Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functions of adult-born neurons in hippocampal memory interference and indexing

Abstract

The dentate gyrus–CA3 circuit of the hippocampus is continuously modified by the integration of adult-born dentate granule cells (abDGCs). All abDGCs undergo a prolonged period of maturation, during which they exhibit heightened synaptic plasticity and refinement of electrophysiological properties and connectivity. Consistent with theoretical models and the known functions of the dentate gyrus–CA3 circuit, acute or chronic manipulations of abDGCs support a role for abDGCs in the regulation of memory interference. In this Review, we integrate insights from studies that examine the maturation of abDGCs and their integration into the circuit with network mechanisms that support memory discrimination, consolidation and clearance. We propose that adult hippocampal neurogenesis enables the generation of a library of experiences, each registered in mature abDGC physiology and connectivity. Mature abDGCs recruit inhibitory microcircuits to support pattern separation and memory indexing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development, experience and maturation of adult-born DGCs.
Fig. 2: Adult-born DGCs reduce memory interference and promote consolidation through inhibitory microcircuits.
Fig. 3: Proposed role of adult-born DGCs in indexing and pattern separation.

Similar content being viewed by others

References

  1. Marr, D. Philos. Trans. R. Soc. Lond. B Biol Sci. 262, 23–81 (1971).

    CAS  PubMed  Google Scholar 

  2. Treves, A. & Rolls, E. T. Hippocampus 2, 189–199 (1992).

    CAS  PubMed  Google Scholar 

  3. O’Reilly, R. C. & McClelland, J. L. Hippocampus 4, 661–682 (1994).

    PubMed  Google Scholar 

  4. Berron, D. et al. J. Neurosci. 36, 7569–7579 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bakker, A., Kirwan, C. B., Miller, M. & Stark, C. E. Science 319, 1640–1642 (2008). Using an incidental encoding task, the authors showed that the DG–CA3 circuit in humans is preferentially recruited under conditions of high mnemonic interference.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Leutgeb, J. K., Leutgeb, S., Moser, M. B. & Moser, E. I. Science 315, 961–966 (2007).

    CAS  PubMed  Google Scholar 

  7. Neunuebel, J. P. & Knierim, J. J. Neuron 81, 416–427 (2014). Recordings from EC, DG and CA3 demonstrated input–output transformation functions in DG and retrieval dynamics in CA3 consistent with their proposed functions in pattern separation and completion.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. van Dijk, M. T. & Fenton, A. A. Neuron 98, 832–845.e5 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Sakon, J. J. & Suzuki, W. A. Proc. Natl. Acad. Sci. USA 116, 9634–9643 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. McClelland, J. L., McNaughton, B. L. & O’Reilly, R. C. Psychol. Rev. 102, 419–457 (1995).

    PubMed  Google Scholar 

  11. Teyler, T. J. & DiScenna, P. Behav. Neurosci. 100, 147–154 (1986).

    CAS  PubMed  Google Scholar 

  12. Tanaka, K. Z. et al. Science 361, 392–397 (2018). Activity of c-Fos-expressing engram-bearing cells in CA1 is distinct from that of place cells and reliably predicts contextual identity.

    CAS  PubMed  Google Scholar 

  13. Liu, X. et al. Nature 484, 381–385 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Guo, N. et al. Nat. Med. 24, 438–449 (2018). Engram-bearing DGCs recruit PV + INs to convey feedforward inhibition onto CA3, stabilize the engram and modulate memory interference and consolidation in hippocampal–cortical–basolateral amygdala networks.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kitamura, T. et al. Science 356, 73–78 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Altman, J. & Das, G. D. J. Comp. Neurol. 124, 319–335 (1965).

    CAS  PubMed  Google Scholar 

  17. Besnard, A. & Sahay, A. Neuropsychopharmacology 41, 24–44 (2016).

    PubMed  Google Scholar 

  18. McAvoy, K. M. & Sahay, A. Neurotherapeutics 14, 630–645 (2017).

    PubMed  PubMed Central  Google Scholar 

  19. Espósito, M. S. et al. J. Neurosci. 25, 10074–10086 (2005).

    PubMed  PubMed Central  Google Scholar 

  20. Ge, S. et al. Nature 439, 589–593 (2006).

    CAS  PubMed  Google Scholar 

  21. Overstreet-Wadiche, L. S., Bensen, A. L. & Westbrook, G. L. J. Neurosci. 26, 2326–2334 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Jagasia, R. et al. J. Neurosci. 29, 7966–7977 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chancey, J. H. et al. J. Neurosci. 33, 6614–6622 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Marín-Burgin, A., Mongiat, L. A., Pardi, M. B. & Schinder, A. F. Science 335, 1238–1242 (2012). Ex vivo study showing that immature abDGCs, unlike mature DGCs, respond to a wide range of inputs due to delayed recruitment of feedforward inhibition in the EC–DG circuit.

    PubMed  PubMed Central  Google Scholar 

  25. Dieni, C. V. et al. Nat. Commun. 7, 11313 (2016). Ex vivo study showing that sparse functional EC connectivity and excitatory drive onto immature abDGCs limits their recruitment in response to a broad range of cortical inputs.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao, C., Teng, E. M., Summers, R. G. Jr., Ming, G. L. & Gage, F. H. J. Neurosci. 26, 3–11 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Toni, N. et al. Nat. Neurosci. 11, 901–907 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Toni, N. et al. Nat. Neurosci. 10, 727–734 (2007). Electron microscopy analysis of EC–abDGC synapse formation.

    CAS  PubMed  Google Scholar 

  29. Sun, G. J. et al. J. Neurosci. 33, 11400–11411 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gonçalves, J. T. et al. Nat. Neurosci. 19, 788–791 (2016).

    PubMed  PubMed Central  Google Scholar 

  31. Lemaire, V. et al. J. Neurosci. 32, 3101–3108 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tashiro, A., Sandler, V. M., Toni, N., Zhao, C. & Gage, F. H. Nature 442, 929–933 (2006).

    CAS  PubMed  Google Scholar 

  33. Adlaf, E. W. et al. eLife 6, e19886 (2017). Genetically enhancing or ablating abDGCs decreases or enhances excitatory synaptic inputs onto mature DGCs by altering synaptic competition dynamics.

    PubMed  PubMed Central  Google Scholar 

  34. Krzisch, M. et al. Cereb. Cortex 27, 4048–4059 (2016).

    Google Scholar 

  35. McAvoy, K. M. et al. Neuron 91, 1356–1373 (2016). Genetic elimination of dendritic spines in mature DGCs enhances functional integration of abDGCs and promotes context discrimination and population-based coding.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Faulkner, R. L. et al. Proc. Natl. Acad. Sci. USA 105, 14157–14162 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lopez, C. M. et al. Front. Neural Circuits 6, 85 (2012).

    PubMed  PubMed Central  Google Scholar 

  38. Schmidt-Hieber, C., Jonas, P. & Bischofberger, J. Nature 429, 184–187 (2004).

    CAS  PubMed  Google Scholar 

  39. Mongiat, L. A., Espósito, M. S., Lombardi, G. & Schinder, A. F. PLoS One 4, e5320 (2009).

    PubMed  PubMed Central  Google Scholar 

  40. Overstreet Wadiche, L., Bromberg, D. A., Bensen, A. L. & Westbrook, G. L. J. Neurophysiol. 94, 4528–4532 (2005).

    PubMed  Google Scholar 

  41. Li, Y., Aimone, J. B., Xu, X., Callaway, E. M. & Gage, F. H. Proc. Natl. Acad. Sci. USA 109, 4290–4295 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gu, Y. et al. Nat. Neurosci. 15, 1700–1706 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ge, S., Yang, C. H., Hsu, K. S., Ming, G. L. & Song, H. Neuron 54, 559–566 (2007). Immature abDGCs exhibit heightened synaptic plasticity at EC–DG synapses during a sensitive period in their maturation.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Snyder, J. S., Kee, N. & Wojtowicz, J. M. J. Neurophysiol. 85, 2423–2431 (2001).

    CAS  PubMed  Google Scholar 

  45. Sahay, A. et al. Nature 472, 466–470 (2011). First study to demonstrate that genetically enhancing adult hippocampal neurogenesis is sufficient to improve memory processing specifically, decreasing contextual memory interference.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bartos, M., Alle, H. & Vida, I. Neuropharmacology 60, 730–739 (2011).

    CAS  PubMed  Google Scholar 

  47. Overstreet-Wadiche, L. & McBain, C. J. Nat. Rev. Neurosci. 16, 458–468 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Dieni, C. V., Nietz, A. K., Panichi, R., Wadiche, J. I. & Overstreet-Wadiche, L. J. Neurosci. 33, 19131–19142 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, L. et al. eLife 6, e23612 (2017). Ex vivo study showing that immature abDGCs, like mDGCs, exhibit sparse patterns of activity.

    PubMed  PubMed Central  Google Scholar 

  50. Scharfman, H. E. & Myers, C. E. Front. Neural Circuits 6, 106 (2013).

    PubMed  PubMed Central  Google Scholar 

  51. Stone, S. S. et al. Hippocampus 21, 1348–1362 (2011).

    PubMed  Google Scholar 

  52. Tronel, S., Lemaire, V., Charrier, V., Montaron, M. F. & Abrous, D. N. Brain Struct. Funct. 220, 645–661 (2015).

    PubMed  Google Scholar 

  53. Danielson, N. B. et al. Neuron 90, 101–112 (2016). Immature abDGCs are more active and more broadly tuned than mature DGCs in vivo, and their activity permits decoding of contextual information.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Danielson, N. B. et al. Neuron 93, 552–559.e4 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. GoodSmith, D. et al. Neuron 93, 677–690.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Senzai, Y. & Buzsáki, G. Neuron 93, 691–704.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Neunuebel, J. P. & Knierim, J. J. J. Neurosci. 32, 3848–3858 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Deshpande, A. et al. Proc. Natl. Acad. Sci. USA 110, E1152–E1161 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Vivar, C. et al. Nat. Commun. 3, 1107 (2012).

    PubMed  Google Scholar 

  60. Li, Y. et al. Proc. Natl. Acad. Sci. USA 110, 9106–9111 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Woods, N. I. et al. J. Neurosci. 38, 5843–5853 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Luna, V. M. et al. Science 364, 578–583 (2019). Adult-born DGCs establish monosynaptic excitatory contacts with mature DGCs.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bergami, M. et al. Neuron 85, 710–717 (2015). Experience sculpts presynaptic connectome of abDGCs during a sensitive period.

    CAS  PubMed  Google Scholar 

  64. Vivar, C., Peterson, B. D. & van Praag, H. Neuroimage 131, 29–41 (2016).

    PubMed  Google Scholar 

  65. Acsády, L., Kamondi, A., Sík, A., Freund, T. & Buzsáki, G. J. Neurosci. 18, 3386–3403 (1998).

    PubMed  PubMed Central  Google Scholar 

  66. Pelkey, K. A. et al. Physiol. Rev. 97, 1619–1747 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ruediger, S. et al. Nature 473, 514–518 (2011).

    CAS  PubMed  Google Scholar 

  68. Restivo, L., Niibori, Y., Mercaldo, V., Josselyn, S. A. & Frankland, P. W. J. Neurosci. 35, 10600–10612 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Aimone, J. B., Deng, W. & Gage, F. H. Neuron 70, 589–596 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Temprana, S. G. et al. Neuron 85, 116–130 (2015).

    CAS  PubMed  Google Scholar 

  71. McNaughton, B. & Morris, R. Trends Neurosci. 10, 408–415 (1987).

    Google Scholar 

  72. Gilbert, P. E., Kesner, R. P. & Lee, I. Hippocampus 11, 626–636 (2001).

    CAS  PubMed  Google Scholar 

  73. McHugh, T. J. et al. Science 317, 94–99 (2007).

    CAS  PubMed  Google Scholar 

  74. Wiskott, L., Rasch, M. J. & Kempermann, G. Hippocampus 16, 329–343 (2006).

    PubMed  Google Scholar 

  75. Clelland, C. D. et al. Science 325, 210–213 (2009). The first study to implicate abDGCs in resolution of memory interference in a behavioral task.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Pan, Y. W., Chan, G. C., Kuo, C. T., Storm, D. R. & Xia, Z. J. Neurosci. 32, 6444–6455 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang, J. et al. J. Neurosci. 34, 5184–5199 (2014).

    PubMed  PubMed Central  Google Scholar 

  78. Zhuo, J. M. et al. eLife 5, e22429 (2016).

    PubMed  PubMed Central  Google Scholar 

  79. Wojtowicz, J. M., Askew, M. L. & Winocur, G. Eur. J. Neurosci. 27, 1494–1502 (2008).

    PubMed  Google Scholar 

  80. Burghardt, N. S., Park, E. H., Hen, R. & Fenton, A. A. Hippocampus 22, 1795–1808 (2012).

    PubMed  PubMed Central  Google Scholar 

  81. Garthe, A., Behr, J. & Kempermann, G. PLoS One 4, e5464 (2009).

    PubMed  PubMed Central  Google Scholar 

  82. Swan, A. A. et al. Hippocampus 24, 1581–1591 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. Tronel, S. et al. Hippocampus 22, 292–298 (2012).

    PubMed  Google Scholar 

  84. Niibori, Y. et al. Nat. Commun. 3, 1253 (2012).

    PubMed  Google Scholar 

  85. Nakashiba, T. et al. Cell 149, 188–201 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kheirbek, M. A., Tannenholz, L. & Hen, R. J. Neurosci. 32, 8696–8702 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Huckleberry, K. A. et al. Neuropsychopharmacology 43, 2487–2496 (2018).

    PubMed  PubMed Central  Google Scholar 

  88. Deng, W., Saxe, M. D., Gallina, I. S. & Gage, F. H. J. Neurosci. 29, 13532–13542 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Arruda-Carvalho, M., Sakaguchi, M., Akers, K. G., Josselyn, S. A. & Frankland, P. W. J. Neurosci. 31, 15113–15127 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Snyder, J. S. et al. J. Neurosci. 29, 14484–14495 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Park, S. et al. Neuropsychopharmacology 41, 2987–2993 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lacagnina, A. F. et al. Nat. Neurosci. 22, 753–761 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Snyder, J. S., Hong, N. S., McDonald, R. J. & Wojtowicz, J. M. Neuroscience 130, 843–852 (2005).

    CAS  PubMed  Google Scholar 

  94. Wang, W. et al. J. Neurosci. 34, 2130–2147 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kitamura, T. et al. Cell 139, 814–827 (2009).

    CAS  PubMed  Google Scholar 

  96. Akers, K. G. et al. Science 344, 598–602 (2014).

    CAS  PubMed  Google Scholar 

  97. Epp, J. R., Silva Mera, R., Köhler, S., Josselyn, S. A. & Frankland, P. W. Nat. Commun. 7, 10838 (2016). Post-training ablation of abDGCs decreases forgetting of previously learned spatial information.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Gao, A. et al. J. Neurosci. 38, 3190–3198 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Leal, S. L. & Yassa, M. A. Nat. Neurosci. 21, 163–173 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Knierim, J. J. & Neunuebel, J. P. Neurobiol. Learn. Mem. 129, 38–49 (2016).

    CAS  PubMed  Google Scholar 

  101. Deng, W., Mayford, M. & Gage, F. H. eLife 2, e00312 (2013).

    PubMed  PubMed Central  Google Scholar 

  102. McClelland, J. L. & Goddard, N. H. Hippocampus 6, 654–665 (1996).

    CAS  PubMed  Google Scholar 

  103. Barak, O., Rigotti, M. & Fusi, S. J. Neurosci. 33, 3844–3856 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Chavlis, S., Petrantonakis, P. C. & Poirazi, P. Hippocampus 27, 89–110 (2017).

    PubMed  Google Scholar 

  105. Cayco-Gajic, N. A. & Silver, R. A. Neuron 101, 584–602 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Jung, M. W. & McNaughton, B. L. Hippocampus 3, 165–182 (1993).

    CAS  PubMed  Google Scholar 

  107. Chawla, M. K. et al. Hippocampus 15, 579–586 (2005).

    CAS  PubMed  Google Scholar 

  108. Engin, E. et al. J. Neurosci. 35, 13698–13712 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Espinoza, C., Guzman, S. J., Zhang, X. & Jonas, P. Nat. Commun. 9, 4605 (2018). Simultaneous octuple recordings in DG ex vivo demonstrate that lateral inhibition predominates over feedback inhibition and is primarily mediated by PV + INs.

    PubMed  PubMed Central  Google Scholar 

  110. de Almeida, L., Idiart, M. & Lisman, J. E. J. Neurosci. 29, 7504–7512 (2009).

    PubMed  PubMed Central  Google Scholar 

  111. Jung, M. W., Wiener, S. I. & McNaughton, B. L. J. Neurosci. 14, 7347–7356 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Rangel, L. M. et al. Nat. Commun. 5, 3181 (2014).

    CAS  PubMed  Google Scholar 

  113. Freund, T. F. & Buzsáki, G. Hippocampus 6, 347–470 (1996).

    CAS  PubMed  Google Scholar 

  114. Szabo, G. G. et al. Cell Reports 20, 1262–1268 (2017).

    CAS  PubMed  Google Scholar 

  115. Jinde, S. et al. Neuron 76, 1189–1200 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Lacefield, C. O., Itskov, V., Reardon, T., Hen, R. & Gordon, J. A. Hippocampus 22, 106–116 (2010).

    PubMed  PubMed Central  Google Scholar 

  117. Bartos, M., Vida, I. & Jonas, P. Nat. Rev. Neurosci. 8, 45–56 (2007).

    CAS  PubMed  Google Scholar 

  118. Singer, B. H. et al. Proc. Natl. Acad. Sci. USA 108, 5437–5442 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Ikrar, T. et al. Front. Neural Circuits 7, 204 (2013).

    PubMed  PubMed Central  Google Scholar 

  120. Park, E. H., Burghardt, N. S., Dvorak, D., Hen, R. & Fenton, A. A. J. Neurosci. 35, 11656–11666 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Ewell, L. A. & Jones, M. V. J. Neurosci. 30, 12597–12607 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Liu, Y. C., Cheng, J. K. & Lien, C. C. J. Neurosci. 34, 1344–1357 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Heigele, S., Sultan, S., Toni, N. & Bischofberger, J. Nat. Neurosci. 19, 263–270 (2016).

    CAS  PubMed  Google Scholar 

  124. Ferrante, M., Migliore, M. & Ascoli, G. A. Proc. Natl. Acad. Sci. USA 106, 18004–18009 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Nitz, D. & McNaughton, B. J. Neurophysiol. 91, 863–872 (2004).

    PubMed  Google Scholar 

  126. Stefanelli, T., Bertollini, C., Lüscher, C., Muller, D. & Mendez, P. Neuron 89, 1074–1085 (2016).

    CAS  PubMed  Google Scholar 

  127. Drew, L. J. et al. Hippocampus 26, 763–778 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Chamberland, S., Evstratova, A. & Tóth, K. J. Neurosci. 37, 4913–4927 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Neubrandt, M., Oláh, V. J., Brunner, J. & Szabadics, J. Hippocampus 27, 1034–1039 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Gan, J., Weng, S. M., Pernia-Andrade, A. J., Csicsvari, J. & Jonas, P. Neuron 93, 308–314 (2016).

    PubMed  Google Scholar 

  131. Sun, Q. et al. Neuron 95, 656–672.e3 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Lee, H., Wang, C., Deshmukh, S. S. & Knierim, J. J. Neuron 87, 1093–1105 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Denny, C. A. et al. Neuron 83, 189–201 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Bergami, M. & Berninger, B. Dev. Neurobiol. 72, 1016–1031 (2012).

    PubMed  Google Scholar 

  135. Sun, Y. et al. Neuron 92, 160–173 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Sahay, A., Wilson, D. A. & Hen, R. Neuron 70, 582–588 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. McAvoy, K., Besnard, A. & Sahay, A. Front. Syst. Neurosci. 9, 120 (2015).

    PubMed  PubMed Central  Google Scholar 

  138. Tanaka, K. Z. et al. Neuron 84, 347–354 (2014).

    CAS  PubMed  Google Scholar 

  139. Wang, C. et al. Science 362, 945–949 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Myers, C. E. & Scharfman, H. E. Hippocampus 19, 321–337 (2008).

    Google Scholar 

  141. Spalding, K. L. et al. Cell 153, 1219–1227 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Eriksson, P. S. et al. Nat. Med. 4, 1313–1317 (1998).

    CAS  PubMed  Google Scholar 

  143. Boldrini, M. et al. Cell Stem Cell 22, 589–599.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Moreno-Jiménez, E. P. et al. Nat. Med. 25, 554–560 (2019). Analysis of postmortem human tissue documenting DGCs across different stages of maturation in adulthood, aging and Alzheimer’s disease.

    PubMed  Google Scholar 

  145. Knoth, R. et al. PLoS One 5, e8809 (2010).

    PubMed  PubMed Central  Google Scholar 

  146. Gould, E. et al. Proc. Natl. Acad. Sci. USA 96, 5263–5267 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Sorrells, S. F. et al. Nature 555, 377–381 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Kohler, S. J., Williams, N. I., Stanton, G. B., Cameron, J. L. & Greenough, W. T. Proc. Natl. Acad. Sci. USA 108, 10326–10331 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Strange, B. A., Witter, M. P., Lein, E. S. & Moser, E. I. Nat. Rev. Neurosci. 15, 655–669 (2014).

    CAS  PubMed  Google Scholar 

  150. Anacker, C. & Hen, R. Nat. Rev. Neurosci. 18, 335–346 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of Sahay lab for discussions and L.M.S. Sahay for help with manuscript editing. A.S. acknowledges support from NIH-R01MH104175, NIH–R01AG048908, NIH-1R01MH111729, the James and Audrey Foster MGH Research Scholar Award, the Ellison Medical Foundation New Scholar in Aging, the Whitehall Foundation, an Inscopix Decode award, a NARSAD Independent Investigator Award, Ellison Family Philanthropic support, the Blue Guitar Fund, a Harvard Neurodiscovery Center–MADRC Center Pilot Grant award, Alzheimer’s Association Research Grant, a Harvard Stem Cell Institute Development grant, and an HSCI seed grant. The authors apologize to scientists whose works could not be cited due to limits on the number of references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar Sahay.

Ethics declarations

Competing interests

The authors declare no competing financial or non-financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, S.M., Sahay, A. Functions of adult-born neurons in hippocampal memory interference and indexing. Nat Neurosci 22, 1565–1575 (2019). https://doi.org/10.1038/s41593-019-0484-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-019-0484-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing