Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Brs3 neurons in the mouse dorsomedial hypothalamus regulate body temperature, energy expenditure, and heart rate, but not food intake

Abstract

Bombesin-like receptor 3 (BRS3) is an orphan G-protein-coupled receptor that regulates energy homeostasis and heart rate. We report that acute activation of Brs3-expressing neurons in the dorsomedial hypothalamus (DMHBrs3) increased body temperature (Tb), brown adipose tissue temperature, energy expenditure, heart rate, and blood pressure, with no effect on food intake or physical activity. Conversely, activation of Brs3 neurons in the paraventricular nucleus of the hypothalamus had no effect on Tb or energy expenditure, but suppressed food intake. Inhibition of DMHBrs3 neurons decreased Tb and energy expenditure, suggesting a necessary role in Tb regulation. We found that the preoptic area provides major input (excitatory and inhibitory) to DMHBrs3 neurons. Optogenetic stimulation of DMHBrs3 projections to the raphe pallidus increased Tb. Thus, DMHBrs3→raphe pallidus neurons regulate Tb, energy expenditure, and heart rate, and Brs3 neurons in the paraventricular nucleus of the hypothalamus regulate food intake. Brs3 expression is a useful marker for delineating energy metabolism regulatory circuitry.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Brs3 neurons are differentially activated by exposure to a cold environment and by refeeding.
Fig. 2: Activation of DMHBrs3 neurons increases Tb, and activation of PVHBrs3 neurons suppresses food intake.
Fig. 3: Inhibition of DMHBrs3 neurons reduces TEE and Tb.
Fig. 4: Optogenetic activation of DMHBrs3 neurons increases Tb, TBAT, HR, and MAP, but not physical activity.
Fig. 5: Optogenetic stimulation of DMHBrs3 →RPa terminals increases Tb, possibly via glutamate.
Fig. 6: DMHBrs3→RPa neurons receive input from POA and other nuclei.
Fig. 7: DMHBrs3→RPa neurons receive inhibitory and excitatory input from the POA.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.

References

  1. Zhang, L. et al. Anatomical characterization of bombesin receptor subtype-3 mRNA expression in the rodent central nervous system. J. Comp. Neurol. 521, 1020–1039 (2013).

    Article  CAS  Google Scholar 

  2. Jensen, R. T., Battey, J. F., Spindel, E. R. & Benya, R. V. International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol. Rev. 60, 1–42 (2008).

    Article  CAS  Google Scholar 

  3. Weber, H. C., Hampton, L. L., Jensen, R. T. & Battey, J. F. Structure and chromosomal localization of the mouse bombesin receptor subtype 3 gene. Gene 211, 125–131 (1998).

    Article  CAS  Google Scholar 

  4. Xiao, C. & Reitman, M. L. Bombesin-like receptor 3: physiology of a functional orphan. Trends. Endocrinol. Metab. 27, 603–605 (2016).

    Article  CAS  Google Scholar 

  5. Mo, C. et al. Characterization of NMB, GRP and their receptors (BRS3, NMBR and GRPR) in chickens. J. Mol. Endocrinol. 59, 61–79 (2017).

    Article  CAS  Google Scholar 

  6. Zhang, Y. et al. Receptor-specific crosstalk between prostanoid E receptor 3 and bombesin receptor subtype 3. FASEB J. 32, 3184–3192 (2018).

    Article  CAS  Google Scholar 

  7. Ohki-Hamazaki, H. et al. Mice lacking bombesin receptor subtype-3 develop metabolic defects and obesity. Nature 390, 165–169 (1997).

    Article  CAS  Google Scholar 

  8. Ladenheim, E. E. et al. Factors contributing to obesity in bombesin receptor subtype-3-deficient mice. Endocrinology 149, 971–978 (2008).

    Article  CAS  Google Scholar 

  9. Brommage, R. et al. High-throughput screening of mouse knockout lines identifies true lean and obese phenotypes. Obesity. (Silver. Spring). 16, 2362–2367 (2008).

    Article  CAS  Google Scholar 

  10. Lateef, D. M. et al. Bombesin-like receptor 3 regulates blood pressure and heart rate via a central sympathetic mechanism. Am. J. Physiol. Heart Circ. Physiol. 310, H891–H898 (2016).

    Article  Google Scholar 

  11. Lateef, D. M., Abreu-Vieira, G., Xiao, C. & Reitman, M. L. Regulation of body temperature and brown adipose tissue thermogenesis by bombesin receptor subtype-3. Am. J. Physiol. Endocrinol. Metab. 306, E681–E687 (2014).

    Article  CAS  Google Scholar 

  12. Guan, X. M. et al. Regulation of energy homeostasis by bombesin receptor subtype-3: selective receptor agonists for the treatment of obesity. Cell. Metab. 11, 101–112 (2010).

    Article  CAS  Google Scholar 

  13. Guan, X. M. et al. Antiobesity effect of MK-5046, a novel bombesin receptor subtype-3 agonist. J. Pharmacol. Exp. Ther. 336, 356–364 (2011).

    Article  CAS  Google Scholar 

  14. Reitman, M. L. et al. Pharmacokinetics and pharmacodynamics of MK-5046, a bombesin receptor subtype-3 (BRS-3) agonist, in healthy patients. J. Clin. Pharmacol. 52, 1306–1316 (2012).

    Article  CAS  Google Scholar 

  15. Nio, Y. et al. A selective bombesin receptor subtype 3 agonist promotes weight loss in male diet-induced-obese rats with circadian rhythm change. Endocrinology 158, 1298–1313 (2017).

    Article  Google Scholar 

  16. Xiao, C. et al. Bombesin-like receptor 3 (Brs3) expression in glutamatergic, but not GABAergic, neurons is required for regulation of energy metabolism. Mol. Metab. 6, 1540–1550 (2017).

    Article  CAS  Google Scholar 

  17. Liu, J. et al. Molecular basis of the pharmacological difference between rat and human bombesin receptor subtype-3 (BRS-3). Biochemistry 41, 8954–8960 (2002).

    Article  CAS  Google Scholar 

  18. Tan, C. L. et al. Warm-sensitive neurons that control body temperature. Cell 167, 47–59.e15 (2016).

    Article  CAS  Google Scholar 

  19. Song, K. et al. The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science 353, 1393–1398 (2016).

    Article  CAS  Google Scholar 

  20. Boulant, J. A. Role of the preoptic-anterior hypothalamus in thermoregulation and fever. Clin. Infect. Dis. 31 (Suppl 5), S157–S161 (2000).

    Article  Google Scholar 

  21. Zhao, Z. D. et al. A hypothalamic circuit that controls body temperature. Proc. Natl. Acad. Sci. USA 114, 2042–2047 (2017).

  22. Morrison, S. F. Central neural control of thermoregulation and brown adipose tissue. Auton. Neurosci. 196, 14–24 (2016).

    Article  CAS  Google Scholar 

  23. Nakamura, K. & Morrison, S. F. Central efferent pathways for cold-defensive and febrile shivering. J. Physiol. (Lond.) 589, 3641–3658 (2011).

    Article  CAS  Google Scholar 

  24. Cano, G. et al. Anatomical substrates for the central control of sympathetic outflow to interscapular adipose tissue during cold exposure. J. Comp. Neurol. 460, 303–326 (2003).

    Article  Google Scholar 

  25. Jeong, J. H. et al. Cholinergic neurons in the dorsomedial hypothalamus regulate mouse brown adipose tissue metabolism. Mol. Metab. 4, 483–492 (2015).

    Article  CAS  Google Scholar 

  26. Rezai-Zadeh, K. et al. Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake. Mol. Metab. 3, 681–693 (2014).

    Article  CAS  Google Scholar 

  27. Garfield, A. S. et al. Dynamic GABAergic afferent modulation of AgRP neurons. Nat. Neurosci. 19, 1628–1635 (2016).

    Article  CAS  Google Scholar 

  28. Kataoka, N., Hioki, H., Kaneko, T. & Nakamura, K. Psychological stress activates a dorsomedial hypothalamus-medullary raphe circuit driving brown adipose tissue thermogenesis and hyperthermia. Cell. Metab. 20, 346–358 (2014).

    Article  CAS  Google Scholar 

  29. Cao, W. H. & Morrison, S. F. Glutamate receptors in the raphe pallidus mediate brown adipose tissue thermogenesis evoked by activation of dorsomedial hypothalamic neurons. Neuropharmacology 51, 426–437 (2006).

    Article  CAS  Google Scholar 

  30. Dimicco, J. A. & Zaretsky, D. V. The dorsomedial hypothalamus: a new player in thermoregulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R47–R63 (2007).

    Article  CAS  Google Scholar 

  31. Zhang, Y. et al. Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. J. Neurosci. 31, 1873–1884 (2011).

    Article  CAS  Google Scholar 

  32. Machado, N. L. S. et al. A glutamatergic hypothalamomedullary circuit mediates thermogenesis, but not heat conservation, during stress-induced hyperthermia. Curr. Biol. 28, 2291–2301.e5 (2018).

    Article  CAS  Google Scholar 

  33. Allison, M. B. et al. TRAP-seq defines markers for novel populations of hypothalamic and brainstem LepRb neurons. Mol. Metab. 4, 299–309 (2015).

    Article  CAS  Google Scholar 

  34. Zeng, W. et al. Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. Cell 163, 84–94 (2015).

    Article  CAS  Google Scholar 

  35. Dampney, R. A. Central mechanisms regulating coordinated cardiovascular and respiratory function during stress and arousal. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R429–R443 (2015).

    Article  CAS  Google Scholar 

  36. Viollet, C. et al. Somatostatin-IRES-Cre mice: between knockout and wild-type? Front. Endocrinol. (Lausanne) 8, 131 (2017).

    Article  Google Scholar 

  37. Shah, B. P. et al. MC4R-expressing glutamatergic neurons in the paraventricular hypothalamus regulate feeding and are synaptically connected to the parabrachial nucleus. Proc. Natl. Acad. Sci. USA 111, 13193–13198 (2014).

    Article  CAS  Google Scholar 

  38. An, J. J., Liao, G. Y., Kinney, C. E., Sahibzada, N. & Xu, B. Discrete BDNF neurons in the paraventricular hypothalamus control feeding and energy expenditure. Cell. Metab. 22, 175–188 (2015).

    Article  CAS  Google Scholar 

  39. Pei, H., Sutton, A. K., Burnett, K. H., Fuller, P. M. & Olson, D. P. AVP neurons in the paraventricular nucleus of the hypothalamus regulate feeding. Mol. Metab. 3, 209–215 (2014).

    Article  CAS  Google Scholar 

  40. Sutton, A. K. et al. Control of food intake and energy expenditure by Nos1 neurons of the paraventricular hypothalamus. J. Neurosci. 34, 15306–15318 (2014).

    Article  Google Scholar 

  41. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    Article  CAS  Google Scholar 

  42. Nguyen, N. L. et al. Separate and shared sympathetic outflow to white and brown fat coordinately regulates thermoregulation and beige adipocyte recruitment. Am. J. Physiol. Regul. Integr. Comp. Physiol. 312, R132–R145 (2017).

    Article  Google Scholar 

  43. Simonds, S. E. et al. Leptin mediates the increase in blood pressure associated with obesity. Cell 159, 1404–1416 (2014).

    Article  CAS  Google Scholar 

  44. Thompson, R. H. & Swanson, L. W. Organization of inputs to the dorsomedial nucleus of the hypothalamus: a reexamination with Fluorogold and PHAL in the rat. Brain Res. Brain Res. Rev. 27, 89–118 (1998).

    Article  CAS  Google Scholar 

  45. Fontes, M. A. P. et al. Asymmetric sympathetic output: the dorsomedial hypothalamus as a potential link between emotional stress and cardiac arrhythmias. Auton. Neurosci. 207, 22–27 (2017).

    Article  Google Scholar 

  46. Nakamura, K. Neural circuit for psychological stress-induced hyperthermia. Temperature (Austin) 2, 352–361 (2015).

    Article  Google Scholar 

  47. Nakamura, K. & Morrison, S. F. Central efferent pathways mediating skin cooling-evoked sympathetic thermogenesis in brown adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R127–R136 (2007).

    Article  CAS  Google Scholar 

  48. Morrison, S. F. Central control of body temperature. F1000Res. 5, 880 (2016). F1000 Faculty Rev-.

    Article  Google Scholar 

  49. Cao, W. H., Fan, W. & Morrison, S. F. Medullary pathways mediating specific sympathetic responses to activation of dorsomedial hypothalamus. Neuroscience 126, 229–240 (2004).

    Article  CAS  Google Scholar 

  50. Dimitrov, E. L., Kim, Y. Y. & Usdin, T. B. Regulation of hypothalamic signaling by tuberoinfundibular peptide of 39 residues is critical for the response to cold: a novel peptidergic mechanism of thermoregulation. J. Neurosci. 31, 18166–18179 (2011).

    Article  CAS  Google Scholar 

  51. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    Article  CAS  Google Scholar 

  52. Peron, S. P., Freeman, J., Iyer, V., Guo, C. & Svoboda, K. A cellular resolution map of barrel cortex activity during tactile behavior. Neuron 86, 783–799 (2015).

    Article  CAS  Google Scholar 

  53. Szymczak-Workman, A. L., Vignali, K. M. & Vignali, D. A. Generation of 2A-linked multicistronic cassettes by recombinant PCR. Cold Spring Harb. Protoc. 2012, 251–254 (2012).

    PubMed  Google Scholar 

  54. Ravussin, Y., Gutman, R., LeDuc, C. A. & Leibel, R. L. Estimating energy expenditure in mice using an energy balance technique. Int. J. Obes. (Lond). 37, 399–403 (2013).

    Article  CAS  Google Scholar 

  55. Sebhat, I. K. et al. Discovery of MK-5046, a potent, selective bombesin receptor subtype-3 agonist for the treatment of obesity. ACS Med. Chem. Lett. 2, 43–47 (2010).

    Article  Google Scholar 

  56. Graves, J. A. Did sex chromosome turnover promote divergence of the major mammal groups?: De novo sex chromosomes and drastic rearrangements may have posed reproductive barriers between monotremes, marsupials and placental mammals. Bioessays 38, 734–743 (2016).

    Article  CAS  Google Scholar 

  57. Qi, J. et al. VTA glutamatergic inputs to nucleus accumbens drive aversion by acting on GABAergic interneurons. Nat. Neurosci. 19, 725–733 (2016).

    Article  CAS  Google Scholar 

  58. Stratigopoulos, G. et al. Hypomorphism of Fto and Rpgrip1l causes obesity in mice. J. Clin. Invest. 126, 1897–1910 (2016).

    Article  Google Scholar 

  59. Fox, D. A. et al. Gestational lead exposure selectively decreases retinal dopamine amacrine cells and dopamine content in adult mice. Toxicol. Appl. Pharmacol. 256, 258–267 (2011).

    Article  CAS  Google Scholar 

  60. Geerling, J. C., Yokota, S., Rukhadze, I., Roe, D. & Chamberlin, N. L. Kölliker-Fuse GABAergic and glutamatergic neurons project to distinct targets. J. Comp. Neurol. 525, 1844–1860 (2017).

    Article  CAS  Google Scholar 

  61. Wu, Z., Autry, A. E., Bergan, J. F., Watabe-Uchida, M. & Dulac, C. G. Galanin neurons in the medial preoptic area govern parental behaviour. Nature 509, 325–330 (2014).

    Article  CAS  Google Scholar 

  62. Saunders, A., Johnson, C. A. & Sabatini, B. L. Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons. Front. Neural Circuits 6, 47 (2012).

    Article  CAS  Google Scholar 

  63. Rudaya, A. Y., Steiner, A. A., Robbins, J. R., Dragic, A. S. & Romanovsky, A. A. Thermoregulatory responses to lipopolysaccharide in the mouse: dependence on the dose and ambient temperature. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R1244–R1252 (2005).

    Article  CAS  Google Scholar 

  64. Lee, D. L., Webb, R. C. & Brands, M. W. Sympathetic and angiotensin-dependent hypertension during cage-switch stress in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R1394–R1398 (2004).

    Article  CAS  Google Scholar 

  65. Lute, B. et al. Biphasic effect of melanocortin agonists on metabolic rate and body temperature. Cell. Metab. 20, 333–345 (2014).

    Article  CAS  Google Scholar 

  66. Vianna, D. M. L. & Carrive, P. Stress-induced hyperthermia is not mediated by brown adipose tissue in mice. J. Therm. Biol. 37, 125–129 (2012).

    Article  Google Scholar 

  67. Gachkar, S. et al. 3-Iodothyronamine induces tail vasodilation through central action in male mice. Endocrinology 158, 1977–1984 (2017).

    Article  Google Scholar 

  68. Kim, S. M. et al. Salt sensitivity of blood pressure in NKCC1-deficient mice. Am. J. Physiol. Renal. Physiol. 295, F1230–F1238 (2008).

    Article  CAS  Google Scholar 

  69. Stornetta, R. L., Inglis, M. A., Viar, K. E. & Guyenet, P. G. Afferent and efferent connections of C1 cells with spinal cord or hypothalamic projections in mice. Brain. Struct. Funct. 221, 4027–4044 (2016).

    Article  Google Scholar 

  70. Betley, J. N., Cao, Z. F., Ritola, K. D. & Sternson, S. M. Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell 155, 1337–1350 (2013).

    Article  CAS  Google Scholar 

  71. Paxinos, G. & Franklin, K. B. J. The Mouse Brain in Stereotaxic Coordinates. Compact 3rd edn, (Elsevier Academic Press, Cambridge, MA, USA, 2008).

Download references

Acknowledgements

We thank A. Kravitz for input throughout the project and critical reading of the manuscript, A. Franks for assistance with animal husbandry, Y. Huang and Y. Ma for assistance with surgeries, and A. Noguchi and D. Springer of the NHLBI Murine Phenotyping Core for the cardiovascular telemetry implantation surgeries. S. Sternson provided the AAV-ChR plasmid construct and R. Neve (Massachusetts General Hospital, Boston, MA), provided HSVs. MK-5046 was generously donated by Merck. Rabies virus was obtained from the GT3 Core Facility of the Salk Institute, which was funded by NIH-NCI CCSG: P30 014195 and NINDS R24 Core Grant and funding from NEI. This research was supported by the Intramural Research Program (DK075057, DK075062, and DK075063 to M.L.R.; DK07002 to M.J.K.) of the National Institute of Diabetes and Digestive and Kidney Diseases, NIH.

Author information

Authors and Affiliations

Authors

Contributions

R.A.P. and M.L.R. conceived and designed the study with input from M.J.K. and O.G. R.A.P. performed and analyzed the experiments. R.A.P., S.H.Z., and A.S. performed chemogenetic experiments and immunohistochemistry and counted cells. R.A.P., S.H.Z., and B.K.T. performed optogenetic and anterograde tracing experiments. C.X. generated Brs3-Cre mice and performed western blots and qRT-PCR experiments. O.G. performed indirect calorimetry experiments. V.S. and R.A.P. performed IR experiments. C.L. performed electrophysiology experiments. R.A.P. wrote the manuscript with input from M.L.R. and all other authors.

Corresponding authors

Correspondence to Ramón A. Piñol or Marc L. Reitman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piñol, R.A., Zahler, S.H., Li, C. et al. Brs3 neurons in the mouse dorsomedial hypothalamus regulate body temperature, energy expenditure, and heart rate, but not food intake. Nat Neurosci 21, 1530–1540 (2018). https://doi.org/10.1038/s41593-018-0249-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-018-0249-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing