Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Causal contributions of parietal cortex to perceptual decision-making during stimulus categorization

Abstract

The posterior parietal cortex (PPC) has been implicated in perceptual decision-making and categorization, but whether its activity plays a causal role remains controversial. Here we examined the population dynamics of PPC activity during an auditory-guided decision task in mice. We found that silencing of PPC activity impaired several aspects of decision-making. First, categorization of new, but not well-learned, stimuli was impaired. Second, re-categorization of previously experienced stimuli based on newly learned categories was also impaired. Third, the bias on behavioral choices created by preceding trials significantly increased. In vivo two-photon imaging of PPC activity during stimulus categorization revealed differential dynamics in representations of new stimuli and learned categories, consistent with rapid incorporation of new sensory information during categorization. At the circuit level, inactivation of PPC axonal projections to the auditory cortex also significantly reduced categorization performance. Thus, PPC circuits play a causal role in decision-making during stimulus categorization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Perceptual categorization of auditory stimulus in head-fixed mice.
Fig. 2: PPC activity is necessary for categorical decision-making on new sensory stimuli.
Fig. 3: PPC activity is not required for choice behavior at post-categorization stage.
Fig. 4: PPC neurons show stable representation for learned categories.
Fig. 5: PPC representations show evolving dynamics over learning.
Fig. 6: PPC activity counterbalances short-term history bias on perceptual decisions.
Fig. 7: PPC activity is required for stimulus re-categorization based on new decision boundaries.
Fig. 8: PPC-to-auditory cortex projections are necessary for categorical decision-making on new sensory stimuli.

Similar content being viewed by others

Data availability

All data used to understand and assess the conclusions of this study are available in the main text or supplementary materials. All the original behavioral, optogenetic, imaging and histochemical data are archived in the Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and are available from the corresponding author upon reasonable request.

Code availability

All data acquisition and analysis code are archived in the Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and are available from the corresponding author upon reasonable request.

References

  1. Shadlen, M. N. & Newsome, W. T. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936 (2001).

    Article  CAS  Google Scholar 

  2. Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    Article  CAS  Google Scholar 

  3. Yang, T. & Shadlen, M. N. Probabilistic reasoning by neurons. Nature 447, 1075–1080 (2007).

    Article  CAS  Google Scholar 

  4. Freedman, D. J. & Assad, J. A. A proposed common neural mechanism for categorization and perceptual decisions. Nat. Neurosci. 14, 143–146 (2011).

    Article  CAS  Google Scholar 

  5. Freedman, D. J. & Assad, J. A. Neuronal mechanisms of visual categorization: an abstract view on decision making. Annu. Rev. Neurosci. 39, 129–147 (2016).

    Article  CAS  Google Scholar 

  6. Freedman, D. J. & Assad, J. A. Experience-dependent representation of visual categories in parietal cortex. Nature 443, 85–88 (2006).

    Article  CAS  Google Scholar 

  7. Hanks, T. D. et al. Distinct relationships of parietal and prefrontal cortices to evidence accumulation. Nature 520, 220–223 (2015).

    Article  CAS  Google Scholar 

  8. Harvey, C. D., Coen, P. & Tank, D. W. Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484, 62–68 (2012).

    Article  CAS  Google Scholar 

  9. Runyan, C. A., Piasini, E., Panzeri, S. & Harvey, C. D. Distinct timescales of population coding across cortex. Nature 548, 92–96 (2017).

    Article  CAS  Google Scholar 

  10. Morcos, A. S. & Harvey, C. D. History-dependent variability in population dynamics during evidence accumulation in cortex. Nat. Neurosci. 19, 1672–1681 (2016).

    Article  CAS  Google Scholar 

  11. Raposo, D., Kaufman, M. T. & Churchland, A. K. A category-free neural population supports evolving demands during decision-making. Nat. Neurosci. 17, 1784–1792 (2014).

    Article  CAS  Google Scholar 

  12. Wang, X.-J. Decision making in recurrent neuronal circuits. Neuron 60, 215–234 (2008).

    Article  CAS  Google Scholar 

  13. Wong, K.-F. & Wang, X.-J. A recurrent network mechanism of time integration in perceptual decisions. J. Neurosci. 26, 1314–1328 (2006).

    Article  CAS  Google Scholar 

  14. Wang, X.-J. Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36, 955–968 (2002).

    Article  CAS  Google Scholar 

  15. Katz, L. N., Yates, J. L., Pillow, J. W. & Huk, A. C. Dissociated functional significance of decision-related activity in the primate dorsal stream. Nature 535, 285–288 (2016).

    Article  CAS  Google Scholar 

  16. Chen, A., Gu, Y., Liu, S., DeAngelis, G. C. & Angelaki, D. E. Evidence for a causal contribution of macaque vestibular, but not intraparietal, cortex to heading perception. J. Neurosci. 36, 3789–3798 (2016).

    Article  CAS  Google Scholar 

  17. Erlich, J. C., Brunton, B. W., Duan, C. A., Hanks, T. D. & Brody, C. D. Distinct effects of prefrontal and parietal cortex inactivations on an accumulation of evidence task in the rat. eLife 4, e05457 (2015).

    Article  Google Scholar 

  18. Guo, Z. V. et al. Flow of cortical activity underlying a tactile decision in mice. Neuron 81, 179–194 (2014).

    Article  CAS  Google Scholar 

  19. Licata, A. M. et al. Posterior parietal cortex guides visual decisions in rats. J. Neurosci. 37, 4954–4966 (2017).

    Article  CAS  Google Scholar 

  20. Driscoll, L. N., Pettit, N. L., Minderer, M., Chettih, S. N. & Harvey, C. D. Dynamic reorganization of neuronal activity patterns in parietal cortex. Cell 170, 986–999.e16 (2017).

    Article  CAS  Google Scholar 

  21. Hwang, E. J., Dahlen, J. E., Mukundan, M. & Komiyama, T. History-based action selection bias in posterior parietal cortex. Nat. Commun. 8, 1242 (2017).

    Article  Google Scholar 

  22. Zhang, F., Wang, L.-P., Boyden, E. S. & Deisseroth, K. Channelrhodopsin-2 and optical control of excitable cells. Nat. Methods 3, 785–792 (2006).

    Article  CAS  Google Scholar 

  23. Chao, H.-T. et al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468, 263–269 (2010).

    Article  CAS  Google Scholar 

  24. Ohl, F. W., Scheich, H. & Freeman, W. J. Change in pattern of ongoing cortical activity with auditory category learning. Nature 412, 733–736 (2001).

    Article  CAS  Google Scholar 

  25. Zentall, T. R., Galizio, M. & Critchfield, T. S. Categorization, concept learning, and behavior analysis: an introduction. J. Exp. Anal. Behav. 78, 237–248 (2002).

    Article  Google Scholar 

  26. Ashby, F. G. & Ell, S. W. The neurobiology of human category learning. Trends Cogn. Sci. 5, 204–210 (2001).

    Article  Google Scholar 

  27. Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article  CAS  Google Scholar 

  28. Xu, N. et al. Nonlinear dendritic integration of sensory and motor input during an active sensing task. Nature 492, 247–251 (2012).

    Article  CAS  Google Scholar 

  29. Goard, M. J., Pho, G. N., Woodson, J. & Sur, M. Distinct roles of visual, parietal, and frontal motor cortices in memory-guided sensorimotor decisions. eLife 5, e13764 (2016).

    Article  Google Scholar 

  30. Feierstein, C. E., Quirk, M. C., Uchida, N., Sosulski, D. L. & Mainen, Z. F. Representation of spatial goals in rat orbitofrontal cortex. Neuron 51, 495–507 (2006).

    Article  CAS  Google Scholar 

  31. Hung, C. P., Kreiman, G., Poggio, T. & DiCarlo, J. J. Fast readout of object identity from macaque inferior temporal cortex. Science 310, 863–866 (2005).

    Article  CAS  Google Scholar 

  32. Akrami, A., Kopec, C. D., Diamond, M. E. & Brody, C. D. Posterior parietal cortex represents sensory history and mediates its effects on behaviour. Nature 554, 368–372 (2018).

    Article  CAS  Google Scholar 

  33. Bertelson, P. Serial choice reaction-time as a function of response versus signal-and-response repetition. Nature 206, 217–218 (1965).

    Article  CAS  Google Scholar 

  34. Gold, J. I., Law, C.-T., Connolly, P. & Bennur, S. The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. J. Neurophysiol. 100, 2653–2668 (2008).

    Article  Google Scholar 

  35. Busse, L. et al. The detection of visual contrast in the behaving mouse. J. Neurosci. 31, 11351–11361 (2011).

    Article  CAS  Google Scholar 

  36. Zingg, B. et al. Neural networks of the mouse neocortex. Cell 156, 1096–1111 (2014).

    Article  CAS  Google Scholar 

  37. Andersen, R. A. & Buneo, C. A. Intentional maps in posterior parietal cortex. Annu. Rev. Neurosci. 25, 189–220 (2002).

    Article  CAS  Google Scholar 

  38. Bisley, J. W. & Goldberg, M. E. Attention, intention, and priority in the parietal lobe. Annu. Rev. Neurosci. 33, 1–21 (2010).

    Article  CAS  Google Scholar 

  39. Todd, J. J. & Marois, R. Capacity limit of visual short-term memory in human posterior parietal cortex. Nature 428, 751–754 (2004).

    Article  CAS  Google Scholar 

  40. Pesaran, B., Pezaris, J. S., Sahani, M., Mitra, P. P. & Andersen, R. A. Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat. Neurosci. 5, 805–811 (2002).

    Article  CAS  Google Scholar 

  41. Buschman, T. J. & Miller, E. K. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315, 1860–1862 (2007).

    Article  CAS  Google Scholar 

  42. Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P. & Shulman, G. L. Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat. Neurosci. 3, 292–297 (2000).

    Article  CAS  Google Scholar 

  43. Behrmann, M., Geng, J. J. & Shomstein, S. Parietal cortex and attention. Curr. Opin. Neurobiol. 14, 212–217 (2004).

    Article  CAS  Google Scholar 

  44. Rosch, E. Principles of categorization. in Cognition and Categorization (eds. Rosch, E. & Lloyd, B.B.) 28–49 (L. Erlbaum Associates, 1978).

  45. Znamenskiy, P. & Zador, A. M. Corticostriatal neurons in auditory cortex drive decisions during auditory discrimination. Nature 497, 482–485 (2013).

    Article  CAS  Google Scholar 

  46. Guo, Z. V. et al. Procedures for behavioral experiments in head-fixed mice. PLoS One 9, e88678 (2014).

    Article  Google Scholar 

  47. Wichmann, F. A. & Hill, N. J. The psychometric function: I. Fitting, sampling, and goodness of fit. Percept. Psychophys. 63, 1293–1313 (2001).

    Article  CAS  Google Scholar 

  48. Pologruto, T. A., Sabatini, B. L. & Svoboda, K. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. OnLine 2, 13 (2003).

    Article  Google Scholar 

  49. Guizar-Sicairos, M., Thurman, S. T. & Fienup, J. R. Efficient subpixel image registration algorithms. Opt. Lett. 33, 156–158 (2008).

    Article  Google Scholar 

  50. Green, D. M. & Swets, J. A. Signal Detection Theory and Psychophysics (John Wiley and Sons, 1966).

Download references

Acknowledgements

We thank R. Egnor for advice on auditory behavioral apparatus, A. Kerlin for communication on behavioral control software, N. Andersen for pilot optogenetic experiments, T.T. Zhou for technical support, L. Cui, S. Tang and J. Xiao for helping with behavior training, Y. Xin for discussions on data analysis, ION Gene-editing Core Facility for providing the adeno-associated viruses and M.M. Poo for comments on the manuscript. This work was supported by Key Research Program of Frontier Sciences, CAS (grant No. QYZDB-SSW-SMC045), National Natural Science Foundation of China (grant No. 31571081), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant No. XDB32010000), National Key R&D Program of China (grant Nos. 2017YFA0103900/2017YFA0103901), Shanghai Municipal Science and Technology Major Project (grant No. 2018SHZDZX05) and the Youth Thousand Talents Plan (to N.L.X.). C.A.D. is supported by the Simons Collaboration on the Global Brain Postdoctoral Fellowship and the CPSF-CAS Joint Foundation for Excellent Postdoctoral Fellows.

Author information

Authors and Affiliations

Authors

Contributions

L.Z. and N.L.X. conceived the project and designed the experiments. L.Z. performed all the experiments and data analysis. Y.Z. performed the axon inactivation experiments. L.Z. and C.A.D. conceived and performed the GLMM analysis. J.D. collected part of the behavioral data. L.Z., J.P. and N.L.X. developed the hardware and software for the behavior and imaging system. L.Z. and N.L.X. wrote the manuscript with contributions from C.A.D and Y.Z.

Corresponding author

Correspondence to Ning-long Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information Nature Neuroscience thanks Jonathan Whitlock and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Figs. 1–17 and Supplementary Table 1.

Reporting Summary

41593_2019_383_MOESM3_ESM.mov

Supplementary Video 1 Example of behavioral performance from a session with optogenetic silencing of PPC. The mouse was trained to report categorical decisions on low- or high-frequency tones by licking the left or right lickport. During a session of photoinhibition (optogenetic silencing of PPC), photoinhibition trials (blue light stimulation of bilateral PPC plus LED mask light, ‘optostim + LED’, trials 3 and 5 in the video) were randomly interleaved with control trials (‘LED only’, trials 1, 2 and 4 in the video).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, L., Zhang, Y., Duan, C.A. et al. Causal contributions of parietal cortex to perceptual decision-making during stimulus categorization. Nat Neurosci 22, 963–973 (2019). https://doi.org/10.1038/s41593-019-0383-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-019-0383-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing