Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Profiling gene expression in the human dentate gyrus granule cell layer reveals insights into schizophrenia and its genetic risk

Abstract

Specific cell populations may have unique contributions to schizophrenia but may be missed in studies of homogenate tissue. Here laser capture microdissection followed by RNA sequencing (LCM-seq) was used to transcriptomically profile the granule cell layer of the dentate gyrus (DG-GCL) in human hippocampus and contrast these data to those obtained from bulk hippocampal homogenate. We identified widespread cell-type-enriched aging and genetic effects in the DG-GCL that were either absent or directionally discordant in bulk hippocampus data. Of the ~9 million expression quantitative trait loci identified in the DG-GCL, 15% were not detected in bulk hippocampus, including 15 schizophrenia risk variants. We created transcriptome-wide association study genetic weights from the DG-GCL, which identified many schizophrenia-associated genetic signals not found in transcriptome-wide association studies from bulk hippocampus, including GRM3 and CACNA1C. These results highlight the improved biological resolution provided by targeted sampling strategies like LCM and complement homogenate and single-nucleus approaches in human brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LCM-seq confirms expected strong cell type enrichment in DG-GCL.
Fig. 2: Cell-type-specific changes in gene expression associated with aging.
Fig. 3: Extensive DG-GCL-enriched eQTLs.
Fig. 4: Schizophrenia risk eQTLs reveal feature associations in DG-GCL not seen in homogenate hippocampus.

Similar content being viewed by others

Data availability

Raw sequencing reads are available through SRA accession code SRP241159 and BioProject accession code PRJNA600414. Processed data are available at our website: http://research.libd.org/dg_hippo_paper/data.html.

Code availability

Code is available at https://github.com/lieberinstitute/dg_hippo_paper, archived via Zenodo at https://doi.org/10.5281/zenodo.3605718.

References

  1. BrainSeq Consortium. BrainSeq: neurogenomics to drive novel target discovery for neuropsychiatric disorders. Neuron 88, 1078–1083 (2015).

    Google Scholar 

  2. Fromer, M. et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat. Neurosci. 19, 1442–1453 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. PsychENCODE Consortiumet al. The PsychENCODE project. Nat. Neurosci. 18, 1707–1712 (2015).

    Google Scholar 

  4. GTEx Consortium et al. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

    PubMed Central  Google Scholar 

  5. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

    PubMed Central  Google Scholar 

  6. Jaffe, A. E. et al. Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis. Nat. Neurosci. 21, 1117–1125 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Collado-Torres, L. et al. Regional heterogeneity in gene expression, regulation, and coherence in the frontal cortex and hippocampus across development and schizophrenia. Neuron 103, 203–216 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80 (2018).

    CAS  PubMed  Google Scholar 

  9. Lake, B. B. et al. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 352, 1586–1590 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhu, Y. et al. Spatiotemporal transcriptomic divergence across human and macaque brain development. Science 362, eaat8077 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, M. et al. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362, eaat7615 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bakken, T. E. et al. A comprehensive transcriptional map of primate brain development. Nature 535, 367–375 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Miller, J. A. et al. Transcriptional landscape of the prenatal human brain. Nature 508, 199–206 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Arion, D. et al. Transcriptome alterations in prefrontal pyramidal cells distinguish schizophrenia from bipolar and major depressive disorders. Biol. Psychiatry 82, 594–600 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kempermann, G., Song, H. & Gage, F. H. Neurogenesis in the adult hippocampus. Cold Spring Harb. Perspect. Biol. 7, a018812 (2015).

    PubMed  PubMed Central  Google Scholar 

  17. Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14, 955–958 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Leutgeb, J. K., Leutgeb, S., Moser, M.-B. & Moser, E. I. Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315, 961–966 (2007).

    CAS  PubMed  Google Scholar 

  19. Neunuebel, J. P. & Knierim, J. J. CA3 retrieves coherent representations from degraded input: direct evidence for CA3 pattern completion and dentate gyrus pattern separation. Neuron 81, 416–427 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hagihara, H., Takao, K., Walton, N. M., Matsumoto, M. & Miyakawa, T. Immature dentate gyrus: an endophenotype of neuropsychiatric disorders. Neural Plast. 2013, 318596 (2013).

    PubMed  PubMed Central  Google Scholar 

  21. Mertens, J. et al. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature 527, 95–99 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakahara, S., Matsumoto, M. & van Erp, T. G. M. Hippocampal subregion abnormalities in schizophrenia: a systematic review of structural and physiological imaging studies. Neuropsychopharmacol. Rep. 38, 156–166 (2018).

    PubMed  PubMed Central  Google Scholar 

  23. Elvsåshagen, T. et al. Dentate gyrus–cornu ammonis (CA) 4 volume is decreased and associated with depressive episodes and lipid peroxidation in bipolar II disorder: longitudinal and cross-sectional analyses. Bipolar Disord 18, 657–668 (2016).

    PubMed  Google Scholar 

  24. Hibar, D. P. et al. Novel genetic loci associated with hippocampal volume. Nat. Commun. 8, 13624 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rasetti, R. et al. Altered hippocampal–parahippocampal function during stimulus encoding: a potential indicator of genetic liability for schizophrenia. JAMA Psychiatry 71, 236–247 (2014).

    PubMed  Google Scholar 

  26. Weinberger, D. R., Berman, K. F., Suddath, R. & Torrey, E. F. Evidence of dysfunction of a prefrontal–limbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. Am. J. Psychiatry 149, 890–897 (1992).

    CAS  PubMed  Google Scholar 

  27. Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).

    PubMed  PubMed Central  Google Scholar 

  28. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gandal, M. J. et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science 359, 693–697 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Eisch, A. J. & Petrik, D. Depression and hippocampal neurogenesis: a road to remission? Science 338, 72–75 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Overall, R. W., Paszkowski-Rogacz, M. & Kempermann, G. The mammalian adult neurogenesis gene ontology (MANGO) provides a structural framework for published information on genes regulating adult hippocampal neurogenesis. PLoS One 7, e48527 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pollen, A. A. et al. Molecular identity of human outer radial glia during cortical development. Cell 163, 55–67 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Shapiro, E., Biezuner, T. & Linnarsson, S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat. Rev. Genet. 14, 618–630 (2013).

    CAS  PubMed  Google Scholar 

  34. Darmanis, S. et al. A survey of human brain transcriptome diversity at the single cell level. Proc. Natl Acad. Sci. USA 112, 7285–7290 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu, X. et al. Species and cell-type properties of classically defined human and rodent neurons and glia. eLife 7, e37551 (2018).

    PubMed  PubMed Central  Google Scholar 

  36. Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 362, eaat8127 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sekar, A. et al. Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, M. et al. A human-specific AS3MT isoform and BORCS7 are molecular risk factors in the 10q24.32 schizophrenia-associated locus. Nat. Med. 22, 649–656 (2016).

    CAS  PubMed  Google Scholar 

  39. Ma, L. et al. Schizophrenia risk variants influence multiple classes of transcripts of sorting nexin 19 (SNX19). Mol. Psychiatry https://doi.org/10.1038/s41380-018-0293-0 (2019).

  40. Wang, D. et al. Comprehensive functional genomic resource and integrative model for the human brain. Science 362, eaat8464 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dong, X. et al. Enhancers active in dopamine neurons are a primary link between genetic variation and neuropsychiatric disease. Nat. Neurosci. 21, 1482–1492 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Pietersen, C. Y. et al. Molecular profiles of parvalbumin-immunoreactive neurons in the superior temporal cortex in schizophrenia. J. Neurogenet. 28, 70–85 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Datta, D., Arion, D., Corradi, J. P. & Lewis, D. A. Altered expression of CDC42 signaling pathway components in cortical layer 3 pyramidal cells in schizophrenia. Biol. Psychiatry 78, 775–785 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pietersen, C. Y. et al. Molecular profiles of pyramidal neurons in the superior temporal cortex in schizophrenia. J. Neurogenet. 28, 53–69 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Egan, M. F. et al. Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc. Natl Acad. Sci. USA 101, 12604–12609 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Green, E. K. et al. The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Mol. Psychiatry 15, 1016–1022 (2010).

    CAS  PubMed  Google Scholar 

  47. Wagner, M. J., Kim, T. H., Savall, J., Schnitzer, M. J. & Luo, L. Cerebellar granule cells encode the expectation of reward. Nature 544, 96–100 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Huckins, L. M. et al. Gene expression imputation across multiple brain regions provides insights into schizophrenia risk. Nat. Genet. 51, 659–674 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bigos, K. L. et al. Genetic variation in CACNA1C affects brain circuitries related to mental illness. Arch. Gen. Psychiatry 67, 939–945 (2010).

    PubMed  PubMed Central  Google Scholar 

  50. Eckart, N. et al. Functional characterization of schizophrenia-associated variation in CACNA1C. PLoS One 11, e0157086 (2016).

    PubMed  PubMed Central  Google Scholar 

  51. Deep-Soboslay, A. et al. Reliability of psychiatric diagnosis in postmortem research. Biol. Psychiatry 57, 96–101 (2005).

    PubMed  Google Scholar 

  52. Lipska, B. K. et al. Critical factors in gene expression in postmortem human brain: focus on studies in schizophrenia. Biol. Psychiatry 60, 650–658 (2006).

    CAS  PubMed  Google Scholar 

  53. Ziegenhain, C. et al. Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 65, 631–643 (2017).

    CAS  PubMed  Google Scholar 

  54. Babraham Bioinformatics. FastQC https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2016).

  55. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    CAS  PubMed  Google Scholar 

  58. Feng, Y.-Y., et al. RegTools: integrated analysis of genomic and transcriptomic data for discovery of splicing variants in cancer. Preprint at bioRxiv https://doi.org/10.1101/436634 (2018).

  59. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    PubMed  PubMed Central  Google Scholar 

  60. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA-seq experiments. Bioinformatics 28, 2184–2185 (2012).

    CAS  PubMed  Google Scholar 

  62. Kent, W. J., Zweig, A. S., Barber, G., Hinrichs, A. S. & Karolchik, D. BigWig and BigBed: enabling browsing of large distributed datasets. Bioinformatics 26, 2204–2207 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Delaneau, O., Coulonges, C. & Zagury, J.-F. Shape-IT: new rapid and accurate algorithm for haplotype inference. BMC Bioinformatics 9, 540 (2008).

    PubMed  PubMed Central  Google Scholar 

  64. Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of genomes. G3 1, 457–470 (2011).

    PubMed  PubMed Central  Google Scholar 

  65. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

    PubMed  PubMed Central  Google Scholar 

  66. Hu, P. et al. Dissecting cell-type composition and activity-dependent transcriptional state in mammalian brains by massively parallel single-nucleus RNA-seq. Mol. Cell 68, 1006–1015 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Habib, N. et al. Div-Seq: single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science 353, 925–928 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lacar, B. et al. Nuclear RNA-seq of single neurons reveals molecular signatures of activation. Nat. Commun. 7, 11022 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Houseman, E. A. et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13, 86 (2012).

    PubMed  PubMed Central  Google Scholar 

  72. Burke, E. E. et al. Dissecting transcriptomic signatures of neuronal differentiation and maturation using iPSCs. Nat. Commun. 11, 462 (2019).

    Google Scholar 

  73. Jaffe, A. E. et al. qSVA framework for RNA quality correction in differential expression analysis. Proc. Natl Acad. Sci. USA 114, 7130–7135 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Shabalin, A. A. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28, 1353–1358 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Edlund, C. K., Conti, D. V. & Van Den Berg, D. J. raggr http://raggr.usc.edu/ (USC, 2017).

  78. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to our colleagues whose tireless efforts have led to the donation of postmortem tissue to advance these studies: the Office of the Chief Medical Examiner of the District of Columbia, the Office of the Chief Medical Examiner for Northern Virginia, Fairfax, Virginia, and the Office of the Chief Medical Examiner of the State of Maryland, Baltimore, Maryland. We also would like to acknowledge the contributions of L.B. Bigelow for his diagnostic expertise. Finally, we are indebted to the generosity of the families of the decedents, who donated the brain tissue used in these studies.

Author information

Authors and Affiliations

Authors

Contributions

A.E.J. performed data processing and analysis and wrote the manuscript. D.J.H., R.T., K.T., M.N.T., K.R.M., K.M., J.H.S., A.D.S. and J.E.K. performed data collection and generation. T.S., E.E.B. and L.C.T. performed data analysis. L.B. and J.U. performed data generation and analysis. D.R.W. performed data interpretation and contributed to the writing of the manuscript. M.M. and T.M.H. supervised data collection and generation and contributed to writing the manuscript.

Corresponding authors

Correspondence to Andrew E. Jaffe, Mitsuyuki Matsumoto or Thomas M. Hyde.

Ethics declarations

Competing interests

D.J.H., T.S., K.T. and M.M. are employees and stockholders of Astellas Pharma. No other authors have competing interests.

Additional information

Peer review information Nature Neuroscience thanks Nenad Sestan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 LCM of granule cell layer from human postmortem dentate gyrus.

a, Cresyl violet stain before and (B) after -LCM. The difference indicates the captured granule cell layer.

Extended Data Fig. 2 Quality control metrics across the DG-GCL and bulk hippocampus.

a, mitochondrial chromosome mapping rate, b, overall mapping rate, c, exonic mapping (also known as gene assignment rate) and d, RNA Integrity number (RIN) compared between Hippocampus and DG-GCL. Colors indicate two different RiboZero library preparation kits: RiboZero Gold and RiboZero HMR (Human-Mouse-Rat).

Extended Data Fig. 3 Principal component analyses (PCA) of various subsets of data.

a, PCA on 224 subjects with data on both HIPPO (red) and DG-GCL (blue). Grey lines connect data from the same donors. b, PCA on 596 subjects used in age, eQTL and diagnosis analyses. c, PCA on 263 DG-GCL samples (blue circles) with HIPPO samples (red squares) projected into component space. d, PCA on the 333 HIPPO samples (red circles) with 263 DG-GCL samples (blue squares) projected into this component space.

Extended Data Fig. 4 Transcript-level overlap of eQTL signal.

Venn diagram displays how eFeatures are mapped to Gencode-annotated transcripts.

Extended Data Fig. 5 Additional DG-GCL eQTL characterizations.

eQTL directional consistency collections between eQTL statistics calculated in HIPPO and DG-GCL, stratified by a, feature type, and then categories related to the b, number of eSNPs and c, statistical significance. d, Local cis heritability differences comparing DG-GCL and DLPFC (which complements Fig. 3b, c).

Extended Data Fig. 6 DG-GCL eQTLs among schizophrenia risk SNPs.

a, Feature-level support for PGC-associated index SNPs in DG-GCL dataset and (B) the number of significant index SNPs as eQTLs (at FDR < 5%) in three brain datasets.

Extended Data Fig. 7 Cross-dataset TWAS analyses.

a, TWAS Z scores across three datasets are highly correlated. Correlations were highest between DLPFC and HIPPO (ρ = 0.64), followed by DG-GCL and HIPPO (ρ = 0.53) then DG-GCL and DLPFC (ρ = 0.50). Overlap of TWAS gene-level associations across three datasets at b, FDR < 5% significance and c, Bonferroni < 10% significance.

Extended Data Fig. 8 Case-control differential expression analyses.

a, Comparisons of log2 fold change effect sizes across diagnoses in the DG-GCL dataset. Comparison of the schizophrenia b, log2 fold changes and c, T-statistics for DG-GCL versus bulk Hippocampus. Color indicates FDR < 0.05 significance indicated in the legend. d, TWAS versus differential expression for schizophrenia effects among 12256 expressed genes with positive heritability (N = 12256) shows no association.

Extended Data Fig. 9 tSNE plot of hippocampus snRNA-seq data.

Shown is a tSNE plot of snRNA-seq data from 4,127 nuclei from bulk hippocampus, colored by data-driven cell types.

Supplementary information

Reporting Summary

Supplementary Tables

Supplementary Tables 1–10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaffe, A.E., Hoeppner, D.J., Saito, T. et al. Profiling gene expression in the human dentate gyrus granule cell layer reveals insights into schizophrenia and its genetic risk. Nat Neurosci 23, 510–519 (2020). https://doi.org/10.1038/s41593-020-0604-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-020-0604-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing