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Smart solutions for automated imaging
Algorithms trained to interpret microscope data can greatly extend the information that can be derived from the 
resulting images, or even optimize how imaging experiments are conducted.

Michael Eisenstein

While buzzing about in search 
of food, a fruit fly encounters 
a deadly wasp. Fortunately, its 

brain reacts to the threat by initiating a 
cascade of responses across a network of 
neurons that help it to flee. Philipp Keller’s 
group at the Howard Hughes Medical 
Institute’s Janelia Research Campus has 
developed a variety of sophisticated 
strategies for deconvolving the circuitry 
underlying this and other complex functions 
of the Drosophila nervous system, using a 
combination of optogenetic manipulation 
and cutting-edge light-sheet microscopy 
to simulate various stimuli in living tissue 
and analyze the response. But perhaps the 
most remarkable aspect of this project is the 
extent to which the instruments themselves 
are running the show. “The microscope can 
basically do these experiments completely 
on its own,” says Keller.

This work is a particularly advanced 
example of an emerging field of 
computer-assisted imaging known as ‘smart 
microscopy’. In these configurations, the 
microscope is not merely a conduit for the 
collection of image data. Instead, incoming 
data are analyzed by algorithms that guide 
the instrument on how to proceed — for 
example, deciding which events to image 
and how specifically to image them, or 
compensating for optical or physical 
perturbations that might undermine further 
data collection.

For Keller, this means using machine 
learning algorithms that can determine 
precisely when and where an experimental 
manipulation should be applied to the 
Drosophila nervous system, and then home 
in on subsequent events that are relevant to 
the fly’s response. Numerous other groups 
are pursuing similar efforts, where the 
microscope is essentially educated to identify 
and selectively focus on biological events 
of interest to the researcher. “If somebody 
can build a self-driving car, we can work 
on a self-driving microscope,” says Suliana 
Manley, a researcher at the Swiss Federal 
Institute of Technology in Lausanne who is 
developing instruments for super-resolution 
analysis of mitochondrial dynamics.

But this is also part of a broader 
movement toward the use of computational 

techniques to make the most of imaging 
experiments. For example, machine 
learning techniques are being used to 
design better microscopy experiments, 
overcome limitations in imaging quality, 
or even boost the performance of an 
instrument beyond the limits of its optics 
— turning flat images into 3D volumes or 
conferring super-resolution quality upon 
diffraction-limited data. “It’s not about 
a revolution in optics or computational 
research or the way we look at biological 
systems by itself,” says Ricardo Henriques, 
of the Instituto Gulbenkian de Ciencia 
in Portugal. “The revolution comes from 
having machine learning bridge all this 
together to get more out of our data.”

Image consultants
Every microscope, no matter how 
sophisticated, has limitations and  
trade-offs — particularly when one is 

imaging living specimens. A technique  
that delivers remarkable sub-diffraction- 
limit spatial resolution may also inflict too 
much damage on cells to be practical for 
extended time periods. Conversely, imaging 
approaches that are gentler in terms of 
exposure to laser light and less prone to 
cause photobleaching may yield poorer 
temporal resolution or suffer from a poor 
signal-to-noise ratio. Such limitations  
mean that researchers routinely need to 
make compromises in designing live-cell 
imaging experiments.

As a solution, many researchers are 
turning to machine learning strategies, 
which employ algorithms that can essentially 
be ‘educated’ in how to analyze, interpret 
and respond to particular types of data. For 
example, by training such algorithms with 
‘ideal’ images of a particular set of samples, 
as well as images of similar samples taken 
with the intended experimental setup, 

Light sheet microscopy time-lapse of a zebrafish embryo during gastrulation. Montage of individual time 
points in a maximum intensity projection with color coding for depth. Credit: Gopi Shah and Jan Huisken, 
Morgridge Institute for Research
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one can potentially restore experimental 
images to something much closer to that 
ideal in terms of clarity and resolution. 
Researchers led by Martin Weigert, Loic 
Royer and Florian Jug at the Center for 
Systems Biology Dresden in Germany 
demonstrated such an approach, termed 
‘content-aware image restoration’ (CARE), in 
a 2018 study1. Henriques, who collaborated 
on the study, notes that CARE proved 
much more effective than conventional 
denoising algorithms. “That immediately 
opens the door to doing imaging with 
lower illumination at a level that was not 
possible before,” he says. Thus, one can do 
longer-term or higher temporal resolution 
fluorescence microscopy experiments  
while reducing the risk of damaging the 
sample. Henriques’s group is now using 
CARE to perform extended-duration 
imaging of HIV infection in live cells,  
which was previously difficult due to the 
tendency of the sparsely labeled viral 
particles to rapidly photobleach.

Algorithmic processing can also greatly 
extend the information that can be extracted 
from microscopic images. Aydogan Ozcan’s 
team at the University of California Los 
Angeles has been using a computational 
tool known as a generative adversarial 
network (GAN) to perform cross-modality 
transformations, in which image datasets 
from two different microscopy formats 
are used as training data. If successful, the 
trained algorithm can extrapolate how an 
image collected from one instrument would 

look if analyzed in a more sophisticated but 
costly or laborious experiment.

For example, Ozcan’s team showed 
that they could extract three-dimensional 
features from a single planar microscopy 
image by training the GAN to accurately 
interpret out-of-focus visual data2. Once 
these contour maps have been established, 
users of Ozcan’s Deep-Z algorithm can then 
refocus their view within a single wide-field 
fluorescence image as if they were zooming 
through a stack of images collected over 
a protracted 3D confocal microscopy 
experiment. “We’ve imaged neurons firing 

across the entire body of C. elegans by 
imaging one plane,” he says. “And you can 
create a volumetric movie from a single 
two-dimensional movie acquired within 
a certain axial range.” Importantly, this 
approach can also be applied for correcting 
focus errors, such as arise if a sample drifts 
during imaging or as a result of surface 
irregularities.

Using a similar GAN-based approach, 
Ozcan and colleagues demonstrated the 
ability to up-convert images obtained 
with diffraction-limited instruments to 
super-resolution3. By teaching the algorithm 
how samples imaged on a structured 
illumination microscopy (SIM) instrument 
look when analyzed by total internal 
reflection fluorescence (TIRF), it becomes 
possible to computationally extract images 
with SIM resolution from TIRF data. The 
resulting images can achieve the best of 
both worlds. “It actually oftentimes beats 
SIM reconstruction because it eliminates 
some of the artifacts associated with SIM,” 
says Ozcan, “and drastically simplifies 
the imaging setup and speeds up the 
measurements.” This approach also proved 
effective at deriving super-resolution 
stimulated emission-depletion 
(STED)-quality images from confocal 
microscopy, while retaining the greater 
depth of field of the latter modality.

Single-molecule localization-based 
techniques such as stochastic optical 
reconstruction microscopy (STORM) 
differ from most other fluorescence-based 
imaging methods in the amount of 
reconstruction required. Here, images 
are acquired by sequentially switching 
random subpopulations of individual 
photo-activatable fluorophores on and off 
and then computationally assembling the 
resulting sets of pictures into a final image 
with molecular-scale detail. “Your raw 
data looks nothing like an image — you’re 
dealing with these raw frames that are just 
single molecules,” says Manley.

Overlapping signals from fluorophores 
can confound the analysis of STORM 
images, particularly for 3D imaging, 
and this is typically resolved by imaging 
fewer fluorophores per round — a tactic 
that precludes high-speed imaging. Yoav 
Shechtman’s team at the Technion in Haifa, 
Israel, employed a deep-learning-based 
approach to overcome this difficult 
scenario4. They used their algorithm to 
engineer the point-spread function (PSF) — 
the representation of a fluorophore’s signal 
as generated by a microscope’s detection 
system — to enable better discrimination 
of individual signals in 3D. This would 
have been challenging using standard 
mathematical approaches, according to 

Dora Mahecic, a graduate student in Suliana Manley’s group, configures the lab’s high-throughput 
multi-focal iSIM instrument. Credit: EPFL Hillary Sanctuary

Artistic depiction of an image transformation 
neural network, where the input images are 
enhanced to be equivalent to images acquired 
by, for example, a super-resolution instrument. 
Credit: Aydogan Ozcan, UCLA
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Shechtman. But by training their algorithm 
with a vast series of simulated STORM 
images, his team could derive engineered 
PSFs that greatly improved the speed and 
efficiency of 3D imaging. “You can take 
frames with higher density,” says Shechtman, 
“which translates into fewer frames to 
achieve the same number of localization 
events.” Using this ‘DeepSTORM3D’ 
approach, they could track the dynamic 
volumetric movement of individual 
chromosomal telomeres within mouse cells 
at ten frames per second. Shechtman’s team 
is now using this approach to characterize 
the cellular entry of nanoparticles for clinical 
imaging and therapeutic applications.

On-the-job training
On the other side of the equation, 
algorithms can also be leveraged to actively 
reconfigure a microscope’s settings or 
the design of an experiment to deliver 
the optimal results for a given sample or 
set of research priorities. “You have the 
ability to modify the PSF, the illumination, 
the detector and the properties of the 
sample itself — there’s all these different 
things you could attempt to optimize in a 
smart microscope,” says Duke University 
researcher Roarke Horstmeyer.

Introducing real-time control for even 
a single parameter can lead to considerable 
improvements. For example, Laura Waller 
of the University of California Berkeley 
and her graduate student Henry Pinkard 
developed a multiphoton microscopy system 
in which a machine learning algorithm 
actively adjusts the level of illumination 
throughout the imaging process. “We’re 
trying to find the optimal amount to 
increase the intensity at every point as you 
scan through this 3D sample,” says Waller. In 
an initial demonstration with mouse lymph 
node samples, their team was able to image 
individual T cells within a far larger volume 
than was possible before. The adaptive 
illumination scheme enabled them to 
overcome tissue scattering from deep inside 
the sample while also limiting photodamage.

For Jan Huisken of the Morgridge 
Institute for Research in Wisconsin, the 
priorities of smart microscopy are a little 
different. Huisken works extensively with 
multi-view light-sheet microscopy, a 
relatively gentle imaging modality that can 
capture detailed 3D information about large 
specimens — including whole embryos — 
from myriad angles while inflicting minimal 
photodamage. This can leave users buried 
in potentially irrelevant imaging data. “Only 
a small fraction of that is information that 
scientists would actually want to have in 
the end,” says Huisken. “That led to us 
asking, ‘wouldn’t it be wonderful if the 

microscope could think ahead and only 
acquire the useful data?’” As an initial step 
in that direction, his group published a 
‘smart rotation’ technique that uses software 
to analyze initial imaging data from an 
experiment to guide subsequent imaging 
steps5. “The microscope can automatically 
find the perfect angle that gives you the 
most information, or decide if you need to 
acquire multiple views,” says Huisken.

These are all important steps toward 
the goal of achieving more extensive, 
multi-parameter control of the imaging 
experiment. Flavie Lavoie-Cardinal of 
the CERVO Brain Research Centre in 
Quebec City described one such platform 
in a 2019 publication, in which she used 
machine learning to optimize STED 
imaging experiments across a range of 
parameters, such as laser power and 
scanning speed6. After teaching the 
software what a ‘good’ image looks like 
for a particular set of experiments, she 
found that it quickly became accomplished 
at adjusting the microscope on its own. 
“The algorithm got much, much better at 
finding the optimal parameters for one 
workflow than a non-experienced user,” 
says Lavoie-Cardinal. “I was faster, because 
I have ten years of experience, but it would 
find the same parameters that I do.” This 
has proven valuable for her group’s work on 
understanding the dynamic molecular-scale 
cytostructural changes that take place within 
neurons during various activation states.

Manley’s group is likewise looking to 
introduce greater computational control to 
SIM, a super-resolution modality that offers 
the advantage of being faster than STED 
or STORM. Her team recently developed a 
multi-field, automated iteration of instant 
SIM (iSIM)7, a platform first developed 
by Hari Shroff and Andrew York at the 
US National Institutes of Health. This 
version of iSIM can capture data at rates 
of up to 100 frames per second, but such 
temporal resolution is only essential for a 
subset of cellular events. The processes of 
mitochondrial fission and fusion are a major 
focus of her lab, and she notes that these 
events play out over a range of different 
timescales. “The ultimate step in the 
fission process takes place on this very fast 
timescale,” she says, whereas other aspects of 
mitochondrial dynamics unfold more slowly. 
A well-trained machine learning algorithm 
could thus help the microscope recognize 
those events and adapt accordingly 
by speeding up or slowing down data 
collection. “If you could use a real-time 
adaptive controller to capture just those 
events you’re interested in at a hundred 
frames per second, that would be amazing,” 
says Manley.

The sophisticated machine-controlled 
manipulation and imaging experiments now 
being performed by the Keller lab represent 
the culmination of years of effort toward an 
automated light-sheet system. In 2016, his 
group published the foundational version 
of this platform, known as AutoPilot8. 
AutoPilot relies on software control over 
the light sheets and detectors to enable 
long-term analysis of live samples while 
maintaining stable focus and resolution 
and carefully regulating the amount of light 
delivered to the sample. “Throughout the 
period of embryogenesis, you have different 
optical properties in different parts of the 
sample for all sorts of different reasons,” says 
Keller. “If you don’t have a microscope that 
can adapt and figure out what’s going on 
there, then you can’t get high-quality image 
data throughout the process.” In subsequent 
work, his group has modified the AutoPilot 
system so that it can achieve long-term 
imaging of even larger samples, including 
monitoring the development of a mouse 
embryo from the gastrula stage to the early 
phases of organogenesis9.

Software for hard problems
Keller’s approach is notable in that it does 
not employ machine learning, but rather 
uses a generalizable algorithm based on 
mathematical principles. “We looked at over 
30 different metrics and had ‘ground truth’ 
image data that we annotated and asked 
what’s the best that a human that could do if 

STED super-resolution image of a neuron, with 
overlaid color indicating quality scores used to 
inform the machine learning–based optimization 
process. Credit: Flavie Lavoie-Cardinal, CERVO 
Brain Research Centre
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they had to solve this problem,” he says. The 
resulting strategy, coupled with a few clever 
tricks to facilitate the quality control process 
— such as a patterned light-sheet that allows 
the instrument to easily recognize whether 
it is in proper focus — proved sufficient to 
guide AutoPilot on its mission.

But most computer-guided microscopy 
efforts rely on machine learning algorithms 
that must be carefully trained before being 
unleashed in actual experiments. These 
algorithms are only as good as their education 
allows and must be fed vast amounts of 
data that reflects the kind of tasks that they 
will ultimately be tackling. “Every time I 
would generate an image, I would rate it,” 
says Lavoie-Cardinal. “We generated a large 
databank of rated super-res images with 
many different structures, different proteins, 
different imaging contexts — and with that, 
we could train our network.” Modalities like 
STORM, which do not immediately generate 
human-recognizable images, offer more 
flexibility in terms of training. For his work 
with DeepSTORM3D, Shechtman was able to 
generate numerous simulated STORM images 
that reflect a wide range of experimental 
scenarios, and these proved sufficient for 
guiding the PSF engineering process.

Inadequate training can greatly restrict 
the usefulness of a machine learning 
algorithm. “If you train it so that it only 
sees microtubules, it’s going to recover 
microtubules no matter what you give 
it,” says Shechtman. But some algorithms 
can achieve a surprising intuitive capacity 

after training. For example, during the 
development of Deep-Z, Ozcan’s group 
relied entirely on axial defocusing — 
moving the specimen in and out of focus 
on the z axis — for the training process. 
But the resulting algorithm punched above 
its weight in grappling with samples that 
were tilted, bent and warped. “It kind of 
generalized to handle surface-to-surface 
transformations, even though it was 
only trained with plane-to-plane 
transformations,” he says. Nevertheless, 
users need to remain fully aware of the 
biases that can potentially arise even from a 
well-trained neural network, and establish 
robust quality control measures and 
carefully monitor the data to avoid being 
misled by appealing but inaccurate results.

A well-chosen algorithmic strategy 
is also important. Many groups in the 
computer-assisted microscopy space are 
using deep learning, a subset of machine 
learning–based approaches that rely on 
neural networks to analyze and interpret 
data. The GAN strategy used by Ozcan 
actually employs two dueling neural 
networks, where the output of the first is 
critiqued and fact-checked by the second. 
“It’s like if you have fake Picasso: an expert 
at Picasso will recognize that and say ‘it 
looks good but it’s fake’,” he says. This helps 
constrain the first neural network from 
getting too ‘creative’. It can also be helpful 
to give neural networks foundational 
knowledge of real-world principles in areas 
such as optics, and Waller’s team relies 

heavily on what is known as physics-based 
learning to complement deep learning. “It’s 
about trying to get the best of both worlds,” 
she says.

Almost by definition, the machine 
learning process is something of a black 
box: a computationally led process to solve 
problems too difficult for humans to tackle. 
This can be disconcerting to some biologists, 
who may be skeptical about ceding control 
over their experiment to an algorithm. 
“Some people feel threatened that they will 
lose their jobs or their capacity to have 
critical thinking about their experiments, 
but I think that’s the incorrect way to think 
about it; I think critical thinking will always 
need to be here,” says Henriques. But on 
the flip side, technology enthusiasts and 
early adopters should be cautious about 
seeing this as a universal solution to every 
imaging problem that arises. “A lot can still 
be done with conventional computational 
techniques, and this is an advantage,” says 
Huisken, whose own smart microscopy 
efforts still largely rely on such methods. 
“Because although machine learning is 
powerful, we probably still know too little 
about what it’s actually doing.”

Automatic for the people
Despite the skeptics, the general concept 
of smart microscopy is steadily drawing 
interest from life scientists with hard 
imaging problems to tackle. “We collaborate 
a lot with biologists, and they’re just 
incredibly excited about it,” says Manley.

Much of the foundational work in 
this space is taking place in labs with a 
heavy focus on mathematics, engineering 
and computer science, and it can be 
a challenge to translate this into a 
user-friendly framework for dedicated 
wet-lab denizens. But smart microscopy’s 
pioneers are taking care to disseminate 
their code in an accessible open-source 
format and working on polished interfaces 
that make computer-assisted experiments 
more intuitive. For example, Henriques’s 
team has been building a software suite 
called ZeroCostDL4Mic, which offers 
an entry-level framework for developing 
smart imaging tools10. “It sends data to the 
cloud and uses free services to train neural 
networks that would then do predictions 
on how to improve data collected on a 
microscope, or even how to control a 
microscope,” says Henriques, noting that 
these tools can also be installed and run 
locally rather than on the cloud.

The upgrade from conventional to 
smart microscopy need not be expensive. 
Although training a machine learning 
algorithm can be computationally intensive, 
most experiments can be done with existing 

Todd Bakken puts the finishing touches on an early prototype of the Flamingo light sheet microscope in 
Jan Huisken’s lab. Credit: Jan Huisken, Morgridge Institute for Research
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equipment. “We actually developed more 
or less everything using a normal laptop 
and the acquisition computer of our 
microscopes,” says Lavoie-Cardinal. And 
even for the most sophisticated automated 
configurations, like the AutoPilot-based 
systems developed in the Keller lab, the 
cost of upgrades is minor relative to the 
pricey instruments to which they are being 
attached. For the platform described in his 
2016 paper, Keller estimates spending about 
$20,000 to modify a $300,000 light-sheet 
microscope.

Huisken and colleagues are now looking 
into ways to alleviate that latter cost through 
their Flamingo project, in which portable 
but powerful light-sheet microscopes are 
essentially loaned out to labs around the 
world. “This system is by no means a smart 
microscope — but it is perfectly suited to 
be turned into one,” says Huisken. These 
instruments can be run under automated 
control by an external computer, or by 
a remote expert operator in an entirely 
different location. On the experimental  
side, the user only needs to know how to 
prepare and load their sample, along with 
what sort of analysis they’re looking to 
perform. “The intelligence that analyzes  
this data could be anywhere in the world —  
in the cloud, on a Google farm, or  
whatever — and this entity just needs  
to provide an update to the small text  

file that gives instructions to the 
microscope,” says Huisken.

But this technology can also be layered 
onto even simpler formats. Ozcan’s team 
has developed accessible microscopes that 
can be coupled to a cell phone camera 
and is upgrading their performance with 
the same GAN-based approach that turns 
confocal-acquired data into STED-quality 
super-resolution images. “The raw data 
coming from the mobile microscope are 
trained against a benchtop microscope, 
so that some of the color aberrations 
and resolution loss are mitigated, and it 
looks like it’s coming from a benchtop 
state-of-the-art microscope,” he says. His 
group has already applied this approach  
as a tool for screening for sickle-cell  
disease from patient blood samples in 
point-of-care settings.

These demonstrations suggest that the 
democratization of smart microscopy is 
gaining momentum. “I think ten years 
from now we’ll all be using self-driving 
microscopes,” says Henriques. And in 
parallel, the field’s pioneers are continuing to 
push the capabilities of what the technology 
can accomplish. Even as he continues his 
smart microscope–facilitated exploration of 
the Drosophila nervous system, Keller is now 
working toward another ambitious long-term 
imaging project: assembling comprehensive 
digital maps of developing embryos. “We 

want to know where every single cell is at all 
times: what’s dividing and where it’s moving, 
and keeping track of its identity,” he says. 
The challenges are steep; Keller notes that 
conventional imaging techniques are still not 
up to the task, let alone a computationally 
guided system. But his group and their 
collaborators in Jan Funke’s lab at Janelia 
are hard at work on a next-generation 
deep-learning framework, along with 
a sophisticated control system that can 
rapidly coordinate imaging in response to its 
instructions. “We hope within the next few 
years to basically have microscopes that can 
really follow the development of an animal in 
real time,” he says. ❐
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