Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Optimality and heuristics in perceptual neuroscience

Abstract

The foundation for modern understanding of how we make perceptual decisions about what we see or where to look comes from considering the optimal way to perform these behaviors. While statistical computation is useful for deriving the optimal solution to a perceptual problem, optimality requires perfect knowledge of priors and often complex computation. Accumulating evidence, however, suggests that optimal perceptual goals can be achieved or approximated more simply by human observers using heuristic approaches. Perceptual neuroscientists captivated by optimal explanations of sensory behaviors will fail in their search for the neural circuits and cortical processes that implement an optimal computation whenever that behavior is actually achieved through heuristics. This article provides a cross-disciplinary review of decision-making with the aim of building perceptual theory that uses optimality to set the computational goals for perceptual behavior but, through consideration of ecological, computational, and energetic constraints, incorporates how these optimal goals can be achieved through heuristic approximation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Visual illusions suggestive of optimality.
Fig. 2: Heuristic solutions to sensory inference.

Similar content being viewed by others

References

  1. Tversky, A. & Kahneman, D. Judgment under uncertainty: heuristics and biases. Science 185, 1124–1131 (1974).

    Article  CAS  PubMed  Google Scholar 

  2. Tversky, A. & Kahneman, D. The framing of decisions and the psychology of choice. Science 211, 453–458 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. Swets, J., Tanner, W. P. Jr. & Birdsall, T. G. Decision processes in perception. Psychol. Rev. 68, 301–340 (1961).

    Article  CAS  PubMed  Google Scholar 

  4. Tanner, W. P. Jr. & Swets, J. A. A decision-making theory of visual detection. Psychol. Rev. 61, 401–409 (1954).

    Article  PubMed  Google Scholar 

  5. Green, D. M. Psychoacoustics and detection theory. J. Acoust. Soc. Am. 32, 1189–1203 (1960).

    Article  Google Scholar 

  6. Friedman, M. P., Carterette, E. C., Nakatani, L. & Ahumada, A. Comparisons of some learning models for response bias in signal detection. Percept. Psychophys. 3, 5–11 (1968).

    Article  Google Scholar 

  7. Nachmias, J. On the psychometric function for contrast detection. Vision Res. 21, 215–223 (1981).

    Article  CAS  PubMed  Google Scholar 

  8. Green, D. M. & Moses, F. L. On the equivalence of two recognition measures of short-term memory. Psychol. Bull. 66, 228–234 (1966).

    Article  CAS  PubMed  Google Scholar 

  9. Egan, J., Schulman, A. I. & Greenberg, G. Z. Operating characteristics determined by binary decisions and by ratings. J. Acoust. Soc. Am. 31, 768–773 (1959).

    Article  Google Scholar 

  10. Burgess, A. Visual signal detection. III. On Bayesian use of prior knowledge and cross correlation. J. Opt. Soc. Am. A 2, 1498–1507 (1985).

    Article  CAS  PubMed  Google Scholar 

  11. Pelli, D. G. Uncertainty explains many aspects of visual contrast detection and discrimination. J. Opt. Soc. Am. A 2, 1508–1532 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. Palmer, J., Verghese, P. & Pavel, M. The psychophysics of visual search. Vision Res. 40, 1227–1268 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Beck, J. M., Ma, W. J., Pitkow, X., Latham, P. E. & Pouget, A. Not noisy, just wrong: the role of suboptimal inference in behavioral variability. Neuron 74, 30–39 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Najemnik, J. & Geisler, W. S. Optimal eye movement strategies in visual search. Nature 434, 387–391 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Eckstein, M. P., Peterson, M. F., Pham, B. T. & Droll, J. A. Statistical decision theory to relate neurons to behavior in the study of covert visual attention. Vision Res. 49, 1097–1128 (2009).

    Article  PubMed  Google Scholar 

  16. Pestilli, F., Carrasco, M., Heeger, D. J. & Gardner, J. L. Attentional enhancement via selection and pooling of early sensory responses in human visual cortex. Neuron 72, 832–846 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hara, Y. & Gardner, J. L. Encoding of graded changes in spatial specificity of prior cues in human visual cortex. J. Neurophysiol. 112, 2834–2849 (2014).

    Article  PubMed  Google Scholar 

  18. Verghese, P., Kim, Y.-J. & Wade, A. R. Attention selects informative neural populations in human V1. J. Neurosci. 32, 16379–16390 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee, D. K., Itti, L., Koch, C. & Braun, J. Attention activates winner-take-all competition among visual filters. Nat. Neurosci. 2, 375–381 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Ernst, M. O. & Banks, M. S. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429–433 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Seung, H. S. & Sompolinsky, H. Simple models for reading neuronal population codes. Proc. Natl. Acad. Sci. USA 90, 10749–10753 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Scolari, M., Byers, A. & Serences, J. T. Optimal deployment of attentional gain during fine discriminations. J. Neurosci. 32, 7723–7733 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Purushothaman, G. & Bradley, D. C. Neural population code for fine perceptual decisions in area MT. Nat. Neurosci. 8, 99–106 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Graham, N. & Robson, J. G. Summation of very close spatial frequencies: the importance of spatial probability summation. Vision Res. 27, 1997–2007 (1987).

    Article  CAS  PubMed  Google Scholar 

  25. Jogan, M. & Stocker, A. A. Signal integration in human visual speed perception. J. Neurosci. 35, 9381–9390 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Newsome, W. T., Britten, K. H. & Movshon, J. A. Neuronal correlates of a perceptual decision. Nature 341, 52–54 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Tolhurst, D. J., Movshon, J. A. & Dean, A. F. The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Res. 23, 775–785 (1983).

    Article  CAS  PubMed  Google Scholar 

  28. Link, S. W. & Heath, R. A. A sequential theory of psychological discrimination. Psychometrika 40, 77–105 (1975).

    Article  Google Scholar 

  29. Ratcliff, R. A theory of memory retrieval. Psychol. Rev. 85, 59–108 (1978).

    Article  Google Scholar 

  30. Roitman, J. D. & Shadlen, M. N. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22, 9475–9489 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barlow, H.B. in Sensory Communication (ed. Rosenblith, W.) 217–234 (MIT Press, Cambridge, MA, USA, 1961).

  32. Olshausen, B. A. & Field, D. J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Yang, Z. & Purves, D. A statistical explanation of visual space. Nat. Neurosci. 6, 632–640 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Girshick, A. R., Landy, M. S. & Simoncelli, E. P. Cardinal rules: visual orientation perception reflects knowledge of environmental statistics. Nat. Neurosci. 14, 926–932 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Weiss, Y., Simoncelli, E. P. & Adelson, E. H. Motion illusions as optimal percepts. Nat. Neurosci. 5, 598–604 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Vintch, B. & Gardner, J. L. Cortical correlates of human motion perception biases. J. Neurosci. 34, 2592–2604 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stocker, A. A. & Simoncelli, E. P. Noise characteristics and prior expectations in human visual speed perception. Nat. Neurosci. 9, 578–585 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Sotiropoulos, G., Seitz, A. R. & Seriès, P. Changing expectations about speed alters perceived motion direction. Curr. Biol. 21, R883–R884 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Ganguli, D. & Simoncelli, E. P. Implicit encoding of prior probabilities in optimal neural populations. Adv. Neural Inf. Process. Syst. 23, 658–666 (2010).

    Google Scholar 

  40. Atick, J. J. Could information theory provide an ecological theory of sensory processing? Network 3, 213–251 (1992).

    Article  Google Scholar 

  41. Brainard, D. H. & Freeman, W. T. Bayesian color constancy. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 14, 1393–1411 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Manning, J. R. & Brainard, D. H. Optimal design of photoreceptor mosaics: why we do not see color at night. Vis. Neurosci. 26, 5–19 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Geisler, W. S., Perry, J. S., Super, B. J. & Gallogly, D. P. Edge co-occurrence in natural images predicts contour grouping performance. Vision Res. 41, 711–724 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Lee, T. S. & Mumford, D. Hierarchical Bayesian inference in the visual cortex. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 20, 1434–1448 (2003).

    Article  PubMed  Google Scholar 

  45. Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Gregory, R.L. Concepts and Mechanisms of Perception (Duckworth, London, 1974).

  47. Rock, I. The Logic of Perception (MIT Press, Cambridge, MA, USA, 1983).

  48. Bowers, J. S. & Davis, C. J. Bayesian just-so stories in psychology and neuroscience. Psychol. Bull. 138, 389–414 (2012).

    Article  PubMed  Google Scholar 

  49. Jones, M. & Love, B. C. Bayesian fundamentalism or enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition. Behav. Brain Sci. 34, 188–231 (2011). 169–188.

    Article  Google Scholar 

  50. Marcus, G. F. & Davis, E. How robust are probabilistic models of higher-level cognition? Psychol. Sci. 24, 2351–2360 (2013).

    Article  PubMed  Google Scholar 

  51. Rahnev, D. & Denison, R. N. Suboptimality in perceptual decision making. Behav. Brain Sci. https://doi.org/10.1017/S0140525X18000936 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Geisler, W. S. Contributions of ideal observer theory to vision research. Vision Res. 51, 771–781 (2011).

    Article  PubMed  Google Scholar 

  53. Griffiths, T.L., Chater, N., Norris, D. & Pouget, A. How the Bayesians got their beliefs (and what those beliefs actually are): comment on Bowers and Davis (2012). Psychol. Bull. 138, 415–422 (2012).

  54. Goodman, N. D. et al. Relevant and robust: a response to Marcus and Davis (2013). Psychol. Sci. 26, 539–541 (2015).

    Article  PubMed  Google Scholar 

  55. Frank, M. C. Throwing out the Bayesian baby with the optimal bathwater: response to Endress (2013). Cognition 128, 417–423 (2013).

    Article  PubMed  Google Scholar 

  56. Neumann, Von, J. & Morgenstern, O. Theory of Games and Economic Behaviour (Princeton University Press, Princeton, NJ, USA, 1944).

  57. Bernoulli, D. Exposition of a new theory on the measurement of risk. Econometrica 22, 23–36 (1954).

    Article  Google Scholar 

  58. Allais, M. Le comportement de l’homme rationnel devant le risque: critique des postulats et axiomes del’ecole Americaine. Econometrica 21, 503–546 (1953).

    Article  Google Scholar 

  59. Kahneman, D. & Tversky, A. Choices, values, and frames. Am. Psychol. 39, 341–350 (1984).

    Article  Google Scholar 

  60. Hershey, J. C. & Schoemaker, P. J. H. Risk taking and problem context in the domain of losses: an expected utility analysis. J. Risk Insur. 47, 111–132 (1980).

    Article  Google Scholar 

  61. Samuelson, P. A. A note on the pure theory of consumer’s behaviour. Economica 5, 61–71 (1938).

    Article  Google Scholar 

  62. Tversky, A. Intransitivity of preferences. Psychol. Rev. 76, 31–48 (1969).

    Article  Google Scholar 

  63. Simon, H. A. Rational decision making in business organizations. Am. Econ. Rev. 69, 493–513 (1979).

    Google Scholar 

  64. Kahneman, D. & Tversky, A. On the psychology of prediction. Psychol. Rev. 80, 237–251 (1973).

    Article  Google Scholar 

  65. Edwards, W. in Judgment under Uncertainty Heuristics and Biases (eds. Kahneman, D., Slovic, P. & Tversky, A.) 359–369 (Cambridge University Press, Cambridge, UK, 1968).

  66. Fischhoff, B. & Beyth-Marom, R. Hypothesis evaluation from a Bayesian perspective. Psychol. Rev. 90, 239–260 (1983).

    Article  Google Scholar 

  67. Kahneman, D. & TverskyA. Subjective probability: a judgment of representativeness. Cogn. Psychol 3, 430–454 (1972).

    Article  Google Scholar 

  68. Tversky, A. & Kahneman, D. Belief in the law of small numbers. Psychol. Bull. 76, 105–110 (1971).

    Article  Google Scholar 

  69. Bar-Hillel, M. & Wagenaar, W. A. The perception of randomness. Adv. Appl. Math. 12, 428–454 (1991).

    Article  Google Scholar 

  70. Gigerenzer, G. How to make cognitive illusions disappear: beyond ‘heuristics and biases’. Eur. Rev. Soc. Psychol. 2, 83–115 (2011).

    Article  Google Scholar 

  71. Hertwig, R. & Gigerenzer, G. The ‘conjunction fallacy’ revisited: how intelligent inferences look like reasoning errors. J. Behav. Decis. Making 12, 275–305 (1999).

    Article  Google Scholar 

  72. Birnbaum, M. H. Base rates in Bayesian inference: signal detection analysis of the cab problem. Am. J. Psychol. 96, 85–94 (1983).

    Article  Google Scholar 

  73. Lake, B. M., Salakhutdinov, R. & Tenenbaum, J. B. Human-level concept learning through probabilistic program induction. Science 350, 1332–1338 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Frank, M. C. & Goodman, N. D. Predicting pragmatic reasoning in language games. Science 336, 998 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Chater, N. & Manning, C. D. Probabilistic models of language processing and acquisition. Trends Cogn. Sci. 10, 335–344 (2006).

    Article  PubMed  Google Scholar 

  76. Kemp, C. & Tenenbaum, J. B. The discovery of structural form. Proc. Natl. Acad. Sci. USA 105, 10687–10692 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gerstenberg, T. et al. Lucky or clever? From expectations to responsibility judgments. Cognition 177, 122–141 (2018).

    Article  PubMed  Google Scholar 

  78. Feldman, N. H., Griffiths, T. L. & Morgan, J. L. The influence of categories on perception: explaining the perceptual magnet effect as optimal statistical inference. Psychol. Rev. 116, 752–782 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kemp, C. & Tenenbaum, J. B. Structured statistical models of inductive reasoning. Psychol. Rev. 116, 20–58 (2009).

    Article  PubMed  Google Scholar 

  80. Jazayeri, M. & Shadlen, M. N. Temporal context calibrates interval timing. Nat. Neurosci. 13, 1020–1026 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Körding, K. P. & Wolpert, D. M. Bayesian integration in sensorimotor learning. Nature 427, 244–247 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Gershman, S. J., Vul, E. & Tenenbaum, J. B. Multistability and perceptual inference. Neural Comput. 24, 1–24 (2012).

    Article  PubMed  Google Scholar 

  83. Moreno-Bote, R., Knill, D. C. & Pouget, A. Bayesian sampling in visual perception. Proc. Natl. Acad. Sci. USA 108, 12491–12496 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Vul, E., Goodman, N., Griffiths, T. L. & Tenenbaum, J. B. One and done? Optimal decisions from very few samples. Cogn. Sci. 38, 599–637 (2014).

    Article  PubMed  Google Scholar 

  85. Griffiths, T. L. & Tenenbaum, J. B. Optimal predictions in everyday cognition. Psychol. Sci. 17, 767–773 (2006).

    Article  PubMed  Google Scholar 

  86. Mozer, M. C., Pashler, H. & Homaei, H. Optimal predictions in everyday cognition: the wisdom of individuals or crowds? Cogn. Sci. 32, 1133–1147 (2008).

    Article  PubMed  Google Scholar 

  87. Gigerenzer, G. & Gaissmaier, W. Heuristic decision making. Annu. Rev. Psychol. 62, 451–482 (2011).

    Article  PubMed  Google Scholar 

  88. Polya, G. How to Solve It (Princeton University Press, Princeton, NJ, USA, 2014).

  89. Newell, A. You can’t play 20 questions with nature and win: projective comments on the papers of this symposium. Visual Information Processing. https://doi.org/10.1016/B978-0-12-170150-5.50012-3 (1973).

    Article  Google Scholar 

  90. Newell, A., Shaw, J.C. & Simon, H.A. Empirical explorations of the logic theory machine: a case study in heuristic. Proceedings of the IRE-AIEE-ACM Western Joint Computer Conference: Techniques for Reliability 218–230 (1957).

  91. Lenat, D. B. AM, an artificial intelligence approach to discovery in mathematics as heuristic search. PhD thesis, Stanford Univ. (1976).

  92. Newell, A. The chess machine: an example of dealing with a complex task by adaptation. Proceedings of the AFIPS Western Joint Computer Conference 101–108 (1955).

  93. Newell, A. & Simon, H. A. Computer science as empirical inquiry: symbols and search. Commun. ACM 19, 113–126 (1976).

    Article  Google Scholar 

  94. Dawes, R. M. The robust beauty of improper linear models in decision making. Am. Psychol. 34, 571–582 (1979).

    Article  Google Scholar 

  95. Marr, D. Vision: a Computational Investigation into the Human Representation and Processing of Visual Information. (MIT Press, Cambridge, MA, USA, 1982).

  96. Yeshurun, Y., Carrasco, M. & Maloney, L. T. Bias and sensitivity in two-interval forced choice procedures: tests of the difference model. Vision Res. 48, 1837–1851 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Fründ, I., Wichmann, F. A. & Macke, J. H. Quantifying the effect of intertrial dependence on perceptual decisions. J. Vis. 14, 9 (2014).

    Article  PubMed  Google Scholar 

  98. Braun, A., Urai, A. E. & Donner, T. H. Adaptive history biases result from confidence-weighted accumulation of past choices. J. Neurosci. 38, 2418–2429 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Abrahamyan, A., Silva, L. L., Dakin, S. C., Carandini, M. & Gardner, J. L. Adaptable history biases in human perceptual decisions. Proc. Natl. Acad. Sci. USA 113, E3548–E3557 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lueckmann, J.-M., Macke, J. H. & Nienborg, H. Can serial dependencies in choices and neural activity explain choice probabilities? J. Neurosci. 38, 3495–3506 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Busse, L. et al. The detection of visual contrast in the behaving mouse. J. Neurosci. 31, 11351–11361 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Marcos, E. et al. Neural variability in premotor cortex is modulated by trial history and predicts behavioral performance. Neuron 78, 249–255 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Akrami, A., Kopec, C. D., Diamond, M. E. & Brody, C. D. Posterior parietal cortex represents sensory history and mediates its effects on behaviour. Nature 554, 368–372 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Fernberger, S. W. Interdependence of judgments within the series for the method of constant stimuli. J. Exp. Psychol. 3, 126–150 (1920).

    Article  Google Scholar 

  105. Senders, V. L. & Sowards, A. Analysis of response sequences in the setting of a psychophysical experiment. Am. J. Psychol. 65, 358–374 (1952).

    Article  CAS  PubMed  Google Scholar 

  106. Howarth, C. I. & Bulmer, M. G. Non-random sequences in visual threshold experiments. Q. J. Exp. Psychol. 8, 163–171 (1956).

    Article  Google Scholar 

  107. Laming, D. Choice reaction performance following an error. Acta Psychol. (Amst.) 43, 199–224 (1979).

    Article  Google Scholar 

  108. Rabbitt, P. & Rodgers, B. What does a man do after he makes an error? an analysis of response programming. Q. J. Exp. Psychol. 29, 727–743 (1977).

    Article  Google Scholar 

  109. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S. & Cohen, J. D. Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Fischer, J. & Whitney, D. Serial dependence in visual perception. Nat. Neurosci. 17, 738–743 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Fritsche, M., Mostert, P. & de Lange, F. P. Opposite effects of recent history on perception and decision. Curr. Biol. 27, 590–595 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. Ackermann, J. F. & Landy, M. S. Suboptimal decision criteria are predicted by subjectively weighted probabilities and rewards. Atten. Percept. Psychophys. 77, 638–658 (2015).

    Article  PubMed  Google Scholar 

  113. Ulehla, Z. J. Optimality of perceptual decision criteria. J. Exp. Psychol. 71, 564–569 (1966).

    Article  CAS  PubMed  Google Scholar 

  114. Creelman, C. D. & Donaldson, W. ROC curves for discrimination of linear extent. J. Exp. Psychol. 77, 514–516 (1968).

    Article  CAS  PubMed  Google Scholar 

  115. Parks, T. E. Signal-detectability theory of recognition-memory performance. Psychol. Rev. 73, 44–58 (1966).

    Article  CAS  PubMed  Google Scholar 

  116. Thomas, E. A. & Legge, D. Probability matching as a basis for detection and recognition decisions. Psychol. Rev. 77, 65–72 (1970).

    Article  Google Scholar 

  117. Norton, E. H., Fleming, S. M., Daw, N. D. & Landy, M. S. Suboptimal criterion learning in static and dynamic environments. PLoS Comput. Biol. 13, e1005304 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Laquitaine, S. & Gardner, J. L. A Switching observer for human perceptual estimation. Neuron 97, 462–474.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  119. Nardini, M., Jones, P., Bedford, R. & Braddick, O. Development of cue integration in human navigation. Curr. Biol. 18, 689–693 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Adams, W. J. The development of audio-visual integration for temporal judgements. PLoS Comput. Biol. 12, e1004865 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Raviv, O., Ahissar, M. & Loewenstein, Y. How recent history affects perception: the normative approach and its heuristic approximation. PLoS Comput. Biol. 8, e1002731 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Najemnik, J. & Geisler, W. S. Simple summation rule for optimal fixation selection in visual search. Vision Res. 49, 1286–1294 (2009).

    Article  PubMed  Google Scholar 

  123. Baldassi, S. & Verghese, P. Comparing integration rules in visual search. J. Vis. 2, 559–570 (2002).

    Article  PubMed  Google Scholar 

  124. Kramer, P., Graham, N. & Yager, D. Simultaneous measurement of spatial-frequency summation and uncertainty effects. J. Opt. Soc. Am. A 2, 1533–1542 (1985).

    Article  CAS  PubMed  Google Scholar 

  125. Baldassi, S. & Burr, D. C. Feature-based integration of orientation signals in visual search. Vision Res. 40, 1293–1300 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Marlow, P. J., Kim, J. & Anderson, B. L. The perception and misperception of specular surface reflectance. Curr. Biol. 22, 1909–1913 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Maloney, L. T. & Mamassian, P. Bayesian decision theory as a model of human visual perception: testing Bayesian transfer. Vis. Neurosci. 26, 147–155 (2009).

    Article  PubMed  Google Scholar 

  128. Shen, S. & Ma, W. J. A detailed comparison of optimality and simplicity in perceptual decision making. Psychol. Rev. 123, 452–480 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Darlington, T. R., Beck, J. M. & Lisberger, S. G. Neural implementation of Bayesian inference in a sensorimotor behavior. Nat. Neurosci. 21, 1442–1451 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jazayeri, M. & Movshon, J. A. Optimal representation of sensory information by neural populations. Nat. Neurosci. 9, 690–696 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Ma, W. J., Beck, J. M., Latham, P. E. & Pouget, A. Bayesian inference with probabilistic population codes. Nat. Neurosci. 9, 1432–1438 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Fetsch, C. R., DeAngelis, G. C. & Angelaki, D. E. Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons. Nat. Rev. Neurosci. 14, 429–442 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Huk, A., Bonnen, K. & He, B. J. Beyond trial-based paradigms: continuous behavior, ongoing neural activity, and natural stimuli. J. Neurosci. 38, 7551–7558 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang, W. & Luck, S. J. Discrete fixed-resolution representations in visual working memory. Nature 453, 233–235 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Beard, B.L. & Ahumada, A.J. in Human Vision and Electronic Imaging III 3299, 79–86 (1998).

  136. Ramachandran, V.S. in Vision: Coding and Efficiency (ed. Blakemore, C.) 346–360 (Cambridge Univ. Press, Cambridge, UK, 1991).

  137. Purves, D., Wojtach, W. T. & Lotto, R. B. Understanding vision in wholly empirical terms. Proc. Natl. Acad. Sci. USA 108(Suppl 3), 15588–15595 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kahneman, D. & Tversky, A. Prospect theory: an analysis of decision under risk. Econometrica 47, 263–291 (1979).

    Article  Google Scholar 

  139. Savage, L. J. The Foundations of Statistics (Wiley, New York, 1954).

    Google Scholar 

  140. Shi, L., Griffiths, T. L., Feldman, N. H. & Sanborn, A. N. Exemplar models as a mechanism for performing Bayesian inference. Psychon. Bull. Rev. 17, 443–464 (2010).

    Article  PubMed  Google Scholar 

  141. Simon, H. A. A behavioral model of rational choice. Q. J. Econ. 69, 99–118 (1955).

    Article  Google Scholar 

  142. Lieder, F., Griffiths, T. L., M Huys, Q. J. & Goodman, N. D. The anchoring bias reflects rational use of cognitive resources. Psychon. Bull. Rev. 25, 322–349 (2018).

    Article  PubMed  Google Scholar 

  143. Sutton, R. S. & Barto, A. G. Reinforcement Learning: an Introduction (MIT Press, Cambridge, MA, USA, 1998).

    Google Scholar 

  144. Daw, N. D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8, 1704–1711 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Helmholtz, H. V. Treatise on Physiological Optics. Volume 3: The Perceptions of Vision (Optical Society of America, New York, 1867).

    Google Scholar 

  146. Ramachandran, V. S. Perception of shape from shading. Nature 331, 163–166 (1988).

    Article  CAS  PubMed  Google Scholar 

  147. Freeman, W. T. The generic viewpoint assumption in a framework for visual perception. Nature 368, 542–545 (1994).

    Article  CAS  PubMed  Google Scholar 

  148. Nakayama, K. & Shimojo, S. Experiencing and perceiving visual surfaces. Science 257, 1357–1363 (1992).

    Article  CAS  PubMed  Google Scholar 

  149. Ma, W. J. Organizing probabilistic models of perception. Trends Cogn. Sci. 16, 511–518 (2012).

    Article  PubMed  Google Scholar 

  150. Tversky, A. & Kahneman, D. Extensional versus intuitive reasoning: the conjunction fallacy in probability judgment. Psychol. Rev. 90, 293–315 (1983).

    Article  Google Scholar 

Download references

Acknowledgements

I thank E. Thomas, H. Gweon, S. Wu, D. Birman, G. Riesen, A. Jagadeesh, and M. Lee for discussions and comments on earlier drafts of this manuscript. I am grateful for the generous support of Research to Prevent Blindness and Lions Clubs International Foundation and the Hellman Fellows Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin L. Gardner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gardner, J.L. Optimality and heuristics in perceptual neuroscience. Nat Neurosci 22, 514–523 (2019). https://doi.org/10.1038/s41593-019-0340-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-019-0340-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing