLS suggestions on dark skin lead to a marginal 
four and eight percentage point increase in top-1 and top-4 accuracies 
(P = 0.227 and P = 0.034), respectively. As a result, in Fig. 6 we continue 
to find statistically significant evidence for accuracy disparities for 
PCPs but not for BCDs. In Extended Data Table 4, we present the same 
ordinary least-square regressions, where we also include interactions 
with the control and treatment user interface assignments, and we do 
not find significant interaction effects.

User interaction design
We did not find any statistically significant differences between the 
control and treatment conditions in relation to whether participants 
chose to ignore or include suggestions in their differential diagnoses. 
However, we found a significant effect of the order of options on par-
ticipants’ choice to update their leading diagnosis with the suggestion 
versus updating their differential diagnosis to include the suggestion. 
Specifically, we found the treatment condition (with ‘Update my top 
prediction’ on the bottom) leads participants to select ‘Update my dif-
ferential’ nine percentage points (P < 0.001) more often and ‘Update my 
top prediction’ nine percentage points (P < 0.001) less often. Extended 
Data Table 5 presents regressions showing average treatment effects 
of the interface randomization on participants’ choices to update their 
differential diagnoses. As a consequence, we found BCD–machine 
partnerships and PCP–machine partnerships assigned to the treatment 
condition are 12 percentage points (P < 0.001) and seven percentage 
points (P = 0.011) lower, respectively, in top-1 accuracy than the part-
nerships assigned to the control condition.

Discussion
As we move towards a future where algorithms and physicians work 
collaboratively, it is important to understand the baseline bias of physi-
cians and how algorithms will influence those biases. Using skin disease 
as a case study, we assessed the baseline accuracy of specialist and 
generalist physicians in diagnosing skin disease across skin tones in a 
simulated store-and-forward teledermatology setting. The eight main 
skin diseases in this experiment often present differently depending 
on a patient’s skin tone. For example, the classic presentation of Lyme 
disease as a red or pink bulls-eye rash in light skin may appear brown, 
black, purple or even off-white in darker skin45. Similarly, atopic der-
matitis appears red in lighter skin and purple in darker skin and often 
involves more dryness, lichenification and hyper- and hypopigmenta-
tion in darker skin tones. In contrast, the classic presentation of lichen 

planus involves a violet hue, which is more common in dark skin than 
light skin, where it can also present as pink or red. In addition, some of 
these skin diseases appear more often in prevalence rate data in white 
people than black people (for example, Lyme disease46) and vice versa 
(for example atopic dermatitis47). However, prevalence rate data are 
impacted by diagnostic biases and access to care and can be misleading 
regarding the true prevalence rates.

As a baseline, in this experiment we found the top-3 diagnos-
tic accuracy of BCDs to be 38% and of PCPs to be 19% (and 42% and 
19% for United States-based BCDs and PCPs, respectively) on images 
of inflammatory-appearing skin diseases. These results match past 
research demonstrating that specialists significantly outperform 
generalists at skin-disease diagnosis, but show lower diagnostic accu-
racy than past studies with different experimental set-ups48–52. Given 
our quality-control protocol, the post hoc qualitative review and the 
similar error rates across sources (described in the Methods), these 
results cannot be explained by mislabeled images. Instead, our results, 
which may seem surprising due to the low accuracy rate of special-
ists on inflammatory-appearing skin diseases, are best explained by 
the difficulty of diagnosing these diseases with free-response (as 
opposed to multiple choice) answers and the differences between 
this store-and-forward teledermatology setting (where a physician 
has access to only a single image) and an in-person patient interac-
tion (where a physician has access to much more information such as 
better lighting, better field of view, and the ability to inquire about a 
patient’s symptoms, lifestyle, clinical history, family history and more). 
Although in-person clinical visits are the gold standard, image-based 
store-and-forward teledermatology has gained traction in triage53 and 
can serve as a use case for looking at baseline physician accuracy and 
physician–AI interaction. Moreover, physicians often receive patient 
messages with photographs attached, with minimal context, and are 
asked to make a determination of whether the patient should come in 
for a clinical visit. The results from this experiment reveal the limits to 
diagnosing skin disease from a single image and highlight the impor-
tance of considering information beyond visual features.

We find that the diagnostic accuracy of specialists and gener-
alists is lower on images of dark skin than light skin. Specifically, 
when comparing participants’ three differential diagnoses to the 
quality-controlled skin disease reference labels, we found that BCDs 
and PCPs are four percentage points more accurate on images of light 
skin (FST 1–4) than dark skin (FST 5 and 6). These differences in accuracy 
across skin tones are statistically significant. Given BCDs’ and PCPs’ 
accuracy rates of 38% and 19%, respectively, images of dark skin are 
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diagnosed 10% less accurately than images of light skin by BCDs and 22% 
less accurately by PCPs. These results contribute to an emerging litera-
ture on diagnostic accuracy disparities across patient skin tones26,27 and 
present evidence that the diagnostic accuracy of medical professionals 
on images of dark skin is lower than on images of light skin.

Furthermore, we have found differences in how often BCDs and 
PCPs refer patients with light and dark skin for biopsy. Specifically, for 
CTCL (a life-threatening disease), we found that both BCDs and PCPs 
report that they would refer patients for biopsy significantly more often 
in light skin than dark skin. Moreover, for the common skin diseases 
atopic dermatitis and pityriasis rosea, we found that BCDs report they 
would refer patients for biopsy more often in dark skin than light skin, 
which creates an unnecessary overburden on patients with dark skin.

By first establishing a benchmark for the diagnostic accuracy of 
physicians across skin tones in this well-defined task, we could evaluate 
DLS assistance by comparing the baseline benchmark to the diagnostic 
accuracy of physician–machine partnerships. We found that DLS-based 
decision support increases top-1 diagnostic accuracy by 33% for BCDs 
and 69% for PCPs. This translates into improved sensitivity in diag-
nosing specific skin diseases with minimal effects on specificity; for 
example, we found that specialists’ sensitivity for diagnosing CTCL 
increased by 44% with control DLS assistance and 72% with treatment 
DLS assistance, whereas the specialists’ specificity remained constant. 
From a clinical perspective, these large increases in overall accuracy by 
physician–machine partnerships are relevant for informing the design 
of diagnostic procedures to improve triage and reduce delayed and 
missed diagnoses. We note that BCDs' top-1 accuracy without deci-
sion support remains higher than PCPs' top-1 accuracy with control 
decision support.

The physician–machine partnerships in the form of physicians 
interacting with decision support based on a DLS in this experiment 
led to minimal errors. We found that physicians rarely override their 
leading diagnosis when it is correct, but specialists and generalists 
can be influenced by the DLS to include incorrect diagnoses in their 
differential diagnosis. We found that a minor design choice—the order 
of whether to include a DLS suggestion as a leading diagnosis, one of 
the diagnoses, or ignore the suggestion—significantly influences par-
ticipants’ choices. This indicates that, in addition to the accuracy of the 
classifier, the presentation interface is an important consideration for 
human–AI interactions.

Although physician–machine partnerships improve overall diag-
nostic accuracy, we have found that the DLS-based decision support 
exacerbates non-specialists’ diagnostic accuracy disparities for light 
and dark skin. However, we did not find that the DLS significantly influ-
ences the diagnostic accuracy disparities of specialists. One potential 
explanation for the magnification of diagnostic accuracy disparities 
in generalists (despite the overall improved accuracy) may be related 
to the nature of the DLS prompting physicians to consider alterna-
tives that they cannot rule out and generalists’ limited knowledge of 
what can and cannot be ruled out in dark skin. These results reveal the 
importance of human–AI testing in the intended use setting, because, 
in this experiment, the DLS, which does not exhibit disparate impact 
across skin tones, had a different impact on diagnostic accuracy dis-
parities depending on whether the DLS was used to support generalists 
or specialists.

These results show that DLS assistance can significantly improve 
physicians’ diagnostic sensitivity while maintaining the same general 
level of specificity, but accuracy disparities can still increase, which 
raises the question of how to weigh accuracy gains against fairness 
and how differential performance across levels of expertise should be 
treated from a policy-making perspective.

This digital experiment for evaluating diagnostic accuracy resem-
bles a store-and-forward teledermatology setting, but does not fully 
match a clinical evaluation in either teledermatology or an in-person 
examination. A single image contains substantially less information 

than an in-person interaction (or even a video call), which could include 
additional visual information (for example, adjustments in light and 
angle of view), a patient’s symptoms, clinical history, behavioral infor-
mation and more. This Article serves as an assessment of physicians’ 
‘know what’ on a very specific, constrained task where a physician has 
access to a single image, but not physicians’ ‘know how’54 of interacting 
with, caring for and listening to a patient, which is essential for diagnos-
ing and intervening in a patient’s disease55,56.

Future work should consider diagnostic accuracy in clinical set-
tings and further examine how DLS-based decision support compares 
to collective human intelligence-based decision support57–60. In the 
meantime, physicians should seek additional training in diagnosing 
dark skin diseases to avoid the potential for systematic misdiagnoses 
in clinical settings that may mirror the systematic differences found in 
diagnosing light and dark skin in this experiment.
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Methods
Ethics approval
This research complies with all relevant ethical regulations. The Mas-
sachusetts Institute of Technology’s Committee on the Use of Humans 
as Experimental Subjects approved this study as Exempt Category 
3—Benign Behavioral Intervention, which can be found under iden-
tification numbers E-2875 and E-3675. At the beginning of the experi-
ment, all participants were presented with the following informed 
consent statement: ‘This is an MIT research project. We will first ask 
7 brief survey questions. Then, we will show you images of skin con-
ditions and ask you to try to diagnose the skin conditions. After you 
diagnose conditions in 10 images, we will show you how you perform 
relative to other healthcare providers. All submissions are collected 
anonymously for research purposes. For questions, please contact 
dermatology-diagnosis@mit.edu. Participation is voluntary’. The 
individual whose image appears in each figure has provided consent 
for their image to be published.

Experimental interface
We designed and deployed a custom website at https://diagnosing- 
diagnosis.media.mit.edu to host the diagnostic accuracy experiment. 
On clicking the link to the website, participants are directed to the land-
ing page, where we provide informed consent and ask several questions 
as shown in Supplementary Fig. 1. After participants fill out the survey, 
the website directs participants to instructions via a modal window, 
as shown in Supplementary Fig. 2. Specifically, we note that ‘the AI 
model is not perfectly accurate’, and we intentionally do not disclose 
the model’s accuracy. There are several reasons for this. First, we did 
not want to bias adherence to the model’s suggestions based on the 
model’s accuracy base rate. Second, we wanted to evaluate how often 
physician participants would accept suggestions for different base 
rates of accuracy (the control and treatment DLS) without explicitly 
sharing those base rates. Moreover, this maps to real-world situations 
where physicians may know an AI has been approved for a particular 
task but may not know the details on its accuracy with respect to the 
local context of their patients.

Once participants close the modal, they can begin the experi-
ment, as shown in Supplementary Fig. 1. All participants see the same 
first image of a woman with acne, which serves as a relatively easy 
image to diagnose and a robustness check to confirm participants 
are participating seriously. Participants are asked ‘Can you accurately 
diagnose this skin condition?’, and they are informed how many images 
they have seen and that they will see how they compare to others after 
seeing ten images. Participants can provide up to three differential 
diagnoses, and the three text response forms display ‘Type leading 
diagnosis’, ‘Type secondary differential diagnosis’ and ‘Type tertiary 
differential diagnosis’. Participants can move a slider to provide how 
confident they are from 0% confident to 100% confident. In addition, 
participants are asked to check the boxes for whether they would refer 
the patient for a biopsy or a dermatologist for a second opinion. BCDs 
are not asked whether they would refer to a dermatologist because 
they are dermatologists.

When a participant begins to type their diagnosis in the free- 
response text boxes, predictive text appears as shown in Supplemen-
tary Fig. 3. We designed this experiment with free responses instead 
of multiple choice responses to maintain as much ecological validity 
to clinical practice as possible. Free response is more difficult than 
multiple choice for two main reasons. First, multiple choice enables 
correct answers via uninformed guessing, whereas free responses do 
not. Second, multiple choice primes the participant on what a particu-
lar disease might be, whereas free responses do not. We supported 
free responses with predictive text based on 445 possible diagnoses to 
promote standardized responses. These 445 diagnoses include the 46 
skin diseases in this experiment, the 419 skin diseases in ref. 30, which 
have large overlap with the skin diseases in this experiment, and similar 

clinical terms for skin diseases. Three examples of similar clinical terms 
include atopic dermatitis and eczema, CTCL and mycosis fungoides, 
and Lyme disease and erythema migrans. The predictive text appears as 
a function of the first characters typed, and, to encourage participants 
to choose from the list, we attempted to include as many ways of writ-
ing diseases as possible (for example ‘erythema migrans (Lyme)’ and 
‘lyme (erythema migrans)’ or ‘ctcl (cutaneous t-cell lymphoma)’ and 
‘cutaneous t-cell lymphoma (ctcl).’

Once a participant clicks ‘submit’ (and assuming the participants’ 
differential diagnosis differs from the AI’s prediction), the website 
directs participants to a page showing the AI’s prediction. If the AI 
predicts ‘Other’, then we randomly select a disease from the 36 aux-
iliary diseases as the suggestion. Participants have three options: 
‘Keep my differential’, ‘Update my differential to include [suggested 
disease]’ or ‘Update my top prediction with [suggested disease]’, as 
shown in Supplementary Fig. 4. Next (or if the participant’s differential 
matched the suggestion), the website directs participants to a page 
offering feedback on what the reference diagnosis is and what the 
most common incorrect diagnosis for this image was, as shown in 
Supplementary Fig. 5.

When participants click ‘Next Image’ on the feedback page, partici-
pants are redirected to a page that looks like Fig. 1 but with a different 
image, and the experiment repeats for as long as a participant is willing 
to participate. After a participant sees ten images, we show participants 
a bar graph showing how the diagnostic accuracy compares across the 
DLS, specialists and generalists.

Clinical image curation
The experiment contains 364 images of 46 different skin diseases. The 
vast majority of images show eight relatively common skin diseases. 
There are 31 images of atopic dermatitis, 48 of CTCL, 34 of dermato-
myositis, 30 of erythema migrans (Lyme disease), 32 of lichen planus, 
33 of pityriasis rosea, 47 of pityriasis rubra pilaris and 29 of secondary 
syphilis. We decided to focus our analysis on these eight diseases based 
on three criteria: first, three practicing BCDs identified these diseases 
as the most likely diseases on which we may find accuracy disparities 
across patients’ skin tones; second, these diseases are relatively com-
mon; third, these diseases appear frequently enough in dermatol-
ogy textbooks and dermatology image atlases such that we could 
select at least five images of the two darkest skin types after applying 
a quality-control review by BCDs. According to data from the All of Us 
research program, prevalence rates of the eight main diseases from 
most to least prevalent are atopic dermatitis (2.69%), Lyme disease 
(0.86%), lichen planus (0.53%), pityriasis rosea (0.36%), dermatomyosi-
tis (0.13%), secondary syphilis (0.10%), pityriasis rubra pilaris (0.02%) 
and CTCL (less than 0.01%)61. Literature reviews of the prevalence rates 
of each skin disease corroborate these prevalence rates from the All of 
Us research program within an order of magnitude62–69. We sourced the 
284 images of the eight diseases based on 241 publicly available images 
online from dermatology atlases and search engines, 30 images from 
14 textbooks, and 13 images from dermatologists’ slides and education 
material70–94. The number of images from each source is provided in 
Extended Data Table 6.

The remaining 80 images represent 38 skin diseases and are all 
drawn from the Fitzpatrick 17k dataset31, except for the attention check, 
which is sourced from a magazine article on inflammatory diseases in 
dark skin95. We included these additional diseases primarily to promote 
the ecological validity of the experiment. In particular, we designed 
this experiment such that participants do not know which skin dis-
eases will appear in the experiment, and, as such, participants cannot 
simply treat this as a multiple-choice test. Beyond the eight diseases 
of direct interest, there are eight images of scleroderma, six of lupus 
erythematosus, six of acne, four of vitiligo, three of rosacea, three of 
tungiasis, three of urticaria pigmentosa, three of sarcoidosis, two of 
cheilitis, two of calcinosis cutis, two of allergic contact dermatitis, 
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two of factitial dermatitis, two of fixed eruptions, two of granuloma 
annulare, two of keloid, two of keratosis pilaris, two of acanthosis 
nigricans, two of rhinophyma, two of necrobiosis lipoidica, two of tick 
bite, two of papilomatosis confluentes and reticulate, two of psoriasis, 
two of scabies, one of livedo reticularis, one of urticaria, one of Steven 
Johnson syndrome, one of statis edema, one of seborrheic dermatitis, 
one of erythema nodosum, one of erythema elevatum diutinum, one of 
lichen simplex, one of neurotic excoriations, one of hidradenitis, one of 
nematode infection, one of lichen amyloidosis and one of xanthomas.

We curated the images of skin diseases with the following five 
steps. First, we collected all images of the eight skin diseases from 
online sources and textbooks and the attention check image from an 
online magazine. Second, we annotated images with estimated FST 
labels. One BCD curated 351 of the highest-quality images of the eight 
diseases of interest for each of the six FSTs by dragging and dropping 
images into folders on their computer, specifying the skin disease and 
FST label. Due to a lack of images of secondary syphilis in light-skin 
instances and Lyme disease in dark skin, this first BCD supplemented 
the dataset with 11 images from their educational materials. Third, a 
second BCD reviewed the initially selected images and identified 66 
images as low in quality due to image resolution or with questions 
about the diagnostic label. We removed these 66 images from the 
dataset to leave 285 images of the eight diseases remaining. Fourth, we 
added 79 images of 38 skin diseases from the Fitzpatrick 17k dataset 
that have been reviewed and assessed by two BCDs as high in quality 
and diagnostic of the underlying disease. Fifth, a third BCD reviewed 
the images and found no clear objections.

Although the gold-standard label for skin diseases such as cutane-
ous malignant neoplasm is histopathological diagnosis96, the majority 
of non-neoplastic skin diseases (including skin diseases) are considered 
readily diagnosable with an in-patient exam and a patient’s clinical 
history97. The images in this experiment come from external sources 
(textbooks, dermatology atlases, online search engines and derma-
tologist education materials) and were curated and confirmed to be 
correctly labeled by three BCDs, to the best of their knowledge, based 
on the visual features in the images.

As a post hoc quality review, three board-certified dermatologists 
reviewed the three most and least accurately diagnosed images for 
light and dark skin in each of the eight skin diseases. The analysis of 
these images by three BCDs indicates that the most accurately diag-
nosed images appear to be relatively classic presentations of each 
skin disease (for example a heliotrope sign and gottron papules for 
dermatomyositis, rashes of the hands and feet for secondary syphilis, 
bulls-eye rash for Lyme), while the least accurately diagnosed images 
appear to be atypical presentations.

As an additional quality-control measure, Extended Data Table 
6 summarizes the sources from which we drew these images and how 
accurately BCDs identify the reference label across sources. Among 
the images of the main eight diseases that no BCD diagnosed correctly, 
15% of those images come from dermatology textbooks. This is slightly 
higher than the proportion of textbook images in the 284 images of the 
eight diseases, which is 11%.

Skin tone annotations
We annotated images by initially hiring crowdworkers to provide esti-
mated FSTs for each image and then asking BCDs to update the FST label 
appropriately. The images are relatively balanced across FST, with 32% 
of images showing people with the two darkest FST labels (FST 5 and 
6) and 68% showing people with the four lightest FST labels (FST 1–4). 
We define light and dark according to the original FST scale, which 
indicates FST 1–4 as ‘white’ and FST 5 and 6 as ‘black’ and ‘brown’98. 
Our findings are robust to comparisons between the three lightest 
and three darkest skin diseases, as well as comparisons between the 
two lightest and two darkest skin diseases. We note that the FST scale 
is imperfect (and its imperfections have been widely discussed33,99–101), 

but it remains a useful starting point for examining diagnostic accuracy 
disparities across skin tones.

DLS development
To offer computer vision-based predictions of diagnoses, we trained 
a convolutional neural network to classify nine labels: the eight skin 
diseases of interest and another category. This neural network is 
a VGG-16 architecture pretrained on ImageNet, which is similar to 
the architecture used in ref. 29 and identical to the architecture of  
ref. 31. Following insights that fine-tuning on diverse data can close 
performance gaps between light and dark skin tones32, we fine-tuned 
the model on 31,219 diverse clinical dermatology images from the 
Fitzpatrick 17k dataset and an additional collection of images collected 
from textbooks, dermatology atlases and online search engines. The 
fine-tuning includes a number of transformations to images, including 
randomly resizing images to 256 × 256 pixels, randomly rotating images 
by 0–15°, randomly altering the brightness, contrast, saturation and 
hue of each image, randomly flipping the image horizontally or not, 
center cropping the image to 224 × 224 pixels, and normalizing the 
image arrays by the ImageNet means and standard deviations.

We evaluated the model on the 364 images in this experiment, 
which neither appear in the pre-training ImageNet data nor in the 
fine-tuning clinical dermatology images dataset, and we found 
the model to be 47% accurate at predicting the nine labels on the  
364 images.

We did not compare the DLS system directly to physician perfor-
mance, because the DLS system is trained to classify only nine labels, 
whereas physicians are tasked with diagnosing images without knowing 
the short list of what the possible skin diseases might be.

In this experiment, we refer to the VGG-16 architecture pretrained 
on ImageNet and fine-tuned on 31,219 clinical dermatology images as 
the ‘control DLS’.

In addition to the control DLS, we consider a ‘treatment DLS’, which 
is a Wizard of Oz classifier that is a synthetically enhanced version of 
the control DLS. To create the treatment DLS, we randomly re-assigned 
65% of wrong classifications by the control DLS to be correct classifica-
tions, which resulted in a top-1 accuracy of 84%.

We note that the control and treatment DLSs are ‘fair’ classifiers 
from a disparate impact perspective. Both classifiers have relatively 
similar top-1 accuracies across skin tones on the eight diseases: the 
control DLS is 58% accurate on dark skin and 56% accurate on light skin 
on the eight main diseases, and the treatment DLS is 82% accurate on 
dark skin and 84% accurate on light skin on the eight main diseases.

Following the MI-CLAIM102 checklist, we examined the control 
DLS performance with two examination techniques. First, specialists 
examined the model’s performance across images and found that 
correct predictions often (but not always) correspond to classic pres-
entations of a disease. Second, we examined the model’s performance 
across FST and we did not find meaningful differences in the model’s 
performance across skin types. In the context of the visual diagnosis 
of skin disease task, we did not find saliency maps particularly helpful 
for interpretability, because they highlighted skin lesions but did not 
provide any additional information on what differentiates one skin 
lesion from another.

Randomization protocol
We randomly assigned the order in which images appear to participants 
for all images except the first. All participants see the same first image, 
and all subsequent images are drawn randomly from the remaining 
images.

We randomly assigned participants to two sets of control and 
treatment conditions. We randomly assigned participants to see sug-
gestions from a control model (the 47% accurate model) or a syntheti-
cally enhanced treatment model (the 84% accurate model). We also 
randomly assigned the order in which the options appear for including 
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or ignoring the suggestion in a participant’s differential diagnosis. 
The treatment group saw ‘Keep my differential’ on top and ‘Update 
my top prediction with [disease]’ on the bottom, as shown in Sup-
plementary Fig. 4, whereas the control group saw the opposite, with 
‘Update my top prediction with [disease]’ appearing on top. We ran-
domly assigned participants to each condition with an equal weight. 
The number of BCDs and differential diagnoses for participants who 
completed the experiment for each condition (the control model and 
control interface, control model and treatment interface, treatment 
model and control interface, and treatment model and treatment 
interface) are 75 BCDs with 1,350 diagnoses, 64 BCDs with 1,150 diag-
noses, 83 BCDs with 1,487 diagnoses, and 74 BCDs with 1,332 diagnoses, 
respectively. The number of PCPs and differential diagnoses for partici-
pants who completed the experiment for each condition (the control 
model and control interface, control model and treatment interface, 
treatment model and control interface, and treatment model and 
treatment interface) are 79 BCDs with 1,422 diagnoses, 85 BCDs with 
1,530 diagnoses, 87 BCDs with 1,566 diagnoses, and 99 BCDs with 1, 
782 diagnoses, respectively.

Participants
We recruited participants by word of mouth and by direct emails from 
Sermo, a secure digital (online) platform designed for physician net-
working and anonymous survey research, to their verified physician 
network. Sermo sent emails to 7,900 BCDs and 10,000 PCPs and offered 
US$10 for BCDs and US$5 for PCPs to complete the survey. In total, 68% 
of BCDs and 94% of PCPs in this experiment came from Sermo, and the 
rest came from authors reaching out to other physicians via email and 
social media. We recruited dermatology residents by identifying the 
email addresses of dermatology resident coordinators at 142 programs 
across the United States and requesting coordinators to forward an 
invitation to residents to participate in this study.

The countries with more than ten participants included the United 
States (551 total, with 167 BCDs, 47 dermatology residents, 295 PCPs 
and 42 other physicians), India (134 total, with 67 BCDs, 15 dermatology 
residents, 20 PCPs and 32 other physicians), Canada (91 total, with 18 
BCDs, 1 dermatology resident, 59 PCPs and 13 other physicians), the 
United Kingdom (53 total, with 18 BCDs, 3 dermatology residents, 25 
PCPs and 7 other physicians), Italy (45 total, with 13 BCDs, 18 dermatol-
ogy residents, 6 PCPs and 8 other physicians), Germany (35 total, with 
16 BCDs, 8 dermatology residents, 5 PCPs and 6 other physicians), 
Nigeria (30 total, with 3 dermatology residents, 6 PCPs and 21 other 
physicians), Brazil (22 total, with 11 BCDs, 4 dermatology residents, 5 
PCPs and 2 other physicians), Spain (21 total, with 19 BCDs and 2 der-
matology residents), Australia (18 total, with 3 BCDs, 1 dermatology 
resident, 8 PCPs and 6 other physicians), France (14 total, with 5 BCDs,  
2 dermatology residents, 3 PCPs and 4 other physicians) and South 
Africa (14 total, with 3 BCDs, 7 PCPs and 4 other physicians).

In the pre-experiment survey, we asked physicians how many years 
they have practiced medicine, what is the distribution of their patients’ 
skin tone, what is the frequency of difficulty for diagnosing skin dis-
eases in white and non-white patients, and how do they view the training 
they received for diagnosing skin diseases in patients with skin of color. 
In this experiment, 40% of physicians have been practicing medicine 
for 20 years or more, 26% have been practicing for 10 to 20 years, 22% 
have been practicing for 2 to 10 years, 3% have been practicing for 0 to 
2 years, and the rest are doing residencies, fellowships or internships. 
In response to the question ‘How would you describe the distribution 
of your patients’ skin colors?’, 32% of participants responded about an 
equal portion of white and non-white patients, 43% responded mostly 
white patients, 2% responded all white patients, 15% responded mostly 
non-white, 7% responded all non-white patients, and 1% responded 
that the question is not applicable. This overall distribution is similar 
but slightly more diverse than the distribution for participants from 
the United States, which is skewed slightly more towards mostly white 

patients with 49% mostly white patients, 36% equal portion of white and 
non-white patients, and 13% mostly or all non-white patients.

We find PCPs report significantly higher rates of difficulty in diag-
nosing skin diseases for both light and dark skin than BCDs. Specifically, 
we find 8% of PCPs report difficulties diagnosing skin diseases in one in 
two white patients, and 15% of PCPs report difficulties diagnosing skin 
diseases in one in two non-white patients, whereas less than 3% of BCDs 
report difficulties in diagnosing skin diseases in one in two patients of 
any skin tone. For participants in the United States, 70% of BCDs and 
72% of PCPs report the same diagnostic difficulty between white and 
non-white patients, and 10% of BCDs and 20% of PCPs report more dif-
ficulties in diagnosing non-white patients compared to white patients. 
When asked, ‘Do you feel you received sufficient training for diagnosing 
skin diseases in patients with skin of color (non-white patients)?’, 67% 
of all PCPs respond ‘no’ and 33% of all BCDs respond ‘no’ (similarly, 68% 
of US PCPs respond ‘no’ and 28% of US BCDs respond ‘no’).

Annotating participants’ differential diagnoses
We collected 14,261 differential diagnoses, which include 2,348 unique 
text strings. As a function of our experimental interface, which asked 
participants to provide differential diagnoses in free-response text 
boxes supported by predictive text, 43% of the leading diagnosis text 
strings do not exactly match any of the text strings in the initial list of 
445 diseases. However, the majority of these off-list responses are easily 
matched to the list. For example, 14% of the 14,261 leading diagnoses 
are ‘atopic dermatitis’, which we match to ‘atopic dermatitis (eczema)’ 
in the list, 4% of participants submitted ‘Lyme’, which we match to ‘lyme 
(erythema migrans)’ in the list, 3% of participants submitted ‘pityriasis 
rubra pilaris’, which we match to ‘pityriasis rubra pilaris (prp)’ in the 
list, and 3% of participants submitted ‘cutaneous t-cell lymphoma’, 
which we match to ‘cutaneous t-cell lymphoma (ctcl)’ in the list). The 
remaining 19% of leading diagnoses match 1,447 unique text strings. 
To evaluate diagnostic accuracy as accurately as possible, we reviewed 
all diagnoses and marked responses as correct if they appear to be mis-
spellings or shorthand for the correct answer. For example, we included 
the following answers as correct for lichen planus: lichen planus, lichen 
ruber planus, lichens planus, lichen plan, lichen planes, lichen planhs, 
lichen planis, lichen plannus, lichen plans, lichen planus linearis, lichen 
planus, luchen planus, lichen planus, lichen plane, linear lichen planus, 
linen planu and liquen plano. As a second example, we included the 
following answers as correct for CTCL: cutaneous t-cell lymphoma, 
t cell lymphoma, cutaneous t cell lymphoma, cutaneous t cell, ctcl, 
mycosis fungoides, lymphoma, mucositá fungoide, micosi fungoide, 
myocses fungoides, mycosis fungiodies, mycoses fungoides, plaque 
type, mf, cuttaneoua t-cell lymph, linfoma, linfoma células t, linfoma 
t, lmphoma, lymphome, malignant skin cancer, t cell lyphoma, t-cell 
lyphoma, mucosis fungoides, mycoses fungoides, mycoses glfungoide, 
mycosis, mycosis fongicide, mycosis fungoides/ctcl, mycosis fungoi-
dis, mycosis fungoidus, micose fungoide, micosis fungoide, micosis 
fungoides, cutaneous t-cell lymphoma (ctcl), ctcl (cutaneous t-cell 
lymphoma), cutaneous t-cell lymphoma, t-cell lymphoma, cutaneous 
lymphoma and cutaneous lympoma.

Gamification designs
We designed the experiment with gamification ingredients as have 
been articulated in ref. 103, such as feedback, rewards, competition and 
clear rules. In particular, we provided feedback after every response 
on the reference label as well as the most common incorrect answer by 
other participants. When participants’ differential diagnosis included 
the reference label, we displayed a brief digital fireworks show on 
the screen. We informed participants that we would show them how 
they compare against the DLS system and other physicians after they 
provided ten differential diagnoses. The majority of participants com-
pleted at least one additional differential diagnosis after completing 
ten diagnoses and seeing how their performance compared to others. 
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In Supplementary Fig. 8, we present the rate at which each group of par-
ticipants continued participating in the experiment after completing 
their first ten responses. After 20 responses, over 10% of participants 
in each physician category were participating.

Standards for Reporting Diagnostic Accuracy Studies
The updated Standards for Reporting Diagnostic Accuracy Studies 
(STARD) 2015 guidelines are designed to help readers of diagnostic 
accuracy studies recognize for which patient groups and settings 
a diagnostic accuracy study is relevant104,105. Although this study 
focuses on physician diagnostic accuracy, which differs substantially 
from standard diagnostic accuracy studies that focus on medical test 
accuracy, we followed the STARD 2015 checklist to clarify the study 
objectives, experimental design, analysis, limitations and implications 
for clinical dermatology practice and designing physician–machine 
partnerships.

Software and code
We hosted the store-and-forward digital experiment at https://diagnos-
ing -diagnosis.media.mit.edu using a custom website built in Python 
using the Flask web framework. All experimental data are collected 
based on how participants interact with the website.

The data analysis was performed in Python 3.9.6 with the libraries 
pandas 1.4.0, matplotlib 3.2.2, seaborn 0.11.1, numpy 1.18.5, scipy 1.5.0, 
statsmodels, stargazer 0. 11.1 and sklearn 0.0.5.

The DLS was trained using PyTorch, and additional details are 
presented in the DLS development subsection in the Methods.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this Article.

Data availability
The experimental data necessary to reproduce the results of this study 
are available on ResearchBox at https://researchbox.org/1802. The 364 
images used in the experiment are available at https://doi.org/10.5281/
zenodo.10070478 to registered Zenodo users who agree to only use 
this dataset for scientific and medical purposes and delete the data 
from their device once their research is complete.

Code availability
The code to reproduce the results of this study is available on Research-
Box at https://researchbox.org/1802.

References
61.	 The All of Us Research Program Investigators. The ‘all of us’ 

research program. N. Engl. J. Med. 381, 668–676 (2019).
62.	 Sacotte, R. & Silverberg, J. I. Epidemiology of adult atopic 

dermatitis. Clin. Dermatol. 36, 595–605 (2018).
63.	 Maghfour, J. et al. Demographic patterns and increasing 

incidence of cutaneous T-cell lymphoma in Louisiana. JAMA 
Oncol. 8, 1218–1220 (2022).

64.	 Bolender, C. M. et al. Incidence of dermatomyositis in a nationwide 
cohort study of US veterans. JAMA Dermatol. 158, 1321–1323 (2022).

65.	 Li, C. et al. Global prevalence and incidence estimates of oral 
lichen planus: a systematic review and meta-analysis. JAMA 
Dermatol. 156, 172–181 (2020).

66.	 Nelson, C. A. et al. Incidence of clinician-diagnosed Lyme disease, 
United States, 2005-2010. Emerg. Infect. Dis. 21, 1625 (2015).

67.	 Joshi, T. P., Calderara, G. A. & Lipoff, J. B. Prevalence of pityriasis 
rosea in the United States: a cross-sectional study using the all of 
us database. JAAD Int. 8, 45–46 (2022).

68.	 Schmidt, R., Carson, P. J. & Jansen, R. J. Resurgence of syphilis in 
the United States: an assessment of contributing factors. Infect. 
Dis. Res. Treat. 12, 1178633719883282 (2019).

69.	 Ross, N. A. et al. Epidemiologic, clinicopathologic, diagnostic, 
and management challenges of pityriasis rubra pilaris: a case 
series of 100 patients. JAMA Dermatol. 152, 670–675 (2016).

70.	 Freire da Silva, S. Atlas dermatologico; http://atlasdermatologico.
com.br/

71.	 AlKattash, J. A. Dermaamin; https://www.dermaamin.com/site/
72.	 Bolognia, J. L., Schaffer, J. V. & Cerroni, L. Dermatología  

(Elsevier, 2018).
73.	 Griffiths, C., Barker, J., Bleiker, T. O., Chalmers, R. & Creamer, D. 

Rook’s Textbook of Dermatology (Wiley, 2016).
74.	 Du Vivier, A. Atlas of Clinical Dermatology (Elsevier, 2002).
75.	 Archer, C. B. Ethnic Dermatology: Clinical Problems and Skin 

Pigmentation (CRC Press, 2008).
76.	 Nouri, K. et al. In Skin Cancer 61–81 (McGraw Hill Medical, 2008).
77.	 Salzman, H. The color atlas and synopsis of family medicine.  

Fam. Med. 52, 226–227 (2020).
78.	 Knoop, K. J. et al. (eds) The Atlas of Emergency Medicine  

(McGraw Hill, 2010).
79.	 Usatine, R. P., Smith, M. A., Mayeaux, E. J. & Chumley, H. S.  

The Color Atlas of Family Medicine (McGraw Hill Education/
Medical, 2013).

80.	 Buxton, P. K. & Morris-Jones, R. In ABC of Dermatology 24–35 
(Wiley Blackwell, 2009).

81.	 Callen, J. P., Greer, K. E., Hood, A. F., Paller, A. S. & Swinyer, L. J. 
Color Atlas of Dermatology (Saunders, 1993).

82.	 Kane, K. S., Lio, P. A. & Stratigos, A. Color Atlas and Synopsis of 
Pediatric Dermatology (McGraw Hill Education/Medical, 2009).

83.	 Oakley, A. Dermatology Made Easy (Scion, 2017).
84.	 Anon. DermIS, dermis.net; https://www.dermis.net/dermisroot/

en/home/index.htm (accessed 17 February 2023).
85.	 Arnold, H. L., Odom, R. B., Andrews, G. C. & James, W. D. Andrews’ 

Diseases of the Skin: Clinical Dermatology (Saunders, 1990).
86.	 Anon. Regionalderm.com; https://www.regionalderm.com/

contact.info.html (accessed 17 February 2023).
87.	 Anon. Altmeyers Enzyklopädie – Fachbereich Dermatologie; 

https://www.altmeyers.org/de/dermatologie (accessed 17 
February 2023).

88.	 Anon. Hellenic Dermatological Atlas; http://www.hellenic
dermatlas.com/en/ (accessed 17 February 2023).

89.	 We are currently Redesigning Dermnet Skin Disease Atlas – 
dermnet.com; https://dermnet.com/ (accessed 17 February 
2023).

90.	 Anon. Atlas of Dermatology; https://www.kkh.dk/atlas/index.html 
(accessed 17 February 2023).

91.	 Anon. Derm101; https://www.emailmeform.com/builder/form/
Ne0j8da9bb7U4h6t1f (accessed 17 February 2023).

92.	 Anon. DermWeb; http://www.dermweb.com/photo atlas/ 
(accessed 17 February 2023).

93.	 Sun, X., Yang, J., Sun, M. & Wang, K. A benchmark for automatic 
visual classification of clinical skin disease images. In Proc. 
Computer Vision ECCV 2016: 14th European Conference Part VI 14 
206–222 (Springer, 2016).

94.	 Anon. Iconotheque numerique de l’universite libre de Bruxelles; 
https://icono.ulb.ac.be/ (accessed 17 February 2023).

95.	 Kilikita, J. Rosacea is common in dark skin, too. here’s what you 
need to know. https://www.refinery29.com/en-gb/rosacea- 
dark-skin

96.	 Daneshjou, R., He, B., Ouyang, D. & Zou, J. Y. How to evaluate deep 
learning for cancer diagnostics—factors and recommendations. 
Biochim. Biophys. Acta 1875, 188515 (2021).

97.	 Harvey, N. T., Chan, J. & Wood, B. A. Skin biopsy in the diagnosis 
of inflammatory skin disease. Aust. Fam. Physician 46, 283–288 
(2017).

98.	 Fitzpatrick, T. B. The validity and practicality of sun-reactive skin 
types I through VI. Arch. Dermatol. 124, 869–871 (1988).

http://www.nature.com/naturemedicine
https://diagnosing-diagnosis.media.mit.edu
https://diagnosing-diagnosis.media.mit.edu
https://researchbox.org/1802
https://doi.org/10.5281/zenodo.10070478
https://doi.org/10.5281/zenodo.10070478
https://researchbox.org/1802
http://atlasdermatologico.com.br/
http://atlasdermatologico.com.br/
https://www.dermaamin.com/site/
https://www.dermis.net/dermisroot/en/home/index.htm
https://www.dermis.net/dermisroot/en/home/index.htm
https://www.regionalderm.com/contact%20info.%20html
https://www.regionalderm.com/contact%20info.%20html
https://www.altmeyers.org/de/dermatologie
http://www.hellenicdermatlas.com/en/
http://www.hellenicdermatlas.com/en/
https://dermnet.com/
https://www.kkh.dk/atlas/index.%20html
https://www.emailmeform.com/builder/form/Ne0j8da9bb7U4h6t1f
https://www.emailmeform.com/builder/form/Ne0j8da9bb7U4h6t1f
http://www.dermweb.com/photo%20atlas/
https://icono.ulb.ac.be/
https://www.refinery29.com/en-gb/rosacea-dark-skin
https://www.refinery29.com/en-gb/rosacea-dark-skin


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02728-3

99.	 Ware, O. R., Dawson, J. E., Shinohara, M. M. & Taylor, S. C. Racial 
limitations of Fitzpatrick skin type. Cutis 105, 77–80 (2020).

100.	Okoji, U. K., Taylor, S. C. & Lipoff, J. B. Equity in skin typing:  
why it is time to replace the Fitzpatrick scale. Br. J. Dermatol. 185, 
198–199 (2021).

101.	 Monk, E. P. Jr The cost of color: skin color, discrimination and health 
among African-Americans. Am. J. Sociol. 121, 396–444 (2015).

102.	Norgeot, B. et al. Minimum information about clinical artificial 
intelligence modeling: the MI-CLAIM checklist. Nat. Med. 26, 
1320–1324 (2020).

103.	Reeves, B. & Read, J. L. Total Engagement: How Games and 
Virtual Worlds are Changing the Way People Work and Businesses 
Compete (Harvard Business Press, 2009).

104.	Bossuyt, P. M. et al. STARD 2015: an updated list of essential 
items for reporting diagnostic accuracy studies. Clin. Chem. 61, 
1446–1452 (2015).

105.	Cohen, J. F. et al. STARD 2015 guidelines for reporting diagnostic 
accuracy studies: explanation and elaboration. BMJ Open 6, 
e012799 (2016).

Acknowledgements
We acknowledge Sermo for platform support to recruit physicians 
to participate in this experiment, Apollo Hospitals for forwarding 
invitations to their physicians, the participants for their time and 
care in participating in this experiment, MIT Media Lab member 
companies and the Harold Horowitz (1951) Student Research 
Fund for financial support, the All of Us research program and its 
participants, Bruke Wossenseged for excellent research assistance in 
the early phase of this research, T. Johnson and the Kellogg Research 
Support team for a replication review and D. Rand for comments on 
an early draft of this manuscript.

Author contributions
M.G., O.B., R.D., A.K., L.R.S. and P.M.D. conceived the experiments. 
M.G., O.B., R.D., A.K., C.H. and L.R.S. curated the stimulus set.  
M.G. analyzed the data. M.G. wrote the initial draft. M.G., C.H.,  
R.D., L.R.S., A.K., O.B., P.M.D. and R.P. reviewed and edited  
the manuscript.

Competing interests
P.M.D. has received grants, advisory fees and/or stock from several 
biotechnology companies outside the scope of this work. P.M.D. is a 
co-inventor on several patents through Duke University. The remaining 
authors declare no competing interests.

Additional information
Extended data is available for this paper at  
https://doi.org/10.1038/s41591-023-02728-3.

Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s41591-023-02728-3.

Correspondence and requests for materials should be addressed  
to Matthew Groh.

Peer review information Nature Medicine thanks Alessandro 
Blasimme, Catarina Barata and Titus Brinker for their contribution 
to the peer review of this work. Primary Handling Editor: Michael 
Basson, in collaboration with the Nature Medicine team.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/naturemedicine
https://doi.org/10.1038/s41591-023-02728-3
https://doi.org/10.1038/s41591-023-02728-3
https://doi.org/10.1038/s41591-023-02728-3
http://www.nature.com/reprints


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02728-3

Extended Data Fig. 1 | Diagnostic Accuracy by Reported Confidence.  
A. BCD (N = 296 physicians and 2660 observations) top-3 accuracy by reported 
confidence. B. PCP (N = 350 physicians and 3150 observations) top-3 accuracy  
by reported confidence. The measure of center for error bars is the mean 
accuracy within the following confidence bands: 0–10, 15–25, 30–50, 55–65, 

70–85, 90–100. Participants reported confidence with numbers divisible by  
5 between 0 and 100. The error bars represent 95% confidence intervals and the 
confidence interval for the interval that includes 50% is particularly small in both 
graphs because 71% of BCDs and 70% of PCPs did not change their confidence 
level from the default of 50%.
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Extended Data Fig. 2 | Top-1 Diagnostic Accuracy across Skin Diseases 
and Skin Tones.  A. BCD (N = 296 physicians and 2660 observations) top-1 
accuracy across skin diseases and tones. B. PCPs (N = 350 physicians and 3150 

observations) top-1 accuracy across skin diseases and tones. P-values are 
calculated with a two-sided t-test and ns indicates that the p-value is greater than 
0.05. The error bars represent the 95% confidence interval of the true mean.
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Extended Data Fig. 3 | Diagnostic Accuracy by Providers’ Experience with 
Diverse Patients. A. BCDs’ (N = 291 physicians and 2615 observations) top-3 
accuracy B. PCPs’ (N = 343 physicians and 3087 observations) top-1 diagnosis 
on each of the 8 main skin diseases in this experiment. The categories on the 
x-axis are based on self-reported responses to “How would you describe the 

distribution of your patients’ skin color?” We exclude BCDs and PCPs who 
respond “Not Applicable.” P-values are calculated with a two-sided t-test and ns 
indicates that the p-value is greater than 0.05. The error bars represent the 95% 
confidence interval of the true mean.
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Extended Data Fig. 4 | Sensitivity and specificity of physician’s diagnostic 
accuracy with and without DLS assistance. A. BCDs’ (N = 296 physicians and 
2079 observations) top-1 sensitivity and specificity on each of the 8 main skin 
diseases in this experiment. B. PCPs’ (N = 350 physicians and 2496 observations) 

top-1 sensitivity and specificity on each of the 8 main skin diseases in this 
experiment. P-values are calculated with a two-sided t-test and ns indicates that 
the p-value is greater than 0.05.
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Extended Data Table 1 | Confusion Matrix for BCDs

Confusion matrix comparing consensus labels verified by three board-certified dermatologists with the primary diagnoses submitted by board-certified dermatologists. The labels in the 
confusion matrix refer to the following: O is other and includes 38 skin diseases, AD is atopic dermatitis, CTCL is cutaneous t-cell lymphoma, D is dermatomyositis, LP is lichen planus, L is 
Lyme, PR is pityriasis rosea, PRP is pityriasis rubra pilaris, and SS is secondary syphilis.
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Extended Data Table 2 | Confusion Matrix for PCPs

Confusion matrix comparing consensus labels verified by three board-certified dermatologists with the primary diagnoses submitted by primary-care physicians. The labels in the confusion 
matrix refer to the following: O is other and includes 38 skin diseases, AD is atopic dermatitis, CTCL is cutaneous t-cell lymphoma, D is dermatomyositis, LP is lichen planus, L is Lyme, PR is 
pityriasis rosea, PRP is pityriasis rubra pilaris, and SS is secondary syphilis.
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Extended Data Table 3 | Regression of Physician Expertise Level, Patient Skin Color, and DLS Assistance on Diagnostic 
Accuracy

Ordinary Least Squares regressions with robust standard errors clustered on physician participants. This regression includes only board-certified dermatologist (BCD) and primary-care 
physician (PCP) participants. We code the Specialist, Dark Skin, AI Assistance binary variables as follows: Specialist equals 1 for BCDs and 0 for PCPs, Dark Skin equals 1 for FST 5 and 6 and 
0 for FST 1 to 4, and AI Assistance equals 1 for participant responses with access to the DLS prediction and 0 for participant responses before access to the DLS predictions. The coefficients 
represent the change in the dependent variable for a one-unit change in the independent variable while holding everything else constant. The numbers in parentheses are standard errors 
indicating the variability of coefficient estimates. *, **, and *** indicates the p-value from the ordinary least-squares regression is less than 0.05, 0.01, and 0.001.
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Extended Data Table 4 | Regression of Physician Expertise Level, Patient Skin Color, and DLS Assistance with User Interface 
Interactions on Diagnostic Accuracy

Ordinary Least Squares regressions with robust standard errors clustered on physician participants. This regression includes only board-certified dermatologist (BCD) and primary-care 
physician (PCP) participants. We code the Specialist, Dark Skin, AI Assistance binary variables as follows: Specialist equals 1 for BCDs and 0 for PCPs, Dark Skin equals 1 for FST 5 and 6 and 0 
for FST 1 to 4, AI Assistance equals 1 for participant responses with access to the DLS prediction and 0 for participant responses before access to the DLS predictions, and Treatment Interface 
(TI) equals 1 for interface order with “Keep my differential” on Top and 0 for the opposite interface order. The coefficients represent the change in the dependent variable for a one-unit change 
in the independent variable while holding everything else constant. The numbers in parentheses are standard errors indicating the variability of coefficient estimates. *, **, and *** indicates 
the p-value from the ordinary least-squares regression is less than 0.05, 0.01, and 0.001.
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Extended Data Table 5 | Average Treatment Effects of Reversed Order of Decision Support Buttons

Average treatment effects of user interaction design with “Keep My Differential” on top (as opposed to on bottom) based on ordinary least-squares regressions with robust standard errors 
clustered on participants. The coefficients represent the change in the dependent variable for a one-unit change in the independent variable while holding everything else constant. The 
numbers in parentheses are standard errors indicating the variability of coefficient estimates. *, **, and *** indicates the p-value from the ordinary least-squares regression is less than 0.05, 
0.01, and 0.001.
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Extended Data Table 6 | Image Sources

Table of image sources with P indicating the proportion of images from a particular source in which at least one board-certified dermatologist provided a top-3 diagnosis matching the source 
image′s label. N indicates the number of images from each source.
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