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Reproducibility standards for machine learning in 
the life sciences
To make machine-learning analyses in the life sciences more computationally reproducible, we propose standards 
based on data, model and code publication, programming best practices and workflow automation. By meeting 
these standards, the community of researchers applying machine-learning methods in the life sciences can ensure 
that their analyses are worthy of trust.
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The field of machine learning has 
grown tremendously within the 
past ten years. In the life sciences, 

machine-learning models are rapidly being 
adopted because they are well suited to cope 
with the scale and complexity of biological 
data. However, there are drawbacks to using 
such models. For example, machine-learning 
models can be harder to interpret than 
simpler models, and this opacity can obscure 
learned biases. If we are going to use such 
models in the life sciences, we will need to 
trust them. Ultimately all science requires 
trust1—no scientist can reproduce the results 
from every paper they read. The question, 
then, is how to ensure that machine-learning 
analyses in the life sciences can be trusted.

One attempt at creating trustworthy 
analyses with machine-learning models 
revolves around reporting analysis details 
such as hyperparameter values, model 
architectures and data-splitting procedures. 
Unfortunately, such reporting requirements 
are insufficient to make analyses 
trustworthy. Documenting implementation 
details without making data, models and 
code publicly available and usable by other 
scientists does little to help future scientists 
attempting the same analyses and less to 
uncover biases. Authors can only report on 
biases they already know about, and without 
the data, models and code, other scientists 
will be unable to discover issues post hoc.

For machine-learning models in the life 
sciences to become trusted, scientists must 
prioritize computational reproducibility2. 
That is to say that third parties should be 
able to obtain the same results as the original 
authors by using their published data, 
models and code. By doing so, researchers 
can ensure the accuracy of reported results 
and detect biases in the models.

Analyses and models that are 
reproducible by third parties can be 
examined in depth and, ultimately, become 
worthy of trust. To that end, we believe the 

life sciences community should adopt norms 
and standards that underlie reproducible 
machine learning research.

The menu
While many regard the computational 
reproducibility of a work as a binary 
property, we prefer to think of it on a sliding 
scale2 that reflects the time needed to 
reproduce. Published works fall somewhere 
on this scale, which is bookended by 
‘forever’, for a completely irreproducible 
work, and ‘zero’, for a work where one can 
automatically repeat the entire analysis 
with a single keystroke. As in many cases 
it is difficult to impose a single standard 
that divides work into ‘reproducible’ and 
‘irreproducible’, we instead propose a  
menu of three standards with varying 
degrees of rigor for computational 
reproducibility (Table 1):

	1.	 Bronze standard. The authors make 
the data, models and code used in the 
analysis publicly available. The bronze 
standard is the minimal standard for 
reproducibility. Without data, models 
and code, it is not possible to reproduce 
a work.

	2.	 Silver standard. In addition to  
meeting the bronze standard: (1) the 

dependencies of the analysis can  
be downloaded and installed in a  
single command; (2) key details for 
reproducing the work are documented, 
including the order in which to run the 
analysis scripts, the operating system 
used and system resource requirements; 
and (3) all random components in the 
analysis are set to be deterministic. 
The silver standard is a midway point 
between minimal availability and full 
automation. Works that meet this 
standard will take much less time to 
reproduce than ones only meeting the 
bronze standard.

	3.	 Gold standard. The work meets the  
silver standard, and the authors make 
the analysis reproducible with a single 
command. The gold standard for  
reproducibility is full automation.  
When a work meets this standard, it  
will take little to no effort for a scientist 
to reproduce it.

While reporting has become a recent 
area of focus3–5, excellent reporting can look 
akin to a nutritional information panel. It 
describes information about a work, but it is 
insufficient for reproducing the work. In the 
best case scenario, it provides a summary 
of what the researchers who conducted 

Table 1 | Proposed reproducibility standards

Bronze Silver Gold

Data published and downloadable x x x

Models published and downloadable x x x

Source code published and downloadable x x x

Dependencies set up in a single command x x

Key analysis details recorded x x

Analysis components set to deterministic x x

Entire analysis reproducible with a single command x
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the analysis know about biases in the data, 
model limitations and other elements. 
However, it often does not provide enough 
information for someone to fully understand 
how the model came to be. For these 
reasons, we believe concrete standards for 
ensuring reproducibility should be preferred 
over reporting requirements.

Bronze
Data. Data are a fundamental component 
of analyses. Without data, models cannot be 
trained and analyses cannot be reproduced. 
Moreover, biases and artifacts in the data 
that were missed by the authors cannot 
be discovered if the data are never made 
available. For the data in an analysis to be 
trusted, they must be published.

To that end, all datasets used in a 
publication should be made publicly 
available when their corresponding 
manuscript is first posted as a preprint 
or published by a peer-reviewed journal. 
Specifically, the raw form of all data used for 
the publication must be published. The way 
the bronze standard should be met depends 
on the data used. Authors should deposit 
new data in a specialist repository designed 
for that kind of data6, when possible. For 
example, one may deposit gene expression 
data in the Gene Expression Omnibus7 
or microscopy images in the BioImage 
Archive8. If no specialist repository for that 
data type exists, one should instead use a 
generalist repository like Zenodo (https://
zenodo.org) for datasets of up to 50 GB or 
Dryad (https://datadryad.org/) for datasets 
larger than 50 GB. When researchers use 
existing datasets, they must include the 
information and code required to download 
and pre-process the data.

Models. Sharing trained models 
is another critical component for 
reproducibility. Even if the code for an 
analysis were perfectly reproducible and 
required no extra scientist time to run, its 
corresponding model would still need to be 
made publicly available. Requiring people 
who wish to use a method on their own 
data to re-train a model slows the progress 
of science, creates an unnecessary barrier to 
entry and wastes the compute and effort of 
future researchers. Being unable to examine 
a model also makes trusting it difficult. 
Without access to the model, it is hard to 
say whether the model fails to generalize to 
other datasets, fails to make fair decisions 
across demographic groups such as age, 
sex and nationality, or learns to make 
predictions based on artifacts in the data.

Because of the importance of sharing 
trained models, meeting the bronze standard 
of reproducibility requires that authors 
deposit trained weights for the models 

used to generate their results in a public 
repository. However, authors do not need to 
publish the weights for additional models 
from a hyperparameter sweep if one can 
reproduce the results without them. When a 
relevant specialist model zoo such as Kipoi9 
or Sfaira10 exists, authors should deposit 
the models there. Otherwise, authors can 
deposit the models in a generalist repository 
such as Zenodo. Making models available 
solely on a non-archived website, such 
as a GitHub project, does not fulfill this 
requirement.

Source code. From a reproducibility 
standpoint, a work’s source code is as  
critical as its methods section. Source code 
contains implementation details that a  
future author is unlikely to replicate exactly 
from methods descriptions and reporting 
tables. These small deviations can lead to 
different behavior between the original 
work and the reproduced one. That is, of 
course, ignoring the huge burden of having 
to re-implement the entire analysis from 
scratch. For the computational components 
of a study, the code is likely to be a better 
description of the work than the methods 
section itself. As a result, computational 
papers without published code should 
meet similar skepticism to papers without 
methods sections.

To meet the bronze standard, authors 
must deposit code in a third-party, 
archivable repository such as Zenodo. 
This includes the code used in training, 
tuning and testing models, creating figures, 
processing data and generating the final 
results. One good way of meeting the bronze 
standard involves creating a GitHub project 
and archiving it in Zenodo. Doing so gives 
both the persistence of Zenodo required by 
scholarly literature and GitHub’s resources 
for further development and use, such  
as the user support forum provided by 
GitHub Issues.

Silver
While it is possible to reproduce an analysis 
with only its data, models and code, this 
task is by no means easy. Fortunately, there 
are best practices from the field of software 
engineering that can make reproducing 
analyses easier by simplifying package 
management, recording analysis details and 
controlling randomness.

One roadblock that appears when 
attempting to reproduce an analysis stems 
from differences in behavior between 
versions of packages used in the analysis. 
Analyses that once worked with specific 
dependency versions can stop working 
altogether with later versions. Guessing 
which version one must use to reproduce 
an analysis—or even to get it to run at 

all—can feel like playing a game of ‘package 
Battleship’. Proper use of dependency 
management tools such as Packrat (https://
rstudio.github.io/packrat/) and Conda 
(https://conda.io/) can eliminate these 
difficulties both for the authors and others 
seeking to build on the work by tracking 
which versions of packages are used.

Authors may also wish to consider 
containerization for managing 
dependencies. Container systems such 
as Docker11 allow authors to specify the 
system state in which to run their code more 
precisely than just versions of key software 
packages. Containerization provides 
better guarantees of reproducing a precise 
software environment, but this very fact 
can also facilitate code that will not tolerate 
even modest environment changes. That 
brittleness can make it more difficult for 
future researchers to build on the original 
analysis. Therefore, we recommend that 
authors using containers also ensure that 
their code works on the latest version of 
at least one operating system distribution. 
Furthermore, containers do not fully 
insulate the running environment from the 
underlying hardware. Authors expecting 
bit-for-bit reproducibility from their 
containers may find that graphics processing 
unit (GPU)-accelerated code fails to  
yield identical results on other machines  
due to the presence of different hardware  
or drivers.

Knowing the steps to run an analysis 
is a crucial part of reproducing it, yet this 
knowledge is often not formally recorded. 
It takes far less time for the original authors 
to document factors such as the order of 
analysis components or information about 
the computers used than for a third-party 
analyst attempting to reproduce the work to 
determine that information on their own. 
Accordingly, the silver standard requires 
that authors record the order in which one 
should run their analysis components, the 
operating system version used to produce 
the work and the time taken to run the code. 
Authors must also list the system resources 
that yielded that time, such as the model 
and number of central processing units 
(CPUs) and GPUs and the amount of CPU 
RAM and GPU RAM required. Authors 
may record the order in which one should 
run components: (1) in a README file 
within the code repository; (2) by adding 
numbers to the beginning of each script’s 
name to denote their order of execution; 
or (3) by providing a script to run them 
in order. Authors must include details on 
the operating system, wall clock and CPU 
running time, and system resources used 
both within the body of the manuscript and 
in the README.

http://www.nature.com/naturemethods
https://zenodo.org
https://zenodo.org
https://datadryad.org/
https://rstudio.github.io/packrat/
https://rstudio.github.io/packrat/
https://conda.io/


1134

comment | FOCUS
comment | FOCUS

Nature Methods | VOL 18 | October 2021 | 1122–1144 | www.nature.com/naturemethods

The last challenge of this section, 
randomness, is common in machine- 
learning analyses. Dataset splitting, neural 
network initialization and even some 
GPU-parallelized math used in model 
training all include elements of randomness. 
Because model outputs depend heavily on 
these factors, the pseudorandom number 
generators used in analyses must be seeded 
to ensure consistent results. How the seeds 
are set depends on the language, although 
authors need to take special care when 
working with deep-learning libraries. 
Current implementations often do not 
prioritize determinism, especially when 
accelerating operations on GPUs. However, 
some frameworks have options to mitigate 
nondeterministic operation (https://pytorch.
org/docs/1.8.1/notes/randomness), and 
future versions may have fully deterministic 
operation (https://github.com/NVIDIA/
framework-determinism). For now, the best 
way to account for this type of randomness 
is by publishing trained models. This 
non-determinism is another reason why 
the minimal standard requires model 

publication—reproducing the model using 
data and code alone may prove impossible.

As it is difficult to evaluate the extent 
to which an analysis follows best practices, 
we provide three requirements that must 
be met to achieve the silver standard in 
reproducibility. First, future users must be 
able to download and install all software 
dependencies for the analysis with a single 
command. Second, the order in which the 
analysis scripts should be run and how to 
run them should be documented. Finally, 
any random elements within the analysis 
should be made deterministic.

Gold
The gold standard for reproducibility 
requires the entire analysis to be 
reproducible with a single command. 
Achieving this goal requires authors to 
automate all steps of their analysis, including 
downloading data, pre-processing data, 
training models, producing output tables, 
and generating and annotating figures. Full 
automation stands in addition to tracking 
dependencies and making their data and 

code available. In short, by meeting the 
gold standard, authors make the burden of 
reproducing their work as small as possible.

Workflow management software, such as 
Snakemake12 or Nextflow13, streamline the 
work of meeting the gold standard. They 
enable authors to create a series of rules that 
run all the components in an analysis. While 
a simple shell script can also accomplish 
this goal, workflow management software 
provides several advantages without extra 
work from the authors. For example, 
workflow management software can make 
it easy to restart analyses after errors, 
parallelize analyses and track the progress of 
an analysis as it runs.

Caveats
Privacy. Not all data can be publicly 
released. Some data contain personally 
identifiable information or are restricted 
by a data use agreement. In these cases, 
data should be stored in a controlled access 
repository14, but the use of controlled access 
should be explicitly approved by journals 
to prevent it from becoming another form 
of ‘data available upon request’. Training 
models on private data also pose privacy 
challenges. Models trained with standard 
workflows can be attacked to extract 
training data15. Fortunately, model-training 
methods designed to preserve privacy exist: 
techniques such as differential privacy16 
can help make models resistant to attacks 
seeking to uncover personally identifiable 
information, and can be applied with open 
source libraries such as Opacus (https://
opacus.ai/). Researchers working on data 
with privacy constraints should employ 
these techniques as a routine practice.

When data cannot be shared, models 
must be shared to have any hope of 
computational reproducibility. If neither 
data nor models are published, the code is 
nearly useless, as it does not have anything 
to operate on. Future authors could perhaps 
replicate the study by recollecting data 
and regenerating the models, but they 
will not be able to evaluate the original 
analysis based on the published materials. 
When working on data with privacy 
restrictions, it is important for authors 
to use privacy-preserving techniques for 
model training so that model release is 
not impeded. Studies with only models 
published will not be able to be fully 
reproduced, but there will at least be the 
possibility of testing model behavior on 
other datasets.

Compute-intensive analyses. Analyses 
can take a long time to run. In some 
cases, they may take so long to run that 
it is almost infeasible for them to be 
reproduced by a different research group. 

Box 1 | Aligning reproducibility incentives

Journals. Journals can enforce 
reproducibility standards as a condition 
of publication. The bronze standard 
should be the minimal standard, although 
some journals may wish to differentiate 
themselves by setting higher standards. 
Such journals may require the silver or 
gold standards for all manuscripts, or 
for particular classes of articles such as 
those focused on analysis. If journals act 
as the enforcing body for reproducibility 
standards, they can verify that the 
standards are met by either requiring 
reviewers to report which standards the 
work meets or by including a special 
reproducibility reviewer to evaluate  
the work.

Badging. A badge system that indicates  
the trustworthiness of work could 
incentivize scientists to progress to 
higher standards of reproducibility. 
Following completion of analyses, authors 
could submit their work to a badging 
organization that would then verify which 
standards of reproducibility their work 
met and assign a badge accordingly. Such 
an organization would probably operate 
in a similar way to the Bioconductor18 
package review process. Authors could 
then include the badge with a publication 
or preprint to tout the effort the 

authors put in to ensure their code was 
reproducible. Including these badges in 
biosketches or CVs would make it simple 
to demonstrate a researcher’s track record 
of achieving high levels of reproducibility. 
This would provide a powerful signal to 
funding agencies and their reviewers that 
a researcher’s strengths in reproducibility 
would maximize the results of the 
investment made in a project. Universities 
could also promote reproducibility by 
explicitly requiring a track record of 
reproducible research in faculty hiring, 
annual review and promotion.

Reproducibility collaborators. 
Adding ‘reproducibility collaborators’ 
to manuscripts would also provide 
another means to make analyses more 
reproducible. We envision a reproducibility 
collaborator as someone outside the 
primary authors’ research groups who 
certifies that they were able to reproduce 
the results of the paper from only the 
data, models, code and accompanying 
documentation. Such collaborators would 
currently fall under the ‘validation’ role in 
the CRediT Taxonomy (https://casrai.org/
credit/), although it should be made clear 
that the reproducibility co-author should 
not also be collaborating on the design or 
implementation of the analysis.
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In those cases, authors should store and 
publish intermediate outputs. Doing so 
allows other users to verify the final results 
even if they cannot reproduce the entire 
pipeline. Workflow management systems, 
as mentioned in the ‘Gold’ section, make 
this partial reproduction straightforward 
by tracking intermediate outputs and 
using them to reproduce the final results 
automatically. Setting up a lightweight 
analysis demonstration, such as a web app 
on a small dataset or a Colab notebook 
(https://research.google.com/colaboratory/) 
running a pre-trained model, can also be 
helpful for giving users the ability to evaluate 
model behavior without using large amounts 
of compute.

Reproducibility of packages, libraries 
and software products. The standards 
outlined in this paper focus on the 
computational reproducibility of analyses 
using machine learning. Standards for 
software designed for reuse, such as software 
packages and utilities, would have a broader 
scope and encompass more topics. In 
addition to our standards, such software 
should make use of unit testing, follow code 
style guidelines, have clear documentation17 
and ensure compatibility across major 
operating systems to meet the gold standard 
for this type of research product.

Conclusion
If we are to make machine-learning research 
in the life sciences trustworthy, we must make 
it computationally reproducible. Authors 
who strive to meet the bronze, silver and gold 
standards will increase the reproducibility of 
machine-learning analyses in the life sciences. 
These standards can also accelerate research 
in the field. In the status quo, there is no 
explicit reward for reproducible programming 
practices. As a result, authors can ostensibly 
minimize their own programming effort by 
using irreproducible programming practices 
and leaving future authors to make up 
the difference. In practice, irreproducible 
programming practices tend to decrease effort 

in the short term for the authors, but increase 
effort in the long run on both the parts of 
the original authors and future reproducing 
authors. Implementing the standards in a way 
that rewards reproducible science helps avoid 
these long-run costs (see Box 1).

Ultimately, reproducibility in 
computational research is often 
comparatively easy to experimental life 
sciences research. Computers are designed 
to perform the same tasks repeatedly with 
identical results. If we can not make purely 
computational analysis reproducible, 
how can we ever manage to make truly 
reproducible work in wet lab research with 
such variable factors as reagents, cell lines 
and environmental conditions? If we want 
life sciences to lead the way in trustworthy 
verifiable research, then setting standards 
for computational reproducibility is a good 
place to start. ❐
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