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Method of the Year: protein structure prediction
Nature Methods has named protein structure prediction the Method of the Year 2021.

Vivien Marx

If the Earth moves for you, among other 
reasons, the causes can be geologic or 
romantic. In science, in the context of 

predicting protein structure, you might 
have felt the ground tremble in late 2020 as 
you perused the results of the 14th Critical 
Assessment of Protein Structure Prediction 
(CASP). In this competition, scientists 
regularly test the prowess of their methods 
that computationally predict the intricate 
twirly-curly three-dimensional (3D) 
structure of a protein from a sequence of 
amino acids.

A pleasant frisson may have set in more 
recently as you browsed the new and rapidly 
growing AlphaFold Protein Structure 
Database or perused papers1–3 about a 
method called AlphaFold and its application 
to the entire human proteome, or when 
you dug into the code that drives this 
inference engine, with its neural network 
architecture that yields the 3D structure of 
proteins from a given amino acid sequence. 
The team behind AlphaFold is DeepMind 
Technologies, launched as an AI startup 
in 2010 by Demis Hassabis, Shane Legg 
and Mustafa Suleyman and now part of 
Alphabet after being acquired by Google in 
2014. DeepMind has presented AlphaFold14 
and AlphaFold2 and, more recently, 
AlphaFold-Multimer5 for predicting the 
structures of known protein complexes.

AlphaFold has received much attention, 
but there are many other recent tools from 
academic labs, such as RoseTTAFold6, 
a method with a ‘three-track’ network 
architecture developed in the lab of David 
Baker and colleagues at the University of 
Washington along with academic teams 
around the world. It can be used to, 
for example, predict protein structures 
and generate models of protein-protein 
complexes, too. In their paper, the authors 
note that they had been “intrigued” by the 
DeepMind results and sought to increase the 
accuracy of protein structure prediction as 
they worked on their architecture.

At CASP14 in 2020, AlphaFold2 blew 
away its competitors. The difference 
between the DeepMind team results and 
those of the group in second place “was a bit 
of a shock,” says University College London 
researcher David Jones. “I’m still processing 
that a bit, really.” Only some months later, 
when DeepMind gave a glimpse of its 

method and shared the code, were scientists 
able to begin looking under the hood. No 
new information was used to transition 
AlphaFold1 to AlphaFold2; there was no 
“clever trick,” says Jones. The team used 
what academics had been doing for years but 
applied it in a more principled way, he says.

In the lead-up to the 2018 CASP13 
competition, which the DeepMind team 
won quite handily with AlphaFold1, Jones 
had consulted for DeepMind. Especially 
after machine-learning-based methods 
were introduced in 2016, CASP results 
had been steadily improving, says Dame 
Janet Thornton, DBE, from the European 
Bioinformatics Institute (EBI). Thornton is 
the former EBI director and has long worked 
on the challenges of protein structure 
determination. She was interviewed jointly 
with Jones. At CASP13, she had been 
delighted to see progress taking place with 
protein structure prediction methods. Now, 

as Thornton considers the possibilities 
AlphaFold2 opens up, by having solved a 
big methods puzzle in science, “it gives me 
a spring in my step.” She says she hadn’t 
thought “we’d get quite this far in my 
lifetime.”

Historical build
The way AlphaFold2 can predict a protein 
structure is the culmination of a scientific 
journey that began with the work7,8 of 
Max Perutz and John Kendrew of the 
Cavendish Laboratory at the University 
of Cambridge, says Aled Edwards of the 
University of Toronto and the Structural 
Genomics Consortium, a public–private 
venture. Perutz and Kendrew received the 
Nobel Prize in 1962 for the way they used 
X-rays passing through crystallized protein 
and onto film to painstakingly decipher the 
structures of proteins such as hemoglobin 
and myoglobin.

AlphaFold2, developed by DeepMind Technologies, is predicting protein structures on a massive scale. 
Google acquired the company in 2014. The structures generated by AlphaFold2 are being shared in 
the AlphaFold Protein Structure Database developed by DeepMind and EMBL-EBI. Credit: T. Phillips, 
Springer Nature
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Structural biologists have since followed 
in their footsteps to experimentally 
determine structures of many proteins. 
The research community has deposited 
structures and accompanying data in 
the Protein Data Bank (PDB)9, an open 
resource founded in 1971 that holds 185,541 
structures as Nature Methods goes to press.

The PDB’s holdings stem from labs 
around the world that toiled with X-ray 
crystallography, nuclear magnetic resonance 
spectroscopy (NMR) or electron microscopy 
to determine the complex structure of a 3D 
protein. AlphaFold2’s machine-learning 
algorithm was trained on the PDB’s data to 
assess the patterns with which amino acids 
become the many combinations of helices, 
sheets and folds that enable a protein to do 
its specific tasks in a cell.

Converting experimental signals into 
structures has been the realm of physicists 
and mathematicians who devoted time, 
perseverance and sweat to determine 
protein structures, says Edwards. In the 
early days, this work involved assessing 
measurements on photographic film. The 
fact that they, and those who followed, have 
been so committed to data quality enabled 
the continued work in protein structure 
determination. Speaking more generally, 
he says, experimentally solving protein 
structures is “a pain in the (expletive).” It’s 
why he applauded the foresight of University 
of Maryland researcher John Moult, who 
launched CASP in 1994 to highlight and 
advance community activity related to 
methods for computationally predicting 
protein structure. Edwards and many 

others were part of the NIH-funded Protein 
Structure Initiative that ran from 2000 to 
2015. The project set out to systematically 
add to PDB’s experimentally determined 
structures and has certainly contributed to 
AlphaFold’s success, says Edwards. When 
the project’s funding ceased, many labs were 
dismayed. The PSI had been sampling the 
still-unexplored “structure space,” he says. 
After the PSI ended, the PDB kept growing 
as labs continued to add their structures.

The PDB’s main database has 
been reserved for structures resolved 
experimentally and by single methods 
such as X-ray crystallography, NMR or 
cryo-electron microscopy (cryo-EM), says 
Helen Berman, who co-founded the Protein 
Data Bank. Over time, computational 
models emerged that used multiple sequence 
alignments and, later, also machine learning 
to predict structures. PDB-Dev was set up 
as a digital home for structures determined 
with “integrative methods,” which means it’s 
for structures generated using experimental 
methods combined with computational 
ones. The strictly in silico structures are held 
in the ModelArchive.

“AlphaFold is a triumph,” says Berman. 
But it “would never ever have succeeded, 
ever,” she says, if models had been 
improperly mixed with experimentally 
determined structures. The training set for 
AlphaFold’s neural network has been PDB’s 
well-curated experimental data. DeepMind, 
in collaboration with EBI, is now filling the 
AlphaFold Protein Structure Database with 
hundreds of thousands of computationally 
generated human protein structures and 

those from many other organisms, including 
the ‘classic’ research organisms maize, yeast, 
rat, mouse, fruit fly and zebrafish.

Every day, the PDB sees around 2.5 
million downloads of protein coordinates, 
says Berman. Biotech and pharma 
companies regularly download the database 
for research performed behind their 
firewalls. Around the time of CASP13 in 
2018, Berman noticed massive downloads 
that seemed unlike the typical downloads 
from the structural biology community. 
Usage is not monitored in detail, and all of it, 
be it from academia or companies, has made 
her happy about the resource. “If you don’t 
have people use it, then why have it?” she 
says. As a child of the 1960s, her personal 
commitment has been to the “public good” 
that the resource provides. Over time, the 
PDB team has navigated expanding its 
global reach and managing structural data 
generated by emerging methods. “Now 

The Protein Data Bank is reserved for structures resolved experimentally. Discussions are underway, but 
are being kept under wraps for now, on how existing data in the PDB and data generated by AlphaFold2, 
RoseTTAFold and other computational approaches should be stored and served to the research 
community. Credit: T. Phillips, Springer Nature

Confidence measures

Each AlphaFold2 structure is 
accompanied by a “confidence score,” 
which, as Janet Thornton says, will 
help and guide users, be they structural 
biologists or scientists working in other 
areas. The per-residue confidence score 
(pLDDT) is between 0 and 100.

Indeed, says Aled Edwards, 
confidence scores are important pieces 
of information, but they likely matter 
more to structural biologists than to 
other biologists. A diabetes researcher 
with a hypothesis about a protein who 
has downloaded a structure with a 
confidence score of 82% will not be 
deterred from an experiment he or she is 
planning, he says. The confidence score 
could be a point that a reviewer might 
critically note: the paper authors had 
chosen to use a “maybe structure,” one 
with a lower confidence score.

Janos Hajdu sees value in confidence 
scores. Just as one dresses differently 
for a weather forecast of a 5% or a 95% 
probability of rain, confidence scores are 
important and need to be sufficiently well 
developed. After all, different parts of a 
predicted structure can have different 
quality and reliability. The reliability of 
interpretation also has a human factor to 
contend with, says Hajdu: even though 
a lottery win and a lightning strike of a 
person walking in a storm have similar 
probabilities, people generally feel less 
fearful about lightning strikes and more 
hopeful about their chances of hitting the 
jackpot.
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we have to make a new kind of decision,” 
says Berman, whose workload belies the 
fact that she recently retired from PDB 
and her position on the Rutgers University 
faculty. She has daily calls about how the 
existing data—the data in the PDB, data 
generated by AlphaFold2, data generated 
by RoseTTAFold and other platforms, and 
other computationally generated data—
should be stored and, separately, how they 
should be served to the community.

Rather than make a centralized behemoth 
of a database, says Janos Hajdu, who splits 
his time between the European Extreme 
Light Infrastructure at the Academy of 
Sciences of the Czech Republic and the 
Laboratory of Molecular Biophysics at 
Uppsala University and who is not involved 
in these discussions, he would like to see 
“independent databases that talk to each 
other.”

The actual database plan is still emerging, 
and details are under wraps until it’s worked 
out, says Berman. It will take six months to a 
year to hammer out these details and find a 
solution that works for all.

Into the machine
Compared to other software developed 
in the academic community, says 
Thornton, AlphaFold’s advances include 
more accurate placement of side chains 
in the protein models and an improved 
approach to integrating machine learning 
with homology modeling, which looks 
at protein structure in the context of 
evolutionarily related proteins. The software 
uses homology modeling at an “ultrafine” 
level, says Jones. “It’s taking little pieces 
of everything it needs from the whole of 
PDB.” Instead of taking an homologous 
3D structure, building a model from that 
and then including the side chains and 
loops, the system finds all the right pieces 
in high-dimensional space. In a way, he 
says, it’s solving “the worst jigsaw puzzle in 
history made up of tiny little pieces.”

In CASP13, DeepMind entered its 
AlphaFold1, and then in CASP14 the 
team entered AlphaFold2. A big difference 
between CASP13 and CASP14, says 
Jones, was the way the DeepMind team 
applied language modeling, specifically the 
self-attention model, to reduce the need for 
computing steps run sequentially. The leap 
made the academic community look like 
“we’d all been spending 30 years staring at 
the wall doing nothing,” says Jones, which, 
of course, is not the case. DeepMind’s 
computational approach is based on one 
that Google Brain scientists presented at the 
2017 Conference on Neural Information 
Processing Systems called ‘Attention is 
all you need’10. It’s had great impact on 

AlphaFold, bioinformatics and the computer 
science community, he says.

Applying this approach in AlphaFold 
pares back the recurrent layers that the 
encoder–decoder architectures in machine 
learning apply and replaces them with 
“multi-headed self-attention,” which 
interconnects many operations at the same 
time. These attention models “can just 
mix data across all the data you feed in,” 
says Jones. Such data-mixing on a scale 
larger than previously accomplished, lifted 
constraints that academic groups had 
faced. Removing computational constraints 
gives AlphaFold its power to juggle data. 
“They can mix it up in any way necessary 
to solve the problem,” he says. At the time 
of CASP14, bioinformaticians were not yet 
applying this technology, but since then, 
says Jones, in machine-learning circles he 
encounters many scientists who work on 
variations of attention models.

‘Attention’ is indeed part of a big 
change in this field, says Burkhard Rost, a 
computational biologist at the Technical 
University of Munich who was previously 
at Columbia University. Both AlphaFold1 
and AlphaFold2 rely on multiple sequence 
alignment and on machine learning. When 
combining these techniques, academics have 
used standard feedforward networks with a 
network of processing units, or nodes, that 
are arranged in layers with outputs from one 
layer leading to the next. Training weights 
the nodes. By including natural-language 
processing techniques in AlphaFold and 
in academic labs such as his and others, 
researchers have enabled machines to ‘learn’ 
the grammar of a given protein sequence, 
says Rost, and the grammar gives context. 
Based on sentences from Wikipedia, a 
neural network can extract grammar rules 
for general language. In the same way, 
the network can extract the grammar of 
“a protein language,” he says, one that is 
learned from input amino acid sequence and 
the corresponding 3D output.

CASP14 felt like being “hit by 
a truck or a freight train,” says 
Burkhard Rost. “I’m utterly 
impressed by what they did.”

A platform can learn, for example, that 
the amino acid alanine might be both at 
position 42 and 81 in a protein. But it’s 
the 3D environment around these amino 
acids that affects the protein in different 
ways. Even though this computational 
approach does not teach 3D structure 
or evolutionary constraints, systems can 
learn rules such as physical constraints 
that shape protein structure. Rost says that 

never before has there been a CASP winner 
from outside the field of protein structure 
prediction. CASP14 felt like being “hit by a 
truck or a freight train,” he says. He found 
AlphaFold1’s predictions to be “amazingly 
accurate.” AlphaFold2 is “a completely 
different product” in which he sees “so much 
novelty” he says. “I’m utterly impressed by 
what they did.”

To train the system, the DeepMind 
approach used tensor processing units 
(TPUs), which are Google’s proprietary 
processors. They are not for sale; academics 
can only access them through the Google 
Cloud. Indeed, DeepMind has “great 
hardware,” says Juan Restrepo-López, a 
physicist who has turned to biology as a 
PhD student in the lab of Jürgen Cox at 
the Max Planck Institute of Biochemistry. 
AlphaFold2 is likely inconceivable without 
that hardware, says Restrepo-López. 
AlphaFold1, with its convolutional neural 
networks (CNNs), is “for sure much easier to 
understand due to its simpler architecture.” 
Both AlphaFold1 and AlphaFold2 were 
trained on TPUs. AlphaFold1 could be 
run on graphics processing units (GPUs), 
and this has also eventually become true 
for AlphaFold2, he says. In AlphaFold2, 
DeepMind no longer used CNNs but rather 
transformers, says Restrepo-López. The 
main advantage for AlphaFold2 came from 
Google’s huge computing clusters, which 
made it possible to run many types of 
models. “You can go crazy and run 200,000 
experiments because you have unlimited 
resources,” he says. To generate structures, 
DeepMind first uses multiple sequence 
analysis, which originated in academia. The 
core of the algorithm uses transformers, 
developed at Google. Transformers 
originated in the field of natural-language 
processing and are now being applied 
in many areas. “They are particularly 
interesting because they can detect long 
correlations,” he says.

In the 14th Critical Assessment of Protein 
Structure Prediction (CASP14), the performance 
of AlphaFold2 (first column) was far better than 
that any of the other participants.
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This AlphaFold2 architecture with 
transformers makes it possible, as previously 
mentioned, to process many aspects of 
the sequence in parallel and figure out 
long-term dependencies very well,says 
Restrepo-López. For example, residues far 
apart in a sequence can be very close in a 
folded protein, and this concept has to be 
introduced into a model.

Scooped
For decades, academic groups around the 
world have been predicting structures 
using the millions of amino acid sequences 
in databases and integrating evolutionary 
information as part of homology modeling. 
But DeepMind has used many more 
sequences plus a different way of scaling 
computation, says Rost.

When he saw CASP13 results, Konstantin 
Weissenow, now a PhD student in the Rost 
lab, was a master’s degree student working 
on a protein structure prediction method. It 
seemed to him that DeepMind was taking 
a “traditional” deep learning approach not 
unlike his. At the time, DeepMind was not 
sharing the code, but Weissenow felt he 
could reverse engineer the method and “this 
is essentially what I tried to do,” he says. 
He incorporated what he gleaned into his 
method. But CASP14 and AlphaFold2 “was 
a different story.” A few months later, Deep 
Mind made the AlphaFold2 code public. 
Michael Heinzinger, another graduate 
student in the Rost lab, was wrapping up 
protein language modeling as he watched 
the livestream of CASP14, which the Rost 
lab was competing in with Weissenow’s tool. 
When experimentalists began saying that 
this computational system was reaching 
close to the quality of experimentally 
generated results and structures, Heinzinger 
felt like it was a moment that “people might 
actually then read in the history books years 
or decades after this point,” he says. “This 
was just mind blowing.”

“The big impact came with CASP14,” 
says Weissenow. By then he had started his 
PhD work in the Rost lab. He and others 
had entered their software tool, called 
EMBedding-based inter-residue distance 
predictor (EMBER), for CASP14. It’s geared 
toward predicting protein structures for 
which there are few evolutionary relatives, 
and computationally it uses a many-layered 
convolutional network similar to that of 
AlphaFold1. EMBER allows the team to 
predict structures on a large scale, and 
it can predict the human proteome on a 
typical computer. It was not going to be as 
good as AlphaFold2, says Rost, but it has 
a lower carbon footprint. After CASP14, 
says Weissenow, some participants got 
together to consider reverse engineering 

AlphaFold2, but they soon realized that 
was not going to work. Then, DeepMind 
published predictions for 98.5% of the 
human proteome2. This was a few weeks 
before Weissenow had planned to present 
his tool at a conference and show how it 
could generate structures of the human 
proteome. “Scooped again,” says Rost, who 
was interviewed jointly with Heinzinger, 
Weissenow and postdoctoral fellow Maria 
Littmann, who works on ways to predict, 
from amino acid sequence, which residues 
bind DNA, metal or small molecules.

One issue Littmann faced around 
2018 and 2019, says Rost, was the lack of 
experimental data. It will now be interesting, 
says Litmann, to see how she and others can 
integrate the availability of these models into 
their work and extend it. When predicting 
residues only from sequence but without 
a structure, “you don’t know what the 
actual binding site looks like,” she says. In 
the folded structure, residues may be close 
together or far apart, and it’s impossible to 
know, for example, if two residues are part 
of the same or a different DNA-binding 
site. “For that she needs a model,” says Rost. 
Now, given AlphaFold2, Littmann feels she 
can move beyond the task of predicting 
which residues bind to being able to predict 
binding sites.

“This is a game-changer for 
several applications we are 
pursuing in the lab,” says 
Jürgen Cox.

AlphaFold has immense value for work 
in his lab, says the MPI’s Cox. He finds 
AlphaFold2 is enabling for proteomics 
more generally. His team integrates 
structure information into the lab’s 
computational-mass-spectrometry-based 
proteomics workflows, and Restrepo-López 
is integrating AlphaFold2 predictions 
into the Cox lab’s MaxQuant algorithms. 
AlphaFold has trumped a number of 
existing tools in the protein prediction 
space, but many of them had been close 
to retirement age, says Cox. The best way 
to predict structural information along 
the protein sequence such as secondary 
structure or solvent accessibility “is to just 
do the 3D structure prediction and project 
these properties from the structure onto the 
sequence.” With the advent of AlphaFold2, 
says Cox, it’s become possible to assume 
that a structure—either a computationally 
generated or an experimentally deciphered 
one—is at researchers’ fingertips for nearly 
every protein and organism and that 
a computationally generated structure 
is similar in quality to one determined 

by X-ray crystallography. “This is a 
game-changer for several applications we are 
pursuing in the lab,” he says.

When a company does it
Some researchers have been irked that a 
commercial venture achieved this goal of 
large-scale protein prediction, as opposed 
to an academic lab or consortium. “I was 
just pleased overall,” says Thornton, who 
feels the achievement will benefit the entire 
field. “In a way it was quite disappointing,” 
she says, but it’s a company with access to 
“a lot of compute” and one positioned at the 
forefront of machine learning.

To Hajdu, it makes no difference that 
a company and not an academic group 
reached this goal, he says. Going forward, 
scientists now have access to many 
more protein structures, most of them 

Science or engineering?

To some, AlphaFold’s achievement is 
more an engineering feat than a scientific 
one. AlphaFold2’s utility is indisputable, 
says Jürgen Cox. Every achievement 
in the development of algorithms and 
computational tools runs into the issue 
of being perceived as ‘just’ engineering 
as opposed to ‘real’ science,” he says. But 
it’s not justified in this case or in other 
aspects of computational biology. “Think 
of the BLAST algorithm. Is it science or 
engineering?” he asks. Bioinformatics 
supports life science research and, in so 
doing, enables findings not achievable 
through other means. Advances in 
machine-learning methods are science 
unto themselves, he says. Differentiating 
between science and engineering 
doesn’t matter, says Hajdu, given that 
tool-making is an integral part of science. 
“A drill, an XFEL, various algorithms, 
mathematical breakthroughs” can all 
turn into tools in some fields, he says, 
referring to X-ray free electron lasers. 
“Someone’s science today is someone’s 
tool tomorrow.”

“You can’t do the science without the 
engineering,” says Jones. He is essentially 
‘split’ across engineering and science in 
that he holds a double appointment at 
University College London: in computer 
science and in structural and molecular 
biology. “If the science is wrong, it doesn’t 
matter how good your engineering is,” 
he says. And if there is bad engineering, 
no correct answers are to be had. 
“Engineering makes things a reality,” 
he says. “And the science builds the 
foundations on which that happens.”
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computationally generated. The situation is 
comparable to one with the sequencing of 
the human genome, which both a company 
and an academic consortium worked on. 
“The important thing is that it is done,” he 
says. And it matters that the results and tools 
are or will be available to all. That, he hopes, 
is an aspect the research community will be 
able to shape.

When Littmann first saw the CASP14 
results, she assumed that because a company 
had developed the method, it would be kept 
“behind closed doors,” which would prevent 
the academic community from ever figuring 
out how the team had achieved what they 
had. She also assumed one would have 
to pay to obtain structures, meaning that 
the academic community would still have 
needed other methods to predict structure. 
Her eye-opener moment was when the 
DeepMind team announced that they are 
publishing for the research community’s 
benefit the structures from UniProt, which 
is the database of protein sequences, for the 
entire human proteome. “That’s something 
that I never expected,” she says. Gone was 
the situation of a lack of high-resolution 
structures for most proteins. Now, she says, 
researchers can revisit projects done with 
sequences and see if they can improve them 
by adding a structure to their analysis.

Isabell Bludau, a postdoctoral fellow 
and computational biologist in the lab 
of Matthias Mann at the Max Planck 
Institute of Biochemistry, picked up on 
the excitement in the research community 
about AlphaFold, but its “real impact” on 
her and for her work, she says, also occurred 
when DeepMind published structures for 
the entire human proteome, dramatically 
expanding the structures available. “This 
information can now be easily integrated 
into any systems biology analysis that I do,” 
says Bludau. As she explores patterns in 
proteomic data, she can now complement 
information about the presence and quantity 
of proteins with structural information, 
meaning that her analysis can provide a 
more complete picture. “This is, for me, 
probably the most exciting part of it,”  
she says.

A landscape of change
AlphaFold is poised to change the structural 
biology community in a number of ways. 
The AlphaFold–EBI database gives scientists 
around the world a “global picture” of the 
data, says Jones, and this might change the 
discipline of biology itself.

Early in Jones’s career, when he interacted 
with biologists, he heard them say that 
protein structure mattered little to their 
work. Proteins are, he says as he recalls 
their words, “just blobs that do things and 

they stick to other blobs.” As a PhD student 
in Thornton’s lab, he felt differently about 
protein structures and began working on 
computational tools for predicting and 
analyzing them. Labs these days that use 
cryo-electron tomography (cryo-ET) and 
cryo-EM are revealing ever more about 
the structure of ‘blobs’, says Thornton. 
Resolution with cryo-ET is improving 
and can reach 1.2 Å, she says, although it’s 
still generally “relatively low.” For some 
biological questions, “a blob is enough,” 
she says. But she and Jones both believe 
the computationally generated models 
can help many labs to assess proteins, 
for instance by fitting the computational 
structure onto the ‘blob’ they captured with 
cryo-ET or cryo-EM experiments. What 
will change overall because of the wealth of 
computationally generated structures that 
are becoming available, says Jones, is that 
the field of structural biology will need to 
spend less time on technology and thus 
have more time for assessing why solving 
structures matters. It will be possible, he 
says, to appreciate the power of models and 
the predicted protein structure coordinates 
for exploring deeper questions.

As Janet Thornton considers 
the possibilities AlphaFold2 
opens up by having solved a 
big methods puzzle in science, 
“it gives me a spring in my 
step.”

Jones and Thornton have many entries 
on their to-do list of things they wish to 

understand: the protein folding pathway, 
protein–protein and protein–DNA 
interactions, intrinsically disordered 
proteins, the interactions of proteins with 
small molecules, questions of drug design, 
protein complexes, molecular machines 
and the overarching question of what 
proteins do. Having a complete proteome of 
structures opens entirely new avenues for 
research questions involving the complexity 
of protein function. When trying to, for 
instance, explore and understand protein–
protein interactions, it’s “quite difficult if 
you don’t have protein structures,” says 
Thornton. “It’s not easy when you have 
them,” says Jones, and, says Thornton, “it’s 
impossible when you don’t have them.” They 
both laughed as they said this.

Among the problems Cox and his 
team want to tackle is predicting the effect 
of post-translational modifications on 
the structure of proteins and complexes. 
Speaking more generally, Hajdu says, the 
next chapter of research in this area “has 
just turned absolutely wonderful.” Not 
only is there much room to improve the 
methodology, there are tremendous new 
opportunities to explore using the new tools. 
“The scale of possibilities is huge,” he says.

AlphaFold2 does not show, says 
Thornton, how the path of protein folding 
occurs, how flexibility shapes protein 
function or what happens to a structure 
once it’s stabilized with a ligand. At the 
moment, machine learning struggles with 
such problems, she says. AlphaFold cannot 
predict how a mutation affects a protein 
such that it folds differently or becomes 
less stable, an effect that lies at the core of 
many diseases and disorders. “It hasn’t seen 

Max Perutz (left), shown with his wife, and John Kendrew of the University of Cambridge received the 
Nobel Prize in 1962 for resolving the structure of proteins such as hemoglobin and myoglobin. The way 
AlphaFold2 can predict a protein structure is the culmination of a scientific journey that began with this 
work, says Aled Edwards. Credit: Left, Keystone Press/Alamy Stock Photo; right, reprinted from ref. 7 
with permission from Perutz, M. F. et al. Nature 185, 416–422 (1960), Springer Nature.
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all the variants,” says Jones, so it cannot 
extrapolate how changes affect a protein’s 
flexibility or stability. In the wake of 

AlphaFold, some scientists will likely shift 
their focus. Thornton has observed that “the 
crystallographers were the most crushed” 
by AlphaFold and have privately expressed 
concern that their skills are no longer 
needed. In the near future, says Cox, he does 
not see crystallographers as endangered. 
“Structural information of whole complex 
structures still requires experiments,” he 
says. But “the combination of cryo-EM with 
AlphaFold2 predictions will pose a threat to 
crystallographers soon.”

In 1970, Walter Hamilton, a chemist and 
crystallographer at Brookhaven National 
Laboratory, published a paper11 in which 
he stated that determining a molecular 
structure by crystallography is routine 
and that “we have reached the day when 
such a determination is an essential part 
of the arsenal of any chemist interested in 
molecular configuration—and what chemist 
is not?” Hamilton worked on the molecular 
and crystal structure of amino acids. “The 
professional crystallographers really got 
on his case,” says Berman, for saying it 
had become routine to experimentally 
determine the structure of small molecules. 
They were concerned, she says, that he 
was putting them out of a job, which 
didn’t happen. And, says Thornton, it’s not 
happening now.

AlphaFold is shifting the research 
landscape, though, says Thornton, given that 
protein structures will be available for most 
any amino acid sequence. Over time, X-ray 
crystallographers have become electron 
microscopists, she says. “They’re looking 
at bigger complexes, bigger sets or they’re 
doing electron tomography.” As such, they 
are colleagues needed for the next phase in 
structural biology.

The research community is now in the 
same place with protein structures as it 
was with small-molecule structure, says 
Berman. Back in the day, Berman and her 
merry band of like-minded junior scientists 
petitioned Hamilton and others to set up 
the PDB7. “We were very young, we talked 
a lot, we were so excited about looking at 
the structures,” she says. Hamilton and 
others did finally agree, but he unfortunately 
passed away at age 41.

“Ever since I was a postdoc, I’ve really 
started to appreciate how enabling cryo-EM 
was for structural biology,” says Bastian 
Bräuning, who leads a project group in the 
lab of Brenda Schulman at the Max Planck 
Institute of Biochemistry. He completed his 
PhD research in protein crystallography 
and dabbled, as he says, in cryo-EM. Now 
he sees how AlphaFold can help with 
cryo-ET, which produces lower-confidence 
data than single-particle cryo-EM, but is 
leading to ever better predictions for parts 

of bigger protein complexes. Thus, he says, 
AlphaFold2 “will really enable cryo-electron 
tomography, too.” Says Bräuning, “I’ve gone 
from one revolution to the next between 
my PhD and my postdoc.” Once the big 
shock and surprise to structural biologists 
settles in and “you really start looking at the 
opportunities it gives to you, it becomes less 
worrying,” he says. “There’s still so much 
to be done, and not one method or one 
revolution is going to solve everything.” To a 
large extent, he says, to characterize proteins 
bound to small ligands one still needs 
crystallographic data, which these days 
are generated at large synchrotrons. This 
approach is high throughput and is used to 
screen ligands in a way that cryo-EM cannot 
yet deliver.

AlphaFold2 is likely to affect a small 
subset of researchers in negative ways, in 
that this platform has leapfrogged over their 
works in progress, says Edwards. He mainly 
interacts with structural biologists and, 
to them, solving a structure enables their 
thinking about a biological problem and 
guides the design of their next experiment. 
Traditionally, he says, the “big paper” in the 
academic world has gone to the scientists 
who solved the structure, not the person 
who explained the science of that structure. 
But he hopes a shift can now take place 
such that more emphasis will be placed 
on creative scientific insights about the 
functions of structures. The academic 
literature contains fewer than 10 papers on 
half of the proteins that the human genome 
generates, says Edwards. Understanding 
more proteins and more about function 
is going to help to understand disease. 
Having structures enables the “‘what is life?’ 
question,” he says, and the questions about 
what these proteins do. “The vastness of 
what we don’t know is the coolest thing in 
biology.” ❐

Vivien Marx ✉
Nature Methods.  
✉e-mail: v.marx@us.nature.com
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Local muscle

AlphaFold was trained on the Protein 
Data Bank, and the DeepMind team used 
tensor processing units (TPUs), which 
are Google’s proprietary processors, 
to do so. Academics can access them 
through the Google Cloud. As of the 
end of 2021, AlphaFold could not only 
be run locally, any TPU constraint was 
removed, says Burkhard Rost. There is 
AlphaFold Colab, with which users can 
predict protein structures using, as the 
team indicates, a “slightly simplified 
version of AlphaFold v2.1.0.” This sets 
up an AlphaFold2 Jupyter Notebook 
in Google Colaboratory, which is a 
proprietary version of Jupyter Notebook 
hosted by Google that offers access to 
powerful GPUs. A user can ‘execute’ 
the Python code from a browser on a 
local computer. AlphaFold2 will run 
on Google hardware, which might be 
CPUs, GPUs or TPUs depending on a 
researcher’s needs. Separately, researchers 
have developed a Colab notebook called 
ColabFold AlphaFold2 for predicting 
protein structures with AlphaFold2 or 
RoseTTAFold.

The developers include Martin 
Steinegger at Seoul National Laboratory, 
who is one of the co-authors of the 
AlphaFold21 paper, Sergey Ovchinnikov 
and his team at Harvard University, and 
colleagues at other institutions. Graduate 
student Konstantin Schütze is part of 
the developer team; he’s been a member 
of the Rost lab and has been working in 
the Steinegger lab as part of his master’s 
degree research. As the Rost lab’s Michael 
Heinzinger explains, ColabFold speeds 
up AlphaFold2 protein prediction many 
times over, mainly by accelerating the 
way multiple sequence alignments are 
generated with Steinegger’s MMseqs2, 
which is software for iterative protein 
sequence searching. Users can install 
ColabFold locally by following the tips 
on Konstantin Schütze’s section of the 
ColabFold github page. The ability to 
run AlphaFold2 on GPUs can remove 
dependency on Google infrastructure, 
says Heinzinger, because one can choose 
to install AlphaFold2 on one’s own 
machine. Multiple sequence alignments 
can be generated on Steinegger’s servers, 
he says, “so you do not even have to 
compute your MSAs locally.”
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