Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

MEMORY AND AGING

Reversing working memory decline in the elderly

Noninvasive delivery of alternating electrical currents to temporal and prefrontal brain regions improves working memory and reverses age-related changes in brain dynamics in the elderly, report Reinhart and Nguyen in this issue of Nature Neuroscience. They also report a similar effect in young adults with poor working memory performance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Causal role of frontotemporal dynamics in working memory.

References

  1. Vaupel, J. W. Nature 464, 536–542 (2010).

    Article  CAS  Google Scholar 

  2. Christensen, K., Doblhammer, G., Rau, R. & Vaupel, J. W. Lancet 374, 1196–1208 (2009).

    Article  Google Scholar 

  3. Taylor, M.A. ‘Fountain of youth’ pill? Sure, if you’re a mouse. Kaiser Health News https://khn.org/news/a-fountain-of-youth-pill-sure-if-youre-a-mouse (2019).

  4. Reinhart, R. M. G. & Nguyen, J. A. Nat. Neurosci. https://doi.org/10.1038/s41593-019-0371-x (2019).

    Article  PubMed  Google Scholar 

  5. Park, D. C. et al. Psychol. Aging 17, 299–320 (2002).

    Article  Google Scholar 

  6. Quentin, R. et al. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.2764-18.2019 (2019).

  7. Axmacher, N. et al. Proc. Natl Acad. Sci. USA 107, 3228–3233 (2010).

    Article  CAS  Google Scholar 

  8. Lara, A. H. & Wallis, J. D. Nat. Neurosci. 17, 876–883 (2014).

    Article  CAS  Google Scholar 

  9. Fröhlich, F. Chapter 3 - Experiments and models of cortical oscillations as a target for noninvasive brain stimulation. in Progress in Brain Research (ed. Bestmann, S.) 222, 41–73 (Elsevier, 2015).

  10. Asamoah, B., Khatoun, A. & Mc Laughlin, M. Nat. Commun. 10, 266 (2019).

    Article  Google Scholar 

  11. Raghavachari, S. et al. J. Neurosci. 21, 3175–3183 (2001).

    Article  CAS  Google Scholar 

  12. Zheng, X., Swanson, H. L. & Marcoulides, G. A. J. Exp. Child Psychol. 110, 481–498 (2011).

    Article  Google Scholar 

  13. Jaeggi, S. M., Buschkuehl, M., Jonides, J. & Perrig, W. J. Proc. Natl. Acad. Sci. USA 105, 6829–6833 (2008).

    Article  CAS  Google Scholar 

  14. Lafon, B. et al. Nat. Commun. 8, 1199 (2017).

    Article  Google Scholar 

  15. Buch, E. R. et al. Clin. Neurophysiol. 128, 589–603 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo G. Cohen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quentin, R., Cohen, L.G. Reversing working memory decline in the elderly. Nat Neurosci 22, 686–688 (2019). https://doi.org/10.1038/s41593-019-0386-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-019-0386-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing