Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The claustrum coordinates cortical slow-wave activity

Abstract

During sleep and awake rest, the neocortex generates large-scale slow-wave (SW) activity. Here, we report that the claustrum coordinates neocortical SW generation. We established a transgenic mouse line that enabled the genetic interrogation of a subpopulation of claustral glutamatergic neurons. These neurons received inputs from and sent outputs to widespread neocortical areas. The claustral neuronal firings mostly correlated with cortical SW activity. In vitro optogenetic stimulation of the claustrum induced excitatory postsynaptic responses in most neocortical neurons, but elicited action potentials primarily in inhibitory interneurons. In vivo optogenetic stimulation induced a synchronized down-state featuring prolonged silencing of neural activity in all layers of many cortical areas, followed by a down-to-up state transition. In contrast, genetic ablation of claustral neurons attenuated SW activity in the frontal cortex. These results demonstrate a crucial role of claustral neurons in synchronizing inhibitory interneurons across wide cortical areas for the spatiotemporal coordination of SW activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of Cre-expressing neurons in Cla-Cre transgenic mice.
Fig. 2: Genetic neural circuit mapping of claustrum input–output patterning.
Fig. 3: Claustral activation drives a cortical fast-spiking interneuron network.
Fig. 4: Claustral neurons are active during neocortical SW activity.
Fig. 5: Optogenetic stimulation of claustrum induces a neocortical down-state.
Fig. 6: Optogenetic stimulation of the claustrum induces widespread SW activity in the neocortex.
Fig. 7: Claustrum ablation attenuates frontal cortex SW activity.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The custom-written analysis code is available from the corresponding author upon reasonable request.

References

  1. Ellenbogen, J. M., Payne, J. D. & Stickgold, R. The role of sleep in declarative memory consolidation: passive, permissive, active or none? Curr. Opin. Neurobiol. 16, 716–722 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Ji, D. & Wilson, M. A. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat. Neurosci. 10, 100–107 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Rasch, B. & Born, J. About sleep’s role in memory. Physiol. Rev. 93, 681–766 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tononi, G. & Cirelli, C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81, 12–34 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Steriade, M. Neuronal Substrates of Sleep and Epilepsy (Cambridge Univ. Press, 2003).

  6. Vyazovskiy, V. V. & Harris, K. D. Sleep and the single neuron: the role of global slow oscillations in individual cell rest. Nat. Rev. Neurosci. 14, 443–451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Neske, G. T. The slow oscillation in cortical and thalamic networks: mechanisms and functions. Front. Neural Circuits 9, 88 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Nir, Y. et al. Regional slow waves and spindles in human sleep. Neuron 70, 153–169 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vyazovskiy, V. V. et al. Local sleep in awake rats. Nature 472, 443–447 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Volgushev, M., Chauvette, S., Mukovski, M. & Timofeev, I. Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave sleep. J. Neurosci. 26, 5665–5672 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, J.-Y., Chauvette, S., Skorheim, S., Timofeev, I. & Bazhenov, M. Interneuron-mediated inhibition synchronizes neuronal activity during slow oscillation. J. Physiol. 590, 3987–4010 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sheroziya, M. & Timofeev, I. Global intracellular slow-wave dynamics of the thalamocortical system. J. Neurosci. 34, 8875–8893 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Puig, M. V., Ushimaru, M. & Kawaguchi, Y. Two distinct activity patterns of fast-spiking interneurons during neocortical UP states. Proc. Natl Acad. Sci. USA 105, 8428–8433 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Fanselow, E. E. & Connors, B. W. The roles of somatostatin-expressing (GIN) and fast-spiking inhibitory interneurons in up–down states of mouse neocortex. J. Neurophysiol. 104, 596–606 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lemieux, M., Chauvette, S. & Timofeev, I. Neocortical inhibitory activities and long-range afferents contribute to the synchronous onset of silent states of the neocortical slow oscillation. J. Neurophysiol. 113, 768–779 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Funk, C. M. et al. Role of somatostatin-positive cortical interneurons in the generation of sleep slow waves. J. Neurosci. 37, 9132–9148 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zucca, S. et al. An inhibitory gate for state transition in cortex. eLife 6, e26177 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zucca, S., Pasquale, V., Lagomarsino de Leon Roig, P., Panzeri, S. & Fellin, T. Thalamic drive of cortical parvalbumin-positive interneurons during down states in anesthetized mice. Curr. Biol. 29, 1481–1490.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Niethard, N., Ngo, H.-V. V., Ehrlich, I. & Born, J. Cortical circuit activity underlying sleep slow oscillations and spindles. Proc. Natl Acad. Sci. USA 115, E9220–E9229 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Q. et al. Organization of the connections between claustrum and cortex in the mouse. J. Comp. Neurol. 525, 1317–1346 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Crick, F. C. & Koch, C. What is the function of the claustrum? Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 1271–1279 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Remedios, R., Logothetis, N. K. & Kayser, c. A role of the claustrum in auditory scene analysis by reflecting sensory change. Front. Syst. Neurosci. 8, 44 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Goll, Y., Atlan, G. & Citri, A. Attention: the claustrum. Trends Neurosci. 38, 486–495 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Kitanishi, T. & Matsuo, N. Organization of the claustrum-to-entorhinal cortical connection in mice. J. Neurosci. 37, 269–280 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. White, M. G. et al. Anterior cingulate cortex input to the claustrum is required for top-down action control. Cell Rep. 22, 84–95 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jackson, J., Karnani, M. M., Zemelman, B. V., Burdakov, D. & Lee, A. K. Inhibitory control of prefrontal cortex by the claustrum. Neuron 99, 1029–1039.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Atlan, G. et al. The claustrum supports resilience to distraction. Curr. Biol. 28, 2752–2762.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mitsui, S., Igarashi, K. M., Mori, K. & Yoshihara, Y. Genetic visualization of the secondary olfactory pathway in Tbx21 transgenic mice. Neural Syst. Circuits 1, 5 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim, J., Matney, C. J., Roth, R. H. & Brown, S. P. Synaptic organization of the neuronal circuits of the claustrum. J. Neurosci. 36, 773–784 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Arimatsu, Y., Kojima, M. & Ishida, M. Area- and lamina-specific organization of a neuronal subpopulation defined by expression of latexin in the rat cerebral cortex. Neuroscience 88, 93–105 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Callaway, E. M. & Luo, L. Monosynaptic circuit tracing with glycoprotein-deleted rabies viruses. J. Neurosci. 35, 8979–8985 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Connors, B. W. & Gutnick, M. J. Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci. 13, 99–104 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. McCormick, D. A., Connors, B. W., Lighthall, J. W. & Prince, D. A. Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J. Neurophysiol. 54, 782–806 (1985).

    Article  CAS  PubMed  Google Scholar 

  34. The Petilla Interneuron Nomenclature Group (PING). Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neurosci. 9, 557–568 (2008).

    Article  CAS  Google Scholar 

  35. Massimini, M., Huber, R., Ferrarelli, F., Hill, S. & Tononi, G. The sleep slow oscillation as a traveling wave. J. Neurosci. 24, 6862–6870 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim, D., Hwang, E., Lee, M., Sung, H. & Choi, J. H. Characterization of topographically specific sleep spindles in mice. Sleep 38, 85–96 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Barbas, H. General cortical and special prefrontal connections: principles from structure to function. Annu. Rev. Neurosci. 38, 269–289 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Sanchez-Vives, M. V. & McCormick, D. A. Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat. Neurosci. 3, 1027–1034 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Shu, Y., Hasenstaub, A. & McCormick, D. A. Turning on and off recurrent balanced cortical activity. Nature 423, 288–293 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Latchoumane, C.-F. V., Ngo, H.-V. V., Born, J. & Shin, H.-S. Thalamic spindles promote memory formation during sleep through triple phase-locking of cortical, thalamic, and hippocampal rhythms. Neuron 95, 424–435.e6 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Gulati, T., Guo, L., Ramanathan, D. S., Bodepudi, A. & Ganguly, K. Neural reactivations during sleep determine network credit assignment. Nat. Neurosci. 20, 1277–1284 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Klinzing, J. G., Niethard, N. & Born, J. Mechanisms of systems memory consolidation during sleep. Nat. Neurosci. 22, 1598–1610 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Kim, J., Gulati, T. & Ganguly, K. Competing roles of slow oscillations and delta waves in memory consolidation versus forgetting. Cell 179, 514–526.e13 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Tsumoto, T. & Suda, K. Effects of stimulation of the dorsocaudal claustrum on activities of striate cortex neurons in the cat. Brain Res. 240, 345–349 (1982).

    Article  CAS  PubMed  Google Scholar 

  45. Salerno, M. T., Cortimiglia, R., Crescimanno, G., Amato, G. & Infantellina, F. Effects of claustrum stimulation on spontaneous bioelectrical activity of motor cortex neurons in the cat. Exp. Neurol. 86, 227–239 (1984).

    Article  CAS  PubMed  Google Scholar 

  46. Koubeissi, M. Z., Bartolomei, F., Beltagy, A. & Picard, F. Electrical stimulation of a small brain area reversibly disrupts consciousness. Epilepsy Behav. 37, 32–35 (2014).

    Article  PubMed  Google Scholar 

  47. Kameda, H. et al. Parvalbumin-producing cortical interneurons receive inhibitory inputs on proximal portions and cortical excitatory inputs on distal dendrites. Eur. J. Neurosci. 35, 838–854 (2012).

    Article  PubMed  Google Scholar 

  48. Miyamichi, K. et al. Cortical representations of olfactory input by trans-synaptic tracing. Nature 472, 191–196 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Yoshihara, S., Omichi, K., Yanazawa, M., Kitamura, K. & Yoshihara, Y. Arx homeobox gene is essential for development of mouse olfactory system. Development 132, 751–762 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Miyasaka, N. et al. From the olfactory bulb to higher brain centers: genetic visualization of secondary olfactory pathways in zebrafish. J. Neurosci. 29, 4756–4767 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yoshihara, Y. et al. A genetic approach to visualization of multisynaptic neural pathways using plant lectin transgene. Neuron 22, 33–41 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Ishii, K. K. et al. A labeled-line neural circuit for pheromone-mediated sexual behaviors in mice. Neuron 95, 123–137.e8 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Wickersham, I. R., Finke, S., Conzelmann, K.-K. & Callaway, E. M. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nat. Methods 4, 47–49 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Wickersham, I. R., Sullivan, H. A. & Seung, H. S. Production of glycoprotein-deleted rabies viruses for monosynaptic tracing and high-level gene expression in neurons. Nat. Protoc. 5, 595–606 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Kawai, S., Takagi, Y., Kaneko, S. & Kurosawa, T. Effect of three types of mixed anesthetic agents alternate to ketamine in mice. Exp. Anim. 60, 481–487 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Franklin, K. B. J. & Paxinos, G. The Mouse Brain in Stereotaxic Coordinates 3rd edn (Academic Press, 2008).

  57. Ting, J. T., Daigle, T. L., Chen, Q. & Feng, G. in Patch-Clamp Methods and Protocols (eds Martina, M. & Taverna, S.) 221–242 (Springer New York, 2014).

  58. Mitra, P. & Bokil, H. Observed Brain Dynamics (Oxford Univ. Press, 2007).

  59. Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 48, 452–458 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Tonegawa for valuable comments; C. Yokoyama for critical reading of the manuscript; H. Hioki (Juntendo University), J. Sohn and S. Okamoto (Kyoto University) for PV/myrGFP-LDLRct transgenic mice; I. R. Wickersham (MIT), H. S. Seung (Princeton University) and E. M. Callaway (Salk Institute) for modified rabies virus; K. Deisserroth (Stanford University) and E. S. Boyden (MIT) for AAV plasmids; S. Amemiya for help in statistical analyses; S. Mitsui, Y. Mishima and RIKEN CBS Research Resources Division for technical assistance; and members of the Yoshihara Lab for discussion. This work was supported by research funds from RIKEN to Y.Y., grants-in-aid for Scientific Research on Innovative Areas ‘Memory Dynamism’ (25115005) and ‘Brain Information Dynamics’ (18H05146) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and a grant from the Uehara Memorial Foundation to Y.Y.

Author information

Authors and Affiliations

Authors

Contributions

K.N., R.M., A.A. and Y.Y. conceived the study. Y.Y. developed the Cla-Cre mouse. R.M., M.S., H.H., J.P.J. and Y.Y. performed the anatomical experiments. A.A. performed the in vitro electrophysiological experiments. K.N. performed the in vivo electrophysiological experiments. K.N., R.M., A.A., K.M. and Y.Y. wrote the paper.

Corresponding author

Correspondence to Yoshihiro Yoshihara.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Neuroscience thanks Luis de Lecea, Igor Timofeev, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 A representative example of presynaptic input neurons to Cre-expressing claustral neurons.

Presynaptic input neurons to Cre-expressing claustral neurons were visualized with a modified rabies virus-mediated mono-synaptic retrograde tracing method. AON, anterior olfactory nucleus; Au, auditory cortex; BLA, basolateral amygdala; Cg, cingulate cortex; Cla, claustrum; DEn, dorsal endopiriform nucleus; DR, dorsal raphe nucleus; DTT, dorsal tenia tecta; Ect, ectorhinal cortex; Ent, entorhinal cortex; FrA, frontal association cortex, IC, insular cortex; LH, lateral hypothalamic area; M1, primary motor cortex; M2, secondary motor cortex; MD, mediodorsal thalamic nucleus; MnR, median raphe nucleus; OFC, orbitofrontal cortex; PaS, parasubiculum; Pir, piriform cortex; PrL, prelimbic cortex; PRh, perirhinal cortex; RS, retrosplenial cortex; S1, primary somatosensory cortex; S2, secondary somatosensory cortex; SI, substantia innominate; V1, primary visual cortex; V2, secondary visual cortex. The antero-posterior coordinates are indicated in each section (mm from the bregma). Scale bar, 1 mm. Similar results were obtained in four independent experiments.

Extended Data Fig. 2 A representative example of axonal trajectories of Cre-expressing claustral neurons.

Axonal trajectories of Cre-expressing claustral neurons were visualized with Cre-dependent tdTomato-expressing AAV. AON, anterior olfactory nucleus; Au, auditory cortex; BLA, basolateral amygdala; Cg, cingulate cortex; Cla, claustrum; DEn, dorsal endopiriform nucleus; DR, dorsal raphe nucleus; DTT, dorsal tenia tecta; Ect, ectorhinal cortex; Ent, entorhinal cortex; FrA, frontal association cortex, IC, insular cortex; LH, lateral hypothalamic area; M1, primary motor cortex; M2, secondary motor cortex; MD, mediodorsal thalamic nucelus; MnR, median raphe nucleus; OFC, orbitofrontal cortex; PaS, parasubiculum; Pir, piriform cortex; PrL, prelimbic cortex; PRh, perirhinal cortex; RS, retrosplenial cortex; S1, primary somatosensory cortex; S2, secondary somatosensory cortex; SI, substantia innominata; V1, primary visual cortex; V2, secondary visual cortex. The antero-posterior coordinates are indicated in each section (mm from the bregma). Scale bar, 1 mm. Similar results were obtained in four independent experiments.

Extended Data Fig. 3 A representative example of synaptic vesicle distributions of Cre-expressing claustral neurons.

Synaptic vesicle distributions of Cre-expressing claustral neurons were visualized with Cre-dependent synaptophysin-GFP (sypGFP)-expressing AAV. Coronal sections of the brain were immunolabeled with anti-GFP (white in left panels, green in right panels) and anti-NeuN (red in right panels) antibodies. The antero-posterior coordinates are indicated in each section (mm from the bregma). Similar results were obtained in four independent experiments. Scale bar, 200 μm.

Extended Data Fig. 4 Claustral activation drives PV-positive fast-spiking neurons in the insular cortex.

Three examples (ac) of the PV-positive neurons in the insular cortex of PV/myrGFP-LDLRct transgenic mice. Upper panels show the morphology of the recorded neurons filled with biocytin (red) and immunostained with anti-GFP antibody (green). Scale bar, 50 μm. Arrows indicate the PV-positive recorded neurons. Lower panels show firing patterns induced by inward current pulse injection for 1 s (200 and 400 pA in a and b, respectively) or 250 ms × 3 (270 pA in c) and responses to optogenetic stimulation of the claustrum. Blue arrows and red asterisks indicate the timing of photostimulation (5 ms) and the evoked action potentials. The horizontal black bar on the left of each voltage trace indicates membrane potential at −60 mV. The photostimulation-evoked action potentials were observed in 48% (10/21) of the GFP-positive neurons recorded from 10 mice.

Extended Data Fig. 5 Claustral stimulation drives fast-spiking interneurons in the frontal cortex.

a, Current-clamp recordings of regular-spiking neurons in the frontal cortex. Firing patterns induced by inward current pulse injection for 1 s (top), and responses to the optogenetic stimulation of the claustral axons (bottom). b, Percentage of regular-spiking neurons (n = 90) that showed EPSP with action potential (red), EPSP without action potential (blue), and no response (white) upon the optogenetic claustral stimulation. c, Recordings from fast-spiking neurons. Firing patterns induced by inward current pulse injection for 1 s (top), and responses to the optogenetic stimulation of the claustral axons (bottom). d, Percentage of fast-spiking neurons (n = 27) that showed an EPSP with action potential (red), EPSP without action potential (blue), and no response (white) upon the optogenetic claustral stimulation. The horizontal black bar on the left of each voltage trace, −60 mV; the vertical black scale bar on the right of each top voltage trace, 10 mV; the blue arrow below each trace, photostimulation (5 ms); red asterisk, action potential.

Extended Data Fig. 6 Spike latencies of claustral and cortical neurons after photostimulation.

Top, Claustral photostimulation-triggered PSTHs (1-ms bins, smoothed by 3 bins moving average) of claustral units (Cla, n = 42, magenta), cortical narrow-spike waveform units (NS, n = 8, blue) and cortical wide-spike waveform units (WS, n = 5, brown). Bottom, the group average of each PSTH. The line graph shows mean ± s.e.m.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narikiyo, K., Mizuguchi, R., Ajima, A. et al. The claustrum coordinates cortical slow-wave activity. Nat Neurosci 23, 741–753 (2020). https://doi.org/10.1038/s41593-020-0625-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-020-0625-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing