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Heterogeneity and predictors of the effects 
of AI assistance on radiologists

Feiyang Yu    1,2,5, Alex Moehring    3,5, Oishi Banerjee1, Tobias Salz4,6, 
Nikhil Agarwal4,6 & Pranav Rajpurkar    1,6 

The integration of artificial intelligence (AI) in medical image interpretation 
requires effective collaboration between clinicians and AI algorithms. 
Although previous studies demonstrated the potential of AI assistance in 
improving overall clinician performance, the individual impact on clinicians 
remains unclear. This large-scale study examined the heterogeneous 
effects of AI assistance on 140 radiologists across 15 chest X-ray diagnostic 
tasks and identified predictors of these effects. Surprisingly, conventional 
experience-based factors, such as years of experience, subspecialty and 
familiarity with AI tools, fail to reliably predict the impact of AI assistance. 
Additionally, lower-performing radiologists do not consistently benefit 
more from AI assistance, challenging prevailing assumptions. Instead, 
we found that the occurrence of AI errors strongly influences treatment 
outcomes, with inaccurate AI predictions adversely affecting radiologist 
performance on the aggregate of all pathologies and on half of the 
individual pathologies investigated. Our findings highlight the importance 
of personalized approaches to clinician–AI collaboration and the 
importance of accurate AI models. By understanding the factors that shape 
the effectiveness of AI assistance, this study provides valuable insights for 
targeted implementation of AI, enabling maximum benefits for individual 
clinicians in clinical practice.

The integration of artificial intelligence (AI) into medical image inter-
pretation has shown great potential for improving diagnostic accuracy 
and efficiency1–9. Collaborative setups, where AI systems assist clini-
cians in decision-making, have emerged as practical approaches to har-
ness the benefits of AI while leveraging clinician expertise10–13. However, 
to optimize the implementation of AI in clinical practice, it is crucial to 
have a comprehensive understanding of the heterogeneity—the diverse 
and individualized effects—of AI assistance on clinicians. Clinicians 
possess varying levels of expertise, experience and decision-making 
styles, and ensuring that AI support accommodates this heterogeneity 
is essential for targeted implementation and maximizing the positive 
impact on patient care.

Previous studies on clinician–AI collaboration predominantly 
focused on analyzing groups of clinicians as a whole, overlooking the 
variations in how AI affects individual clinicians14–20. Although some 
studies explored the heterogeneity of AI effects based on factors such 
as a radiologist’s seniority21–23, task expertise24 and experience level25–28, 
these studies have certain limitations. They often measure changes 
in predictions rather than changes in prediction accuracy, and they 
tend to neglect potential predictors, such as experience with AI tools. 
Additionally, although some research considered indirect measures 
of diagnostic skill, such as years of experience, there remains a limited 
understanding of whether direct measures of clinicians’ diagnostic 
skill can accurately predict the effects of AI assistance. Therefore, 
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In this study, calibration performance was measured by absolute 
error. Absolute error was defined as the absolute difference between 
the radiologist-predicted probability and the ground truth probability 
on a 0–100 scale. Treatment effect was defined as the improvement 
in absolute error, specifically the difference between the absolute 
error of a radiologist when unassisted by AI (unassisted error) and the 
absolute error when assisted by AI (assisted error), unless otherwise 
specified. Absolute error was the primary metric of analysis; thus, refer-
ences to performance and treatment effects are based on this metric 
by default. Discrimination performance was measured by area under 
the receiver operating characteristic (ROC) curve, where the ground 
truth labels were computed by thresholding the continuous ground 
truth probabilities at 50. Treatment effect on AUROC was defined as 
the improvement in AUROC, specifically the difference between the 
AUROC of a radiologist when assisted by AI (assisted AUROC) and the 
AUROC when unassisted by AI (unassisted AUROC).

Our findings revealed substantial heterogeneity in the treatment 
effects of AI assistance among different radiologists (Extended Data 
Fig. 1 and Supplementary Table 1). When measuring AI’s treatment 
effect as the improvement in absolute error across all pathologies, 
we observed a range of treatment effects from −1.295 to 1.440 (inter-
quartile range (IQR), 0.797). Notably, for high-prevalence pathology 
labels (pathology labels with prevalence greater than 10% in the data-
set), the largest range of treatment effects extended from −8.914 to 
5.563 (IQR, 3.245) for detecting whether chest X-rays are abnormal. In 
comparison, when examining the distribution of radiologists’ unas-
sisted error (Extended Data Fig. 2), we observed an average range of 
unassisted error from 6.083 to 14.175 (IQR, 1.951) across pathologies. 
The significant heterogeneity in treatment effects indicates that the 
impact of treatment effects ranging from −1.295 to 1.440 (IQR, 0.797) 
could substantially influence the absolute performance and relative 
performance of radiologists compared to their peers. Furthermore, the 
heterogeneity in treatment effects on high-prevalence pathology labels 
remained substantial when compared to radiologists’ unassisted error.

Additionally, we found substantial heterogeneity in treatment 
effects on sensitivity and specificity. The range of treatment effects 
on radiologists’ sensitivity and specificity averaged from 1.9% to 11.8% 
(IQR, 1.9%) and from −4.0% to 3.1% (IQR, 1.6%), respectively, across all 
pathologies (Extended Data Fig. 3). In comparison, the range of unas-
sisted sensitivities spanned from 20.0% to 92.7% (IQR, 15.3%), whereas 
the range of unassisted specificities ranged from 81.5% to 99.2%  
(IQR, 4.0%). These findings indicate substantial heterogeneity in treat-
ment effects on sensitivity and specificity, which aligns with observa-
tions regarding absolute error.

Experience-based characteristics as predictors
We studied whether experience-based radiologist characteristics could 
function as potential predictors of treatment effect. Specifically, we 
examined three characteristics: years of experience (explored in previ-
ous work24–28), subspecialty in thoracic radiology (explored in previous 

conducting a comprehensive investigation into the heterogeneous 
effects of AI is crucial for determining which clinicians should receive 
AI assistance in real-world healthcare settings.

In the present study, we investigated the predictors of heterogene-
ous treatment effects of AI assistance in radiology, where treatment 
effect refers to the change in diagnostic performance of radiologists 
from without to with AI assistance. To achieve this, we examined a 
large-scale diagnostic study that measured the performance of 140 
radiologists with and without AI assistance on 15 chest X-ray diagnosis 
tasks. Participating radiologists received onboarding training on the 
assistive AI system before starting the experiment and were shown 
example AI predictions from the same AI model used in the experiment, 
which would help them calibrate their interpretation of AI predictions 
and inform their incorporation of AI. Our analysis focuses on the influ-
ence of experience-based predictors, direct measures of diagnostic 
skill and AI error on the outcome of treatment effects and examines this 
influence in terms of both calibration performance and discrimination 
performance. We found substantial heterogeneity in the treatment 
effects of AI assistance among radiologists. Moreover, our findings 
reveal that experience-based characteristics and direct measures of 
diagnostic skill prove inadequate in predicting the treatment effect of 
AI assistance on radiologists. Additionally, we highlight the influential 
role of AI error on the treatment effect. Lower absolute AI error leads 
to a greater treatment effect on all pathologies aggregated and on 
half of the individual pathologies investigated, and the direction of AI 
error also impacts the treatment effect outcome. By uncovering the 
heterogeneity of AI effects and identifying predictors of the treatment 
effect, our study offers valuable insights for the targeted implementa-
tion of AI assistance in clinical practice. Comprehending the factors 
contributing to the heterogeneity of AI effects is vital for the develop-
ment of tailored strategies to optimize clinician–AI collaboration, to 
guide resource allocation and training efforts and to foster trust and 
acceptance among clinicians.

Results
Heterogeneous treatment effects of AI assistance
We analyzed data collected using a diagnostic study involving 140 radi-
ologists, 324 patient cases and 15 pathologies with corresponding AI 
predictions from two study designs: one with repeated measurements 
on the same case and one without29. The non-repeated-measure design 
involved 107 radiologists who each reviewed a total of 60 patient cases, 
with 30 cases assessed without AI assistance and 30 cases assessed 
with AI assistance. For each set of 30 patient cases, radiologists exam-
ined half without clinical histories and half with clinical histories. The 
repeated-measure design included 33 radiologists who evaluated 60 
patient cases under four conditions: with AI assistance and clinical his-
tories, with AI assistance without clinical histories, without AI assistance 
with clinical histories and without either AI assistance or clinical histories. 
In our analysis, we combined data from the clinical history conditions 
and investigated the heterogeneous treatment effect of AI assistance.

Fig. 1 | Experience-based radiologist characteristics as predictors of 
treatment effect on all pathologies aggregated. a, Heterogeneous treatment 
effects of subgroups of radiologists on all pathologies aggregated. The treatment 
effects were shrunk toward the mean using the empirical Bayes method. 
Statistically significant heterogeneity was observed between subgroups 
(P = 3.50 × 10−34), where radiologists with a higher than median treatment effect 
had a significantly higher treatment effect of 0.472 (95% CI: 0.403 to 0.541) than 
those with a treatment effect lower than or equal to the median of −0.357 (95% 
CI: −0.429 to 0.284). A two-sided, unpaired t-test between the two subgroups of 
treatment effects was conducted. Testing for all pathologies aggregated did not 
constitute multiple hypothesis testing. The error bars show 95% CIs. b, Treatment 
effects on all pathologies aggregated of subgroups of radiologists based on 
combined characteristics of years of experience, subspecialty in thoracic 
radiology and experience with AI tools. No statistically significant difference was 

observed between the lower predicted treatment effect subgroup, 0.091 (95% 
CI: −0.231 to 0.413), and the higher predicted treatment effect subgroup, 0.070 
(95% CI: −0.243 to 0.383) (P > 0.05). The Wald test was used to test regression 
coefficients that estimate treatment effects against the null hypothesis of 
joint equality among treatment effects of different subgroups. Details of the 
statistical models are available in the Methods. There are 136 radiologists with 
available survey data on the three characteristics. The error bars show 95% CIs. 
NS indicates no statistical significance (P > 0.05). c, Same subfigures as in a and b 
based on years of experience (left), subspecialty in thoracic radiology (middle) 
and experience with AI tools (right), respectively. The same statistical test as in b 
was used. d, Same subfigure as in b for AUROC on all pathologies aggregated.  
The same statistical test as in b was used. e, Same subfigures as in d based on years 
of experience (left), subspecialty in thoracic radiology (middle) and experience 
with AI tools (right), respectively. The same statistical test as in b was used.
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work24) and experience with AI tools (an understudied characteristic 
that approximates the ability to use AI). These characteristics were 
collected through a post-experiment survey completed by 136 radi-
ologists.

To establish a benchmark, we divided the same 136 radiologists 
into binary subgroups using an oracle predictor and median treatment 
effect as the cutoff. We computed the subgroup treatment effects on 
all pathologies aggregated (Fig. 1a) and high-prevalence pathology 
labels (Extended Data Fig. 4a) while shrinking the individual radiologist 
treatment effects using the empirical Bayes method30 to ameliorate 
overestimation of heterogeneity due to measurement error in radiolo-
gist performance. We observed a statistically significant difference of 
−0.828 (232%) between the two subgroups on all pathologies aggre-
gated (P < 0.001; Supplementary Table 2) and on each high-prevalence 
pathology label (Benjamini–Hochberg-adjusted P < 0.001), indicating 
that radiologists with a higher than median treatment effect had a sig-
nificantly higher treatment effect than those with a treatment effect 
lower than or equal to the median. This finding suggests a significant 
heterogeneity between radiologists and shows the extent of heteroge-
neity that an ideal predictor would have been able to discern.

To understand the predictive power of experience-based radiolo-
gist characteristics together, we built a combined characteristics linear 
regression model that used binary variables for years of experience 
(whether the radiologist had less than or equal to the median 6 years 
of experience), subspecialty in thoracic radiology (whether the radi-
ologist specialized in thoracic radiology) and experience with AI tools 
(whether the radiologist had experience with AI tools) as independent 
variables and an intercept term to predict the mean treatment effect of 
each radiologist. We found that the combined characteristics model 
was a poor predictor of treatment effect on all pathologies aggre-
gated (Fig. 1b) and individual pathologies (Extended Data Fig. 4b). No 
statistically significant difference was observed in treatment effect 
between subgroups on all pathologies aggregated (P > 0.05; Supple-
mentary Table 3) or on individual pathologies (P > 0.05, Benjamini–
Hochberg-adjusted P > 0.05).

To assess the impact of these characteristics as individual pre-
dictors on treatment effects, we divided the radiologists into binary 
subgroups based on the median value of each predictor. Subsequently, 
we conducted tests to identify any significant differences in treatment 
effects between the subgroups created based on the predictor values. 
When used individually, each of the experience-based characteristics 
was found to be a poor predictor of treatment effect: no statistically 
significant difference was observed in treatment effect between sub-
groups on all pathologies aggregated (P > 0.05; Fig. 1c and Supple-
mentary Tables 4–6). Except for the AI experience predictor on edema 
(P = 0.009, Benjamini–Hochberg-adjusted P > 0.05), there was also 
no statistically significant difference between subgroups split based 
on individual characteristics for any pathology (P > 0.05, Benjamini–
Hochberg-adjusted P > 0.05; Extended Data Fig. 4c).

In addition to absolute error and calibration performance, we con-
ducted the same analyses for AUROC as the metric and discrimination 
performance. We found that the combined characteristics model was 
again a poor predictor of treatment effect on AUROC on all pathologies 
aggregated (Fig. 1d) and individual pathologies (Extended Data Fig. 5a). 
No statistically significant difference was observed in treatment effect 
between subgroups on all pathologies aggregated (P > 0.05; Supple-
mentary Table 27) or on individual pathologies (P > 0.05, Benjamini–
Hochberg-adjusted P > 0.05). Each of the individual experience-based 
characteristics was also found to be a poor predictor of treatment 
effect on AUROC: no statistically significant difference was observed 
in treatment effect between subgroups on all pathologies aggregated 
(P > 0.05; Fig. 1e and Supplementary Tables 28–30). Except for the 
AI experience predictor on airspace opacity (P = 0.045, Benjamini–
Hochberg-adjusted P > 0.05), there was also no statistically significant 
difference between subgroups split based on individual characteristics 
for any pathology (P > 0.05, Benjamini–Hochberg-adjusted P > 0.05; 
Extended Data Fig. 5b).

Unassisted performance as a predictor of treatment effect
In addition to experience-based radiologist characteristics, we inves-
tigated whether the diagnostic skill of radiologists, as measured by 
their unassisted error on the specific dataset and task, could serve as a 
viable predictor of treatment effect. We constructed a linear regression 
model, where the independent variable was the unassisted error and the 
dependent variable was the treatment effect, accounting for attenua-
tion bias. We employed a split sampling approach, using distinct sets 
of patient cases to calculate the unassisted error and treatment effect.

We observed that the regression coefficient on unassisted error 
was positive but not statistically significant on all pathologies aggre-
gated (P > 0.05; Fig. 2a, left, and Supplementary Table 7). This finding 
suggests that unassisted error is an inadequate predictor of treat-
ment effect. Among the individual pathologies, the regression coef-
ficient was significant on abnormal (P = 0.005), lesion (P = 0.003) and 
atelectasis (P = 0.016) without correcting for multiple hypothesis 
testing. However, the regression coefficient was not significant on all 
individual pathologies after correction (Fig. 2b). This suggests that 
unassisted error also poorly predicts treatment effect at the individual 
pathology level.

We repeated the same analysis for AUROC and found that the 
regression coefficient on unassisted AUROC was negative and not 
statistically significant on all pathologies aggregated (P > 0.05; Fig. 2c, 
left, and Supplementary Table 31). This suggests that unassisted AUROC 
is also a poor predictor of treatment effect in terms of discrimination 
performance.

Preventing reversion to the mean using split sampling
We found that the use of split sampling was crucial in our analysis. 
This method ensured that unassisted error and treatment effect were 

Fig. 2 | Unassisted error as a predictor of treatment effect. a, Unassisted 
error is a poor predictor of treatment effect on all pathologies aggregated (left). 
Without split sampling, there is a hallucinated association between treatment 
effect and unassisted error (right). The binscatter plots contain five evenly 
spaced bins containing 5,190 data points in total. The gray regression line is 
fitted on the raw data. The five bins are presented as −0.254 (95% CI: −0.701 to 
0.211), −0.205 (95% CI: −0.431 to 0.017), 0.590 (95% CI: 0.291 to 0.878), 0.301 
(95% CI: −0.487 to 1.093) and −0.419 (95% CI: −2.178 to 1.125) (left) and −1.148 
(95% CI: −1.473 to −0.842), 0.078 (95% CI: −0.165 to 0.313), 0.661 (95% CI: 0.327 
to 0.971), 0.979 (95% CI: 0.269 to 1.772) and 0.409 (95% CI: −0.982 to 1.919) 
(right). The blue dotted regression line is the final regression output after 
adjusting for attenuation bias. The translucent band around the blue regression 
line represents the 95% CI. * and ** indicate statistically significant difference 
from zero at a significance level of 0.05 and 0.01, respectively. NS indicates 
no statistical significance (P > 0.05). b, Unassisted error is a poor predictor 

of treatment effect on each individual pathology. The binscatter plots are 
designed in the same way as those in a. The significance of the slope coefficients 
is determined through the Benjamini–Hochberg procedure, respectively, to 
correct for multiple hypothesis testing (15 individual pathologies) at a false 
discovery rate of 0.05 (*) and 0.01 (**). NS indicates no statistical significance 
(Benjamini–Hochberg-adjusted P > 0.05). c, Same subfigures as in a for AUROC 
on all pathologies aggregated. Unassisted AUROC is a poor predictor of 
treatment effect on AUROC on all pathologies aggregated (left). Without split 
sampling, there is a hallucinated association between treatment effect on AUROC 
and unassisted AUROC (right). The five bins are presented as −0.073 (95% CI: 
−0.196 to 0.044), 0.057 (95% CI: −0.014 to 0.157), 0.065 (95% CI: 0.036 to 0.095), 
0.022 (95% CI: 0.006 to 0.038) and 0.033 (95% CI: 0.016 to 0.052) (left) and 0.119 
(95% CI: 0.058 to 0.187), 0.074 (95% CI: 0.034 to 0.111), 0.065 (95% CI: 0.050 to 
0.079), 0.018 (95% CI: 0.007 to 0.028) and 0.001 (95% CI: −0.011 to 0.012) (right). 
w/o, without.
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calculated using separate sets of patient cases, preventing the spurious 
correlation caused by reversion to the mean31—the statistical phenom-
enon where subsamples that deviate significantly from the mean are 
more likely to converge toward the mean in subsequent subsamples. In 
the context of this study, if a radiologist produces a lower-than-average 
quality diagnostic assessment on an unassisted case by chance, this 
same radiologist is very likely to produce a better diagnostic assessment 
on the same case when assisted, resulting in a positive treatment effect; 
conversely, if a radiologist produces a good diagnosis on a case unas-
sisted by chance, the radiologist is likely to produce a worse diagnosis 
on the same case assisted, resulting in a negative treatment effect. This 
phenomenon, therefore, falsely creates a positive correlation between 
unassisted error and treatment effect (unassisted error minus assisted 
error). Split sampling prevents reversion to the mean by using disjoint 
patient cases to compute unassisted error and treatment effect for 
each data point in the linear regression model.

To demonstrate the importance of split sampling, we constructed 
a naive model that involved using all available patient cases to com-
pute the unassisted error (independent variable) and treatment effect 
(dependent variable). When we applied the naive model, we observed 
a substantial hallucinated correlation between unassisted error and 
treatment effect (Fig. 2a, right). On all pathologies aggregated, the 
hallucinated regression coefficient was 0.357 (adjusted for attenuation 
bias resulting from measurement error in radiologist performance) 
and 0.309 (unadjusted), both statistically significant (P < 0.001; Sup-
plementary Table 8). Similar hallucinated correlations were observed 
across individual pathologies (Benjamini–Hochberg-adjusted P < 0.05). 
These findings underscore the necessity of split sampling to mitigate 
the effects of reversion to the mean.

With AUROC, we observed negative hallucinated correlations 
between unassisted AUROC and treatment effect on AUROC on all 
pathologies aggregated (P < 0.001; Fig. 2c, right, and Supplementary 
Table 32) and individual pathologies (Benjamini–Hochberg-adjusted 
P < 0.001). Because AUROC is an aggregate metric over a set of patient 

cases, the effects of reversion to the mean on AUROC cannot be untan-
gled at the case level. However, the dramatic hallucination of correla-
tions again emphasizes the necessity of split sampling.

Higher-performing radiologists are still higher performing
Considering the inadequate predictive power of unassisted error on 
treatment effect, we hypothesized that the relative performance of 
radiologists with and without AI assistance would remain largely con-
sistent. To test this hypothesis, we constructed a linear regression 
model that regresses from unassisted error, the independent variable, 
and an intercept term to assisted error, the dependent variable. We 
adjusted for attenuation bias on the independent variable. To again 
avoid reversion to the mean, we adopted a split sampling approach in 
which we used separate sets of patient cases to compute unassisted 
error and assisted error for each radiologist.

The results revealed that the regression coefficient on unas-
sisted error was significantly different from zero when considering 
all pathologies aggregated (P < 0.001; Fig. 3a and Supplementary 
Table 9). Similarly, the regression coefficient was significant on most 
individual pathologies (Benjamini–Hochberg-adjusted P < 0.05), 
except for atelectasis, pneumothorax and shoulder fracture (Benja-
mini–Hochberg-adjusted P > 0.05; Fig. 3b). We similarly constructed 
a linear regression model regressing from unassisted AUROC and 
an intercept term to assisted AUROC. The regression coefficient on 
unassisted AUROC was again significant on all pathologies aggregated 
(P < 0.001; Fig. 3c and Supplementary Table 33), whereas the coefficient 
was insignificant on abnormal (P > 0.05). Together, these findings 
indicate that unassisted error serves as a strong predictor of assisted 
error in most cases.

AI error as a predictor of treatment effect
We investigated whether higher-quality AI assistance led to better treat-
ment effects on average across radiologists and cases. We computed 
the treatment effects of AI when the absolute error of AI-predicted 

Fig. 3 | Expected performance of radiologists after receiving AI assistance. 
a, Higher-performing radiologists are still higher performing after receiving AI 
assistance on all pathologies aggregated. The binscatter plots contain five evenly 
spaced bins containing 5,190 data points in total. The gray regression line is fitted 
on the raw data. The five bins are presented as 7.950 (95% CI: 7.579 to 8.339), 8.569 
(95% CI: 8.342 to 8.827), 10.197 (95% CI: 9.870 to 10.531), 12.013 (95% CI: 11.245 to 
12.857) and 14.870 (95% CI: 13.418 to 16.358). The red dotted regression line is 
the final regression output after adjusting for attenuation bias. The translucent 
band around the red regression line represents the 95% CI. * and ** indicate 
statistically significant difference from zero at a significance level of 0.05 and 
0.01, respectively. b, Higher-performing radiologists are still higher performing 
after receiving AI assistance on each individual pathology except for atelectasis, 
pneumothorax and shoulder fracture, where the regression coefficients for 
the slope are not statistically significantly different from zero. The binscatter 
plots are designed in the same way as those in a. The five bins for abnormal are 
presented as 22.712 (95% CI: 21.050 to 24.323), 28.470 (95% CI: 27.411 to 29.528), 
33.359 (95% CI: 32.298 to 34.497), 41.729 (95% CI: 40.406 to 43.045) and 43.904 
(95% CI: 39.488 to 48.428). The four bins for airspace opacity are presented as 
15.590 (95% CI: 14.809 to 16.401), 17.940 (95% CI: 17.198 to 18.718), 22.414  
(95% CI: 20.828 to 24.185) and 41.076 (95% CI: 33.894 to 48.061). The five bins 
for atelectasis are presented as 11.550 (95% CI: 10.558 to 12.505), 10.638 (95% CI: 
10.030 to 11.221), 11.366 (95% CI: 10.070 to 12.691), 9.777 (95% CI: 7.909 to 11.676) 
and 12.262 (95% CI: 9.144 to 15.681). The five bins for bacterial/lobar pneumonia 
are presented as 4.191 (95% CI: 3.645 to 4.745), 4.443 (95% CI: 4.069 to 4.842), 
5.474 (95% CI: 4.499 to 6.499), 6.619 (95% CI: 4.202 to 9.317) and 9.861 (95% CI: 
7.620 to 12.169). The five bins for cardiomediastinal abnormality are presented as 
14.061 (95% CI: 13.295 to 14.817), 16.268 (95% CI: 15.609 to 16.867), 21.241 (95% CI: 
19.556 to 22.881), 24.820 (95% CI: 20.349 to 29.464) and 34.358 (95% CI: 30.263 to 
38.553). The five bins for cardiomegaly are presented as 10.169 (95% CI: 9.615 to 
10.727), 14.611 (95% CI: 13.737 to 15.516), 19.483 (95% CI: 16.558 to 22.551), 39.736 
(95% CI: 32.091 to 46.737) and 26.732 (95% CI: 17.879 to 35.100). The five bins  
for consolidation are presented as 5.553 (95% CI: 4.727 to 6.387), 6.230  

(95% CI: 5.826 to 6.604), 7.219 (95% CI: 6.447 to 8.093), 9.631 (95% CI: 7.575 to 
11.707) and 11.915 (95% CI: 9.683 to 14.186). The five bins for edema are presented 
as 7.761 (95% CI: 7.127 to 8.419), 12.777 (95% CI: 11.909 to 13.616), 18.254 (95% CI: 
16.937 to 19.523), 19.268 (95% CI: 16.246 to 22.671) and 39.059 (95% CI: 27.886 to 
49.837). The four bins for lesion are presented as 3.185 (95% CI: 2.973 to 3.386), 
4.507 (95% CI: 3.856 to 5.170), 2.738 (95% CI: 1.476 to 4.203) and 22.835 (95% CI: 
13.974 to 32.555). The five bins for pleural effusion are presented as 3.404  
(95% CI: 2.794 to 4.077), 3.473 (95% CI: 2.950 to 4.013), 4.401 (95% CI: 3.644 to 
5.173), 5.940 (95% CI: 4.794 to 7.119) and 6.073 (95% CI: 4.431 to 7.915). The five bins 
for pleural other are presented as 0.410 (95% CI: 0.348 to 0.473), 0.729 (95% CI: 
0.529 to 0.938), 1.202 (95% CI: 0.626 to 2.120), 1.668 (95% CI: 0.549 to 3.153) and 
6.883 (95% CI: 3.940 to 10.317). The five bins for pneumothorax are presented as 
0.689 (95% CI: 0.534 to 0.880), 0.675 (95% CI: 0.493 to 0.891), 1.235 (95% CI: 0.697 
to 2.004), 1.425 (95% CI: 0.166 to 3.263) and 1.345 (95% CI: 0.712 to 2.059). The five 
bins for rib fracture are presented as 2.614 (95% CI: 2.246 to 3.019), 3.405 (95% CI: 
2.902 to 3.942), 3.357 (95% CI: 2.699 to 4.112), 2.707 (95% CI: 1.309 to 4.579) and 
5.386 (95% CI: 3.032 to 8.266). The five bins for shoulder fracture are presented as 
0.594 (95% CI: 0.434 to 0.768), 1.093 (95% CI: 0.582 to 1.765), 0.712 (95% CI: 0.477 
to 0.968), 0.171 (95% CI: 0.012 to 0.462) and 0.050 (95% CI: 0.000 to 0.118). The 
five bins for support device hardware are presented as 9.389 (95% CI: 8.799 to 
10.016), 12.652 (95% CI: 11.702 to 13.586), 14.477 (95% CI: 11.126 to 18.418), 36.781 
(95% CI: 30.346 to 43.310) and 45.214 (95% CI: 35.945 to 54.983). The significance 
of the slope coefficients is determined through the Benjamini–Hochberg 
procedure, respectively, to account for multiple hypothesis testing (15 individual 
pathologies) at a false discovery rate of 0.05 (*) and 0.01 (**). NS indicates no 
statistical significance (Benjamini–Hochberg-adjusted P > 0.05). c, Same 
subfigure as in a for AUROC on all pathologies aggregated. Higher-performing 
radiologists as measured by AUROC are still higher performing after receiving 
AI assistance on all pathologies aggregated. The five bins are presented as 0.770 
(95% CI: 0.697 to 0.834), 0.814 (95% CI: 0.775 to 0.855), 0.874 (95% CI: 0.859 to 
0.888), 0.889 (95% CI: 0.877 to 0.900) and 0.924 (95% CI: 0.911 to 0.936).
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probabilities fell into five separate ranges, and we tested for hetero-
geneity among AI error ranges by testing the joint null hypothesis of 
equal treatment effects across bins. We found that different AI error 
ranges resulted in statistically significant differences in treatment 

effect on all pathologies aggregated (P < 0.001; Fig. 4a and Supple-
mentary Table 10). More accurate AI predictions led to higher treat-
ment effects: AI assistance with absolute error under 20 resulted in 
a treatment effect of 0.679 (95% confidence interval (CI): 0.492 to 
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0.865, n = 176,130; Supplementary Table 11), whereas AI assistance 
with absolute error above 80 resulted in a treatment effect of −16.845  
(95% CI: −24.288 to −9.403, n = 371). No singular trend was observed 
across individual pathologies. On abnormal, airspace opacity, bacterial/
lobar pneumonia, cardiomediastinal abnormality, cardiomegaly, con-
solidation, pleural effusion, pleural other, pneumothorax and support 
device hardware, different AI ranges resulted in statistically significant 
differences in treatment effect (Benjamini–Hochberg-adjusted P < 0.05 
for support device hardware, Benjamini–Hochberg-adjusted P < 0.01 
for all others). More accurate AI predictions led to better treatment 
effects on abnormal, airspace opacity, cardiomediastinal abnormal-
ity, cardiomegaly, pleural effusion, pleural other, pneumothorax and 
support device hardware; the reverse trend held for bacterial/lobar 
pneumonia and consolidation, whereas the trend was unclear for the 
remaining pathologies (Fig. 4b).

We conducted the same analysis using AUROC, where we similarly 
separated predictions into five bins based on the absolute error of 
the AI-predicted probabilities based on binary ground truth labels 
and computed the treatment effect on AUROC over all predictions 
in each bin. We found that different AI error ranges again resulted 
in statistically significant differences in treatment effect on AUROC 
on all pathologies aggregated (P < 0.001; Fig. 4c and Supplementary 
Table 34). The overall trend was unclear: more accurate AI predictions 
led to higher treatment effects on AUROC when the AI assistance had 
an absolute error in the range [20, 100], but treatment effects in the 
range [0, 20] were smaller than those in the range [20, 60]. For indi-
vidual pathologies, the AUROC analysis was numerically feasible only 
for airspace opacity, and the trend was unclear.

These findings suggest that AI error could be a predictor of treat-
ment effect, but the statistical significance and direction of the rela-
tionship could differ across pathologies and metrics.

AI that underestimates probabilities leads to better effect
We subsequently examined the impact of the direction of AI error on 
the resulting treatment effect. We computed the treatment effects 
of AI across 10 different ranges of signed error, which represents the 
difference between AI-predicted probabilities and the corresponding 
ground truth probabilities. Heterogeneity among these AI error ranges 
was tested using a joint equality hypothesis.

We found that different ranges of AI signed error resulted in sta-
tistically significant differences in treatment effect on all pathologies 
aggregated (P < 0.001; Supplementary Tables 12 and 13). We observed 

that AI predictions with negative errors, indicating underestimation 
of probabilities by the AI, led to better treatment effects compared to 
predictions with the same magnitude of positive errors, indicating 
overestimation of probabilities by the AI (Fig. 5a).

No singular trend was observed across individual pathologies. 
For eight pathologies (abnormal, airspace opacity, atelectasis, cardio-
megaly, consolidation, lesion, pleural other and rib fracture), different 
AI error ranges showed statistically significant differences in treat-
ment effect (Benjamini–Hochberg-adjusted P < 0.01). Among these 
pathologies, AI predictions that underestimated probabilities led to 
better treatment effects on airspace opacity, atelectasis, cardiomegaly, 
consolidation and lesion, whereas the trend was unclear for the remain-
ing pathologies (Fig. 5b).

The same analysis could not be repeated for AUROC, because 
there were not both cases with the pathology present and cases with 
the pathology not present in each non-empty bin on all pathologies 
aggregated or any individual pathology, causing the AUROC to be 
undefined for most bins.

Alternative measures of performance
We found consistent results as the ones introduced in earlier sections 
using alternative measures of performance. Specifically, in addition 
to using (1) absolute error and signed error with continuous ground 
truth probabilities and (2) AUROC as the metric for radiologist or AI 
performance, we conducted the proposed analyses using absolute 
error and signed error with binary ground truth labels, which were 
computed by thresholding the continuous ground truth probabilities 
at 50. Results are shown in Supplementary Tables 14–26.

Under binary ground truth labels, the relationships between 
experienced-based characteristics and treatment effect found earlier 
under continuous ground truth probabilities held for all pathologies 
aggregated and individual pathologies (Supplementary Tables 16–19). 
The relationships between unassisted error and treatment effect held 
except for lesion, where it was not statistically significant under con-
tinuous ground truth probabilities but was significant under binary 
ones (Supplementary Table 20). The relationships between unas-
sisted error and treatment effect without split sampling held except 
for edema, where it was statistically significant at a significance level 
of 0.05 under continuous ground truth probabilities but was signifi-
cant at 0.01 under binary ground truth probabilities (Supplementary 
Table 21). The relationships between unassisted error and assisted error 
held except for rib fracture, where it was statistically significant at a 

Fig. 4 | AI error as a predictor of treatment effect. a, AI has greater treatment 
effects on radiologists when the AI assistance has lower error on all pathologies 
aggregated. The five bins are presented as 0.679 (95% CI: 0.492 to 0.865), −1.509 
(95% CI: −2.267 to −0.750), −3.556 (95% CI: −4.878 to −2.235), −6.569 (95% CI: 
−8.764 to −4.374) and −16.845 (95% CI: −24.288 to −9.403). The error bars show 
95% CIs. The blue lines show the overall treatment effect across AI error. * and 
** indicate statistically significant difference among subgroups of different 
AI error through a joint equality test at a significance level of 0.05 and 0.01, 
respectively. b, AI has greater treatment effects on radiologists when the AI 
assistance has lower error on abnormal, airspace opacity, cardiomediastinal 

abnormality, cardiomegaly, pleural effusion, pleural other, pneumothorax and 
support device hardware. The reverse trend holds for bacterial/lobar pneumonia 
and consolidation. The bar plots are designed in the same way as those in a. The 
significance of the subgroup joint test is determined through the Benjamini–
Hochberg procedure, respectively, to correct for multiple hypothesis testing 
(15 individual pathologies) at a false discovery rate of 0.05 (*) and 0.01 (**). NS 
indicates no statistical significance (Benjamini–Hochberg-adjusted P > 0.05).  
c, AI has greater treatment effects on AUROC on radiologists when the AI 
assistance has an absolute error in the range [20, 100], whereas the trend is 
unclear with absolute error in the range [0, 20].

Fig. 5 | AI signed error as a predictor of treatment effect. a, AI has greater 
treatment effects on radiologists when the AI assistance underestimates 
probabilities, rather than overestimates probabilities, given the same absolute 
error on all pathologies aggregated. The nine bins are presented as −3.560  
(95% CI: −9.472 to 2.353), 2.089 (95% CI: 0.334 to 3.844), 2.698 (95% CI: 1.497 
to 3.899), 2.483 (95% CI: 1.897 to 3.070), 0.398 (95% CI: 0.235 to 0.561), −2.933 
(95% CI: −3.787 to −2.079), −5.018 (95% CI: −6.516 to −3.519), −6.968 (95% CI: 
−9.346 to −4.591) and −16.845 (95% CI: −24.288 to −9.403). The error bars show 
95% CIs. The blue bars show the overall treatment effect across AI error. * and 
** indicate statistically significant difference among subgroups of different AI 

signed error through a joint equality test at a significance level of 0.05 and 0.01, 
respectively. b, AI has greater treatment effects on radiologists when the AI 
assistance underestimates probabilities, rather than overestimates probabilities, 
given the same absolute error on airspace opacity, atelectasis, cardiomegaly, 
consolidation and lesion. The bar plots are designed in the same way as those in a. 
The significance of the subgroup joint test is determined through the Benjamini–
Hochberg procedure, respectively, to correct for multiple hypothesis testing 
(15 individual pathologies) at a false discovery rate of 0.05 (*) and 0.01 (**). NS 
indicates no statistical significance (Benjamini–Hochberg-adjusted P > 0.05).
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significance level of 0.05 under continuous ground truth probabilities 
but was significant at 0.01 under binary ground truth probabilities 
(Supplementary Table 22). The relationships between AI error and 
treatment effect held for all pathologies aggregated (Supplementary 
Tables 23 and 25). The relationships on individual pathologies also 
varied as they did with continuous ground truth probabilities and did 
not show a singular trend.

The overall consistencies of the results presented show the general 
applicability of the findings to different ways of measuring radiologist 
and AI performance.

Discussion
In this study, we investigated the heterogeneous treatment effects of AI 
assistance on radiologists for chest X-ray diagnosis. Our findings, based 
on a large-scale sample of 140 radiologists, highlight the existence of 
radiologist heterogeneity in treatment effects, which has substantial 
implications for both absolute and relative performance. These results 
underscore the inadequacy of a one-size-fits-all approach to AI assis-
tance and emphasize the importance of individualized strategies to 
maximize benefits and minimize potential harms. Understanding who 
benefits from AI assistance and who is negatively impacted is crucial 
for effectively targeting AI assistance.

We found that experience-based radiologist characteristics, 
including years of experience, subspecialty in thoracic radiology 
and experience with AI tools, did not serve as reliable predictors of 
treatment effect, in terms of both calibration performance and dis-
crimination performance. These findings challenge the associations 
between experience-based radiologist characteristics and the treat-
ment effect of AI assistance reported in previous research24–28. The 
observed variability could be attributed to our larger and more diverse 
sample size, encompassing 140 radiologists with varying skill levels, 
experiences and preferences. Additionally, our study’s inclusion of 
a wide range of diagnostic tasks enables a robust examination of the 
complex factors influencing the treatment effect. Furthermore, the 
performance characteristics and quality of the specific AI system 
may play an important role, highlighting the need for developers to 
consider these factors when deploying AI assistance. To optimize 
the implementation of AI assistance, a comprehensive assessment of 
multiple factors, including the clinical task, patient population and AI 
system, is essential.

Similarly, direct measures of diagnostic skill, such as unassisted 
error, showed limited predictive power for treatment effects. This 
finding again holds for both calibration performance and discrimina-
tion performance. Surprisingly, radiologists who initially performed 
poorly without AI assistance did not necessarily benefit more or expe-
rience more harm from AI assistance compared to higher-performing 
counterparts. We demonstrate that proper use of statistical meth-
ods, such as split sampling, is crucial to avoid spurious associations 
between unassisted error and treatment effect and ensures reliable 
conclusions about the predictive power of unassisted error. Future 
research should consider cognitive abilities, adaptability to new 
technologies and decision-making processes as potential predictors. 
Developing accurate predictive models to identify radiologists who 
are more likely to benefit from AI assistance holds promise for future 
investigations. Without reliable predictors, it is necessary to measure 
radiologists’ response to AI assistance under realistic simulations of 
deployment settings before deciding whether to provide AI assis-
tance to different radiologists. For example, it may be necessary to 
directly measure a radiologist’s treatment effect from the assistive 
AI system on an experimental dataset that is representative of the 
target patient population.

In addition to investigating the radiologist characteristics that 
can impact AI’s treatment effect, we showed that higher-quality AI 
assistance leads to better treatment effects in terms of calibration per-
formance measured by absolute error, whereas the trend was unclear 

in terms of discrimination performance measured by AUROC. Our 
results indicate that AI predictions with smaller errors lead to better 
treatment effects on all pathologies aggregated, highlighting the 
importance of developing more accurate AI models for assistance. 
Conversely, AI predictions with large errors tend to lead to negative 
treatment effects, suggesting that radiologists struggle to consistently 
distinguish between accurate and inaccurate AI predictions and can be 
misled by inaccurate AI predictions. Moreover, we observed that, given 
the same absolute error, AI predictions that underestimate the ground 
truth probabilities can lead to better treatment effects than predictions 
that overestimate them on all pathologies aggregated. Apart from 
improving AI accuracy, it is valuable to help radiologists better identify 
inaccurate AI predictions. For example, assistive AI systems that pro-
vide explanations for their predictions32 or generate nuanced radiology 
reports33–37, rather than probabilities alone, may allow radiologists to 
potentially extract value from inaccurate AI predictions. In addition, 
we emphasize that these findings between AI accuracy and treatment 
effect are the result of many factors simultaneously at play, including 
the ground truth probability, the radiologist’s predicted probability 
and how radiologists interpret and use AI assistance, which can all be 
correlated with AI’s predicted probability. Therefore, these findings 
should not be extrapolated for defining the cognitive mechanism in 
which AI assistance helps or hurts radiologists. Further research with 
explicit control of the potential factors is necessary to understand that 
underlying mechanism29.

Our study has several limitations that should be acknowledged. 
First, the randomization of treatment conditions in the experiment, 
although necessary to eliminate confounding factors, prevented the 
analysis of temporal trends in radiologists’ response to AI assistance. 
We were unable to assess whether radiologists improved in incorporat-
ing AI predictions over time as they encountered more patient cases. 
Future research should aim to investigate these evolving dynamics 
between radiologists and AI. Second, the AI assistance available to 
radiologists contained only predicted probabilities and did not include 
additional explanations, such as localization of pathologies, which 
could help radiologists more accurately interpret and, therefore, make 
better use of the available AI predictions. Designers of AI systems 
should investigate the optimal types of explanations to present and the 
mode of presentation while staying cautious of the increased cognitive 
burden that this additional information can bring. Another limitation 
is the lack of exploration into the impact of task granularity. The AI 
model generated predictions for 15 individual pathologies, some of 
which were interconnected and represented different levels of detail. 
For instance, airspace opacity encompasses pathologies such as ate-
lectasis, edema and consolidation. Understanding the relationships 
between higher-level and lower-level pathologies would be valuable 
in future studies. Furthermore, due to the simultaneous presentation 
of all 15 AI predictions, it was challenging to isolate the effect of AI 
assistance on individual pathologies. The influence of AI predictions on 
one pathology could potentially affect the radiologists’ response to AI 
predictions on other pathologies, especially when they are interrelated. 
Additionally, because we provided actual AI predictions on patient 
cases to radiologists, it was also difficult to eliminate the confounding 
factor of the patient case when studying the relationship between the 
accuracy of AI predictions and the radiologist’s treatment effect. Future 
work may control for the influence of the patient case by providing 
artificially set predictions to radiologists.

In conclusion, our study underscores the need for individualized 
approaches that are aware of clinician heterogeneity, high-quality 
AI models and comprehensive assessments of multiple factors to 
optimize the implementation of AI assistance in clinical medicine. 
Collaboration between clinicians and AI developers, focusing on per-
sonalized strategies and continuous improvement of AI models, will be 
essential for achieving the full potential of clinician–AI collaboration 
in healthcare.
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Methods
This research complied with all relevant ethical regulations. The study 
that produced the AI assistance dataset29 used in this study was deter-
mined by the Massachusetts Institute of Technology (MIT) Committee 
on the Use of Humans as Experimental Subjects to be exempt through 
exempt determination E-2953.

Dataset specification
This study used 324 retrospective patient cases from Stanford Univer-
sity’s healthcare system containing chest X-rays and clinical histories, 
which include patients’ indication, vitals and labs. In this study, we 
analyzed data collected from a total of 140 radiologists participating in 
two experiment designs. The non-repeated-measure design included 
107 radiologists in a non-repeated-measure setup (Supplementary 
Fig. 1). Each radiologist read 60 patient cases across four subsequences 
that each contained 15 cases. Each subsequence corresponded to one 
of four treatment conditions: with AI assistance and clinical histories, 
with AI assistance and without clinical history, without AI assistance 
and with clinical histories and without AI assistance and clinical his-
tories. The four subsequences and associated treatment conditions 
were organized in a random order. The 60 patient cases were randomly 
selected and randomly assigned to one of the treatment conditions. 
This design included across-subject and within-subject variations in 
the treatment conditions; it did not allow within-case-subject com-
parisons because a case was encountered only once for a radiolo-
gist38. Order effects were mitigated by the randomization of treatment 
conditions. The repeated-measure design included 33 radiologists in 
a repeated-measure setup (Supplementary Fig. 2). Each radiologist 
read a total of 60 patient cases, each under each of the four treatment 
conditions and producing a total of 240 diagnoses. The radiologist 
completed the experiment in four sessions, and the radiologist read the 
same 60 randomly selected patient cases in each session under each of 
the various treatment arms. In each session, 15 cases were read in each 
treatment arm in batches of five cases. Treatments were randomly 
ordered. This resulted in the radiologist reading each patient case 
under a different treatment condition over the four sessions. There 
was a 2-week washout period15,39,40 between every session to minimize 
order effects of radiologists reading the same case multiple times. This 
design included across-subject and within-subject variations as well 
as across-case-radiologist and within-case-radiologist variations in 
treatment conditions. Order effects were mitigated by the randomiza-
tion of treatment conditions. No enrichment was applied to the data 
collection process. We combined data from both experiment designs 
from the clinical history conditions. Further details about the data 
collection process are available in a separate study29, which focuses 
on establishing a Bayesian framework for defining optimal human–AI 
collaboration and characterizing actual radiologist behavior in incor-
porating AI assistance. The study was determined exempt by the MIT 
Committee on the Use of Humans as Experimental Subjects through 
exempt determination E-2953.

There are 15 pathologies with corresponding AI predictions: 
abnormal, airspace opacity, atelectasis, bacterial/lobar pneumonia, 
cardiomediastinal abnormality, cardiomegaly, consolidation, edema, 
lesion, pleural effusion, pleural other, pneumothorax, rib fracture, 
shoulder fracture and support device hardware. These pathologies, 
the interrelations among these pathologies and additional patholo-
gies without AI predictions can be visualized in a hierarchical struc-
ture in Supplementary Fig. B.1. Radiologists were asked to familiarize 
themselves with the hierarchy before starting, had access to the figure 
throughout the experiment and had to provide predictions for patholo-
gies following this hierarchy. This aimed to maximize clarity on the 
specific pathologies referenced in the experiment. When radiologists 
received AI assistance, they were simultaneously presented with the 
AI predictions for these 15 pathologies along with the patient’s chest 
X-ray and, if applicable, their clinical history. The AI predictions were 

presented in the form of prediction probabilities on a 0–100 scale. 
The AI predictions were generated by the CheXpert model8, which is a 
DenseNet121 (ref. 41)-based model for chest X-rays that has been shown 
to perform similarly to board-certified radiologists. The model gener-
ated a single prediction for fracture that was used as the AI prediction 
for both rib fracture and shoulder fracture. Authors of the CheXpert 
model8 decided on the 14 pathologies (with a single prediction for 
fracture) based on the prevalence of observations in radiology reports 
in the CheXpert dataset and clinical relevance, conforming to the 
Fleischner Society’s recommended glossary42 whenever applicable. 
Among the pathologies, they included ‘Pneumonia’ (corresponding 
to ‘bacterial/lobar pneumonia’) to indicate the diagnosis of primary 
infection and ‘No Finding’ (corresponding to ‘abnormal’) to indicate the 
absence of all pathologies. These pathologies were set in the creation 
of the CheXpert labeler8, which has been applied to generate labels for 
reports in the CheXpert dataset and MIMIC-CXR43, which are among 
the largest chest X-ray datasets publicly available.

The ground truth probabilities for a patient case were deter-
mined by averaging the continuous predicted probabilities of five 
board-certified radiologists from Mount Sinai Hospital with at least 
10 years of experience and chest radiology as a subspecialty on a 
0–100 scale. For instance, if the predicted probabilities of the five 
board-certified radiologists are 91, 92, 92, 100 and 100, respectively, 
the ground truth probability is 95. The prevalence of the pathologies 
based on a ground truth probability threshold of 50 of a pathology 
being present is shown in Supplementary Table 1.

The participating radiologists represent a diverse set of institutions 
recruited through two means. Their primary affiliations include large, 
medium and small clinical settings and non-clinical settings. Addi-
tionally, some radiologists are affiliated with an academic hospital, 
whereas others are not. Radiologists in the non-repeated-measure 
design were recruited from teleradiology companies. Radiologists in 
the repeated-measure design were recruited from the Vinmec health 
system in Vietnam. Details about the participating radiologists and 
recruitment process can be found in Supplementary Note | Participant 
recruitment and affiliation.

The experiment interface and instructions presented to partici-
pating radiologists can be found in Supplementary Note | Experiment 
interface and instructions. Before entering the experiment, radiolo-
gists were instructed to walk through the experiment instructions, the 
hierarchy of pathological findings, basic information and performance 
of the AI model, video demonstration of the experiment interface and 
examples, consent clauses, comprehension check questions, informa-
tion on bonus payment that incentivizes effort and practice patient 
cases covering four treatment conditions and showing example AI 
predictions from the AI model used in the experiment.

Sex and gender statistics of the participating radiologists and 
patient cases are available in Supplementary Tables 39 and 40, respec-
tively. Sex and gender were not considered in the original data collec-
tion procedures. Disaggregated information about sex and gender 
at the individual level was collected in the separate study and will be 
made available29.

Empirical Bayes for individual heterogeneity
We used the empirical Bayes method30 to shrink the raw mean het-
erogeneous treatment effects and performance metrics of individual 
radiologists measured on the dataset toward the grand mean to ame-
liorate overestimating heterogeneity due to sampling error. The values 
include AI’s treatment effects on error, sensitivity and specificity and 
performance metrics on unassisted error, sensitivity and specificity.

Assume that tr  is radiologist r’s true mean treatment effect from 
AI assistance or any metric of interest. We observe

̃tr = tr + ηr (1)
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which differs from tr  by ηr . We use a normal distribution as the prior 
distribution over the metric of interest. The mean of the prior distribu-
tion can be computed as

E [ ̃tr] = E [tr] , (2)

the mean of the observed mean metric of interest of radiologists. The 
variance of the prior distribution can be computed as

E [(tr − E [tr] )
2
] = E [( ̃tr − E [ ̃tr])

2] − E [η2
r ] , (3)

the variance of the observed mean metric of interest of radiologists 
minus the estimated E [η2

r ]. We can estimate E [η2
r ] with

E [η2
r ] = E [( 1

Nr
∑
i
tir − E [tir])

2

] = E [
∑i(tir − E [tir])

2

Nr
] = E [s.e.( ̃tr)

2] . (4)

Denote the estimated mean and variance of the prior distribution 
as μ0 and σ2

0. We can compute the mean of the posterior distribution 
for radiologist r  as

σ2
rμ0 + σ2

0μr

σ2
0 + σ2

r
(5)

where μr = ̃tt  and σr = s.e. ( ̃tr); we can compute the variance of the pos-
terior as

σ2
0σ

2
r

σ2
0 + σ2

r
(6)

where σr = s.e. ( ̃tr). The updated mean of the posterior distribution is 
the radiologist’s metric of interest after shrinkage.

For the analysis on treatment effects on absolute error, we focus 
on high-prevalence pathologies with prevalence greater than 10%, 
because radiologists’ baseline performance without AI assistance 
is generally highly accurate on low-prevalence pathologies, where 
they correctly predict that a pathology is not present, and, as a result, 
there is little variation in radiologists’ errors. This is especially true 
when computing each individual radiologist’s treatment effect. 
When there is zero variance in the performance of a radiologist under 
a treatment condition, the associated standard error estimate is 
zero, making it impossible to perform inference on this radiologist’s 
treatment effect.

Combined characteristics model for splitting radiologists  
into subgroups
The combined characteristics model was fitted on a training set of half 
of the radiologists (n = 68) to predict treatment effects of the test set 
of the remaining half (n = 68). The treatment effect predictions on the 
test set were used as the combined characteristics score for splitting 
the test set radiologists into binary subgroups (based on whether a 
particular radiologist’s combined characteristics score was smaller 
than or equal to the median treatment effect of radiologists computed 
from all available reads). Then, the same procedure was repeated after 
flipping the training set and test set radiologists to split the other set 
of radiologists into binary subgroups. The experience-based charac-
teristics of radiologists in the randomly split training set and test set 
were balanced: one set contained 27 radiologists with less than or equal 
to 6 years of experience and 41 radiologists with more than 6 years of 
experience, and the other set contained 41 and 27, respectively. One 
set contained 47 radiologists who did not specialize in thoracic radiol-
ogy and 21 radiologists who did, and the other set contained 54 and 14 
radiologists, respectively. One set contained 32 radiologists without 

experience with AI tools and 36 radiologists with experience, and the 
other set contained 31 and 37, respectively.

Treatment effect models
To compute a radiologist’s observed mean treatment effect and the 
corresponding standard errors and the overall treatment effect of 
AI assistance across subgroups, we built a linear regression model 
with the following formulation using the statsmodels library: 
error ∼ 1 + C(treatment). Here, error refers to the absolute error of a 
radiologist prediction; 1 refers to an intercept term; and treatment 
refers to a binary indicator of whether the prediction is made with 
or without AI assistance. This formulation allows us to compute the 
treatment effect of AI assistance for both non-repeated-measure and 
repeated-measure data.

Subgroup-specific treatment effect models
For the analyses on experience-based radiologist characteristics and 
AI error, we computed the treatment effects of subgroups split based 
on the predictor of interest by building a linear regression model with 
the following formulation using the statsmodels library: error ∼ 1 + C(s
ubgroup) + C(treatment):C(subgroup). Here, error refers to the absolute 
error of a radiologist prediction; 1 refers to an intercept term; subgroup 
refers to an indicator of the subgroup that the radiologist is split into; 
and treatment refers to a binary indicator of whether the prediction 
is made with or without AI assistance. This formulation allows us to 
compute the subgroup-specific treatment effect of AI assistance for 
both non-repeated-measure data and repeated-measure data.

Cluster-robust standard errors
To account for correlations of observations within patient cases and 
radiologists, we computed cluster-robust standard errors that are 
two-way clustered at the patient case and radiologist level for all infer-
ences unless otherwise specified44,45. With the statsmodels library’s 
ordinary least squares (OLS) class, we used a clustered covariance esti-
mator as the type of robust sandwich estimator and defined two-way 
groups based on identifiers of the patient cases and radiologists. The 
approach assumes that regression model errors are independent across 
clusters defined by the patient cases and radiologists and adjusts for 
correlations within clusters.

Reversion to the mean
The reversion to the mean effect and the mechanism of split sam-
pling in avoiding reversion to the mean are explained in the following 
derivation:

Suppose that u∗i,r  and a∗i,r  are the true unassisted and assisted diag-
nostic error of radiologist r  on patient case i. Suppose that we measure 
ui,r = u∗i,r + eui,r  and ai,r = a∗i,r + eai,r  where eui,r  and eai,r  are measurement 
errors. Assume that the measurement errors are independent of u∗i,r  
and a∗i,r .

To study the relationship between unassisted error and treatment 
effect, we intend to build the following linear regression model:

u∗r − a∗r = βu∗r + e∗r (7)

where the error is independent of the independent variable, and u∗r  and 
a∗r  are the mean unassisted and assisted performance of radiologist r. 
Here, the moment condition

E [e∗i,r × u∗i,r] = 0 (8)

is as desired. This univariate regression estimates the true value of β, 
which is defined as

Cov(u∗r − a∗r , u∗r )
Var(u∗r )

(9)
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However, because we have access only to noisy measurements ur  
and ar, consider instead an approach that builds the model

ur − ar = βur + er (10)

and assumes the moment condition

E [er × ur] = 0. (11)

This linear regression model using noisy measurements instead gener-
ates the following estimate of β:

Cov (ur − ar,ur)
Var (ur)

=
Cov (u∗r − a∗r ,u∗r ) + Var (eur )

Var (u∗r ) + Var (eur )
(12)

which is incorrect because of the additional Var (eur )  terms in the  
numerator and the denominator. The additional term in the denomina-
tor represents attenuation bias, which we address in detail in a later 
subsection. The term in the numerator represents the reversion to the 
mean issue, which we now discuss in further detail.

As the equation shows, the bias caused by reversion to the  
mean is positive. This term exists because the moment condition 
E [er × ur] = 0, equation (11), is not valid at the true value of β as shown 
in the following derivation:

E [(ur − ar − βur) × ur] = E [((1 − β)ur − ar) × ur]

= E [((1 − β) (u∗r + eur ) − (a∗r + ear )) × ur]

= E [(((1 − β)u∗r − a∗r ) + (1 − β) eur − ear ) × ur]

= E [(e∗r + (1 − β) eur − ear ) × ur]

= (1 − β) E [eur × ur]

= (1 − β)Var (eur ) ≠ 0.

Split sampling solves this bias by using separate patient cases for 
computing unassisted error and treatment effect. A simple construc-
tion of split sampling is to use a separate case i for computing the 
treatment effect and using the remaining cases to compute unassisted 
error. With this construction, we obtain the following estimate of β:

Cov (ui,r − ai,r,u≠i,r)
Var (u≠i,r)

(13)

where ui,r  is the unassisted performance on case i for radiologist r, and 
u≠i,r  is the mean unassisted performance computed on all unassisted 
cases other than i. If the errors on each case used to compute u∗r  and a∗r  
are independent, the estimate of β is equal to

Cov (u∗r − a∗r ,u∗r )
Var (u≠i,r)

(14)

The remaining discrepancy in the denominator again represents 
attenuation bias and is addressed in a later subsection.

Data efficient split sampling construction
To study unassisted error as a predictor of treatment effect, we built 
a linear regression model with the following formulation using the 
statsmodels library: treatment effect ∼ 1 + unassisted error. We designed 
the following split sampling construction to maximize data efficiency 
when computing the independent and dependent variables in the 
linear regression.

Let i index a patient case and r  index a radiologist. Assume that a 
radiologist reads Nu cases unassisted and Na cases assisted. Recall that 
the unassisted and assisted cases are disjoint for the non-repeated- 
measure data; they overlap exactly for the repeated-measure data.

For the non-repeated-measure design, we adopt the following 
construction:

ui,r − ar = βx≠i,r + εui,r + εar
(15)

where x≠i,r =
1

Nu−1
∑k≠iuk,r and ar =

1
Na
∑kak,r. Here, x≠i,r  is the mean unas-

sisted performance computed on all unassisted cases other than i; ui,r  
is the unassisted performance on case i for radiologist r; and ar  is the 
mean assisted performance on all assisted cases for radiologist r.

For the repeated-measure design, we adopt the following 
construction:

ui,r − ai,r = βx≠i,r + εui,r + εai,r (16)

where x≠i,r =
1

Nu−1
∑k≠iuk,r. Here, x≠i,r is the mean unassisted performance 

computed on all cases other than i; ui,r  is the unassisted performance 
on case i for radiologist r; and ai,r  is the assisted performance on case 
i for radiologist r .

To study unassisted error as a predictor of assisted error, we built 
a linear regression model with the following formulation using the 
statsmodels library: assisted error ∼ 1 + unassisted error. We designed 
the following split sampling construction that maximizes data effi-
ciency when computing the independent and dependent variables in 
the linear regression.

For the non-repeated-measure design, we adopt the following 
construction:

ai,r = βxr + εi,r (17)

where xr =
1
Nu
∑k xk,r. Here, xr  is the mean unassisted performance  

computed on all unassisted cases, and ai,r  is the assisted performance 
on case i for radiologist r.

For the repeated-measure design, we adopt the following 
construction:

ai,r = βx≠i,r + εi,r (18)

where x≠i,r =
1

Nu−1
∑k≠iuk,r. Here, x≠i,r is the mean unassisted performance  

computed on all unassisted cases other than i and ai,r  is the assisted 
performance on case i for radiologist r.

The constructions above again emphasize the necessity for split 
sampling. Without split sampling, the mean unassisted performance, 
which is the independent variable of the linear regression, will be cor-
related with the error terms due to overlapping patient cases, leading 
to a bias in the regression.

Adjustment for attenuation bias
We adjusted for attenuation bias for the split sampling linear regres-
sion formulations.

We want to estimate regressions of the form

Yr = β0 + β1E [xr] + εr (19)

where Yr  is an outcome for radiologist r  and E [xr] is radiologist rʼs  
average unassisted performance. We observe

x̃r =
1
Nr

∑
i
xir = E [xr] + ηr (20)

where ηr =
1
Nr
∑
i
xir − E [xr]  and E [ηrxr] = 0  and E [ηrεr] = 0 , which are 

justified by independent and identically distributed (i.i.d.) sampling 
of cases and split sampling, respectively.
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Using observations from the experiment, we estimate the follow-
ing regression:

Yr = γ0 + γ1 ̃xr + εr (21)

Recall that

γ̂1→p E[(xr+ηr−E[xr])(Yr−E[Yr])]
E[(xr+ηr−E[xr])

2]
=

E[(xr−E[xr])(Yr−E[Yr])]
E[(xr−E[xr])

2]+E[η2
r ]

= β1λ
(22)

where λ =
E[(xr−E[xr])

2]

E[(xr−E[xr])
2]+E[η2

r ]  and β1 =
E[(xr−E[xr])(Yr−E[Yr])]

E[(xr−E[xr])
2] . We can estimate λ 

using a plug-in estimator for each term in the data: (1)

E [η2
r ] = E [( 1

Nr
∑
i
xir − E [xir])

2

]

= E [∑i(xir−E[xir])
2

Nr
] = E [s.e.( ̃xr)

2] .

(23)

This is the standard error of the mean estimator. (2)

E [(xr − E [xr])
2] = E [( ̃xr − E [ ̃xr])

2] − E [η2
r ] , (24)

which can be estimated by taking the difference between the variance 
of the observed x̃r’s and the estimated E [η2

r ]. The denominator of λ is 
effectively E [( ̃xr − E [ ̃xr])

2].
Finally, with λ̂, we can estimate β1 using the estimator

β̂1 = γ̂1/λ̂. (25)

For inference, notice that √n (γ̂1 − γ1)→dN (0,σ2
γ)  and λ̂→p λ . By 

Slutsky’s theorem, we know that

√n
(γ̂ − γ)

λ̂
→dN (0,

σ2
γ

λ2 )
. (26)

Therefore, we divide the standard errors of γ̂1 by λ̂ to obtain the 
standard errors of β̂1.

This concludes the adjustment for attenuation bias for the slope 
term.

Statistical testing
To determine the amount of heterogeneity between subgroups of 
radiologists receiving lower versus higher treatment effects, we ran 
an unpaired t-test between the two subgroups of treatment effects 
computed using the empirical Bayes method. We used the Wald test to 
test regression coefficients against the null hypothesis of joint equality 
among treatment effects of different subgroups to determine if there is 
a statistically significant difference among subgroups split based on the 
predictor of interest. We also used the Wald test to test regression coef-
ficients against the null hypothesis of zero to determine in a continuous 
analysis if the independent variable, namely unassisted error, is a predic-
tor of the dependent variable, namely treatment effect or assisted error. 
We used the Benjamini–Hochberg procedure to correct for multiple 
hypothesis testing over 15 individual pathologies. For the analysis on 
treatment effect on AUROC between subgroups determined by AI error 
(Supplementary Table 34), we conducted an F-test to determine whether 
there is a statistically significant difference between treatment effects on 
AUROC in different bins. Specifically, we used the number of reads that 
fall into each bin as the group size. We used the grand mean AUROC and 
group AUROCs along with group sizes to compute the sum of squares 
between; we used the estimated standard error of each group AUROC 
along with the group size to compute the sum of squares within (error).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The 324 patient cases from Stanford University’s healthcare system 
were used under licensing. They are available at https://stanfordaimi.
azurewebsites.net/datasets/5194008e-61cf-4083-9896-3d4bd8b-
f8b0b, conditioned on a Stanford University data research use agree-
ment. The AI predictions used in the experiment were generated by the 
CheXpert model trained on the CheXpert dataset8, which is publicly 
available. The clinician–AI collaboration dataset is available at https://
osf.io/z7apq/ upon request for access at the Open Science Framework 
dataset page.

Code availability
Code for the analysis is available at https://doi.org/10.5281/zenodo. 
10467492 (ref. 46). Data analysis was conducted using Python 3.9.7, 
libraries statsmodels 0.13.5 and scipy 1.10.1; and R 4.1.3 and libraries 
MRMCaov 0.3.0 and auctestr 1.0.0.
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Extended Data Fig. 1 | Individual heterogeneity in treatment effects. a, b, Individual heterogeneity in treatment effects of 140 radiologists as determined using the 
empirical Bayes method on (a) all pathologies aggregated and (b) high-prevalence pathology labels (pathology labels with greater than 10% prevalence). The curve is 
the kernel density estimate (KDE).
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Extended Data Fig. 2 | Individual heterogeneity in unassisted error. a, b, Individual heterogeneity in unassisted error of 140 radiologists as determined using the 
empirical Bayes method on (a) all pathologies aggregated and (b) high-prevalence pathology labels (pathology labels with greater than 10% prevalence). The curve is 
the kernel density estimate (KDE).
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Extended Data Fig. 3 | Individual heterogeneity in treatment effects on 
sensitivity, sensitivities, treatment effects on specificity, and specificities.  
a-b, Individual heterogeneity in (a) improvement in sensitivities, (b) sensitivity, 

(c) improvement in specificity, and (d) specificity of 140 radiologists as 
determined using the empirical Bayes method on all pathologies aggregated.  
The curve is the kernel density estimate (KDE).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Conventional radiologist characteristics as 
indicators for treatment effect on individual pathologies. a, Difference in 
treatment effects of subgroups of radiologists on high-prevalence pathology 
labels (pathology labels with greater than 10% prevalence). The difference is 
computed between lower and higher improvement subgroups. The error bars 
show 95% confidence intervals. There are statistically significant differences 
between subgroups on high-prevalence pathology labels (abnormal B-H 
adjusted P = 1.66e-29, airspace opacity B-H adjusted P = 7.20e-29, atelectasis B-H 
adjusted P = 1.10e-30, cardiomediastinal abnormality B-H adjusted P = 4.85e-30, 
support device hardware B-H adjusted P = 1.57e-30; B-H adjusted P < 0.001). 
A two-sided, unpaired t-test between the two subgroups of treatment effects 
was conducted. The difference is -4.194 (95% CI: -4.753 to -3.636) for abnormal, 
-1.465 (95% CI: -1.664 to -1.266) for airspace opacity, -1.766 (95% CI: -1.991 to 
-1.541) for atelectasis, -1.571 (95% CI: -1.777 to -1.365) for cardiomediastinal 
abnormality, and -3.150 (95% CI: -3.552 to -2.748) for support device hardware. 
136 radiologists with available survey data are used. b, Difference in treatment 
effects of subgroups of radiologists based on combined characteristics of years 

of experience, subspecialty in thoracic radiology and experience with AI tools on 
held-out test sets of radiologists. The difference is computed between lower and 
higher predicted improvement subgroups. The error bars show 95% confidence 
intervals. n.s. indicates no statistical significance (B-H adjusted P > 0.05). The 
Wald test was used to test regression coefficients that estimate treatment effects 
against the null hypothesis of joint equality among treatment effects of different 
subgroups. Details of the statistical models are available in Methods. There are 
136 radiologists with available survey data on the three characteristics.  
c-e, Difference in treatment effects of subgroups of radiologists based on (c) 
years of experience, (d) subspecialty in thoracic radiology, and (e) experience 
with AI tools on 15 individual pathologies. The difference is computed between 
(c) subgroups of fewer versus more years of experience, (d) subgroups without 
versus with subspecialty in thoracic radiology, and (e) subgroups without versus 
with experience using AI tools. The error bars show 95% confidence intervals. n.s. 
indicates no statistical significance (B-H adjusted P > 0.05). The same statistical 
test as in b was used. There are 136 radiologists with available survey data.
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Extended Data Fig. 5 | Conventional radiologist characteristics as indicators 
for treatment effect on AUROC on individual pathologies. a, Difference in 
treatment effects on AUROC of subgroups of radiologists based on combined 
characteristics of years of experience, subspecialty in thoracic radiology and 
experience with AI tools on held-out test sets of radiologists. The difference 
is computed between lower and higher predicted improvement subgroups. 
The error bars show 95% confidence intervals. n.s. indicates no statistical 
significance (B-H adjusted P > 0.05). The difference is 0.034 (95% CI: -0.017 to 
0.842) for abnormal and -0.023 (95% CI: -0.082 to 0.035) for airspace opacity. 
The Wald test was used to test regression coefficients that estimate treatment 
effects against the null hypothesis of joint equality among treatment effects 

of different subgroups. Details of the statistical models are available in 
Methods. 136 radiologists with available survey data are used. b-d, Difference in 
treatment effects of subgroups of radiologists based on (b) years of experience, 
(c) subspecialty in thoracic radiology, and (d) experience with AI tools on 2 
individual pathologies on which the AUROC analysis could be computed.  
The difference is computed between (b) subgroups of fewer versus more years 
of experience, (c) subgroups without versus with subspecialty in thoracic 
radiology, and (d) subgroups without versus with experience using AI tools.  
The error bars show 95% confidence intervals. n.s. indicates no statistical 
significance (B-H adjusted P > 0.05). The same statistical test as in a was used. 
There are 136 radiologists with available survey data.
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