Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Deschloroclozapine, a potent and selective chemogenetic actuator enables rapid neuronal and behavioral modulations in mice and monkeys

Abstract

The chemogenetic technology designer receptors exclusively activated by designer drugs (DREADDs) afford remotely reversible control of cellular signaling, neuronal activity and behavior. Although the combination of muscarinic-based DREADDs with clozapine-N-oxide (CNO) has been widely used, sluggish kinetics, metabolic liabilities and potential off-target effects of CNO represent areas for improvement. Here, we provide a new high-affinity and selective agonist deschloroclozapine (DCZ) for muscarinic-based DREADDs. Positron emission tomography revealed that DCZ selectively bound to and occupied DREADDs in both mice and monkeys. Systemic delivery of low doses of DCZ (1 or 3 μg per kg) enhanced neuronal activity via hM3Dq within minutes in mice and monkeys. Intramuscular injections of DCZ (100 μg per kg) reversibly induced spatial working memory deficits in monkeys expressing hM4Di in the prefrontal cortex. DCZ represents a potent, selective, metabolically stable and fast-acting DREADD agonist with utility in both mice and nonhuman primates for a variety of applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DCZ selectively binds to DREADDs.
Fig. 2: [11C]DCZ PET visualizes DREADD expression and measures the agonist dose–occupancy relationship.
Fig. 3: Time–concentration profiles of DCZ and its metabolites in monkeys and mice.
Fig. 4: In vitro potency and in vivo efficacy of DCZ for DREADDs.
Fig. 5: DCZ rapidly drives activation of hM3Dq-expressing neuronal population in monkey.
Fig. 6: DCZ selectively induces metabolic changes in an hM3Dq-expressing region in a dose-dependent manner.
Fig. 7: DCZ selectively and rapidly induces spatial working-memory deficit in monkeys expressing hM4Di in the PFC.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The code to generate the results and the figures of this study are available from the corresponding authors upon reasonable request.

References

  1. Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Vardy, E. et al. A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron 86, 936–946 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roth, B. L. DREADDs for neuroscientists. Neuron 89, 683–694 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Grayson, D. S. et al. The rhesus monkey connectome predicts disrupted functional networks resulting from pharmacogenetic inactivation of the amygdala. Neuron 91, 453–466 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eldridge, M. A. G. et al. Chemogenetic disconnection of monkey orbitofrontal and rhinal cortex reversibly disrupts reward value. Nat. Neurosci. 19, 37–39 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Nagai, Y. et al. PET imaging-guided chemogenetic silencing reveals a critical role of primate rostromedial caudate in reward evaluation. Nat. Commun. 7, 13605 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Upright, N. A. et al. Behavioral effect of chemogenetic inhibition is directly related to receptor transduction levels in rhesus monkeys. J. Neurosci. 38, 1418–1422 (2018).

    Article  Google Scholar 

  8. Gomez, J. L. et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 357, 503–507 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Manvich, D. F. et al. The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces clozapine-like interoceptive stimulus effects in rats and mice. Sci. Rep. 8, 3840 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Raper, J. et al. Metabolism and distribution of clozapine-N-oxide: implications for nonhuman primate chemogenetics. ACS Chem. Neurosci. 8, 1570–1576 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Roth, B. L., Sheffler, D. J. & Kroeze, W. K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat. Rev. Drug Discov. 3, 353–359 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, X. et al. The first structure–activity relationship studies for designer receptors exclusively activated by designer drugs. ACS Chem. Neurosci. 6, 476–484 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Thompson, K. J. et al. DREADD agonist 21 is an effective agonist for muscarinic-based DREADDs in vitro and in vivo. ACS Pharmacol. Transl Sci. 1, 61–72 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Phillips, S. T. et al. Binding of 5H-dibenzo[b,e][1,4]diazepine and chiral 5H-dibenzo[a,d]cycloheptene analogs of clozapine to dopamine and serotonin receptors. J. Med. Chem. 37, 2686–2696 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Ji, B. et al. Multimodal imaging for DREADD-expressing neurons in living brain and their application to implantation of iPSC-derived neural progenitors. J. Neurosci. 36, 11544–11558 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Farrell, M. S. & Roth, B. L. Pharmacosynthetics: reimagining the pharmacogenetic approach. Brain Res. 1511, 6–20 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Kalvass, J. C., Maurer, T. S. & Pollack, G. M. Use of plasma and brain unbound fractions to assess the extent of brain distribution of 34 drugs: comparison of unbound concentration ratios to in vivo P-glycoprotein efflux ratios. Drug Metab. Dispos. 35, 660–666 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Maurer, T. S., DeBartolo, D. B., Tess, D. A. & Scott, D. O. Relationship between exposure and nonspecific binding of thirty-three central nervous system drugs in mice. Drug Metab. Dispos. 33, 175–181 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Martinez, M. N. Factors influencing the use and interpretation of animal models in the development of parenteral drug delivery systems. AAPS J. 13, 632–649 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Olsen, R.H.J. et al. TRUPATH, an open-source biosensor platform for interrogating the GPCR transducerome. Nat. Chem. Biol. https://doi.org/10.1038/s41589-020-0535-8 (2020).

  21. Kroeze, W. K. et al. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat. Struct. Mol. Biol. 22, 362–369 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alexander, G. M. et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63, 27–39 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Buzsáki, G., Anastassiou, C. A. & Koch, C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Michaelides, M. et al. Whole-brain circuit dissection in free-moving animals reveals cell-specific mesocorticolimbic networks. J. Clin. Invest. 123, 5342–5350 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Phelps, M. E. et al. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-d-glucose: validation of method. Ann. Neurol. 6, 371–388 (1979).

    Article  CAS  PubMed  Google Scholar 

  26. Poremba, A. et al. Species-specific calls evoke asymmetric activity in the monkey’s temporal poles. Nature 427, 448–451 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Tsutsui, K.-I., Oyama, K., Nakamura, S. & Iijima, T. Comparative overview of visuospatial working memory in monkeys and rats. Front. Syst. Neurosci. 10, 99 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Allen, D. C. et al. A comparative study of the pharmacokinetics of clozapine N-oxide and clozapine N-oxide hydrochloride salt in rhesus macaques. J. Pharmacol. Exp. Ther. 368, 199–207 (2018).

    Article  PubMed  CAS  Google Scholar 

  29. Kätzel, D., Nicholson, E., Schorge, S., Walker, M. C. & Kullmann, D. M. Chemical–genetic attenuation of focal neocortical seizures. Nat. Commun. 5, 3847 (2014).

    Article  PubMed  CAS  Google Scholar 

  30. Magnus, C. J. et al. Ultrapotent chemogenetics for research and potential clinical applications. Science 364, eaav5282 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Szablowski, J. O., Lee-Gosselin, A., Lue, B., Malounda, D. & Shapiro, M. G. Acoustically targeted chemogenetics for the non-invasive control of neural circuits. Nat. Biomed. Eng. 2, 475–484 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Stachniak, T. J., Ghosh, A. & Sternson, S. M. Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus→midbrain pathway for feeding behavior. Neuron 82, 797–808 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tomita, Y. et al. Long-term in vivo investigation of mouse cerebral microcirculation by fluorescence confocal microscopy in the area of focal ischemia. J. Cereb. Blood Flow Metab. 25, 858–867 (2005).

    Article  PubMed  Google Scholar 

  34. Tajima, Y. et al. Changes in cortical microvasculature during misery perfusion measured by two-photon laser scanning microscopy. J. Cereb. Blood Flow Metab. 34, 1363–1372 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fridén, M. et al. Measurement of unbound drug exposure in brain: modeling of pH partitioning explains diverging results between the brain slice and brain homogenate methods. Drug Metab. Dispos. 39, 353–362 (2011).

    Article  PubMed  CAS  Google Scholar 

  36. Bender, D., Holschbach, M. & Stöcklin, G. Synthesis of n.c.a. carbon-11 labelled clozapine and its major metabolite clozapine-N-oxide and comparison of their biodistribution in mice. Nucl. Med. Biol. 21, 921–925 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Kiebel, S. J., Ashburner, J., Poline, J.-B. & Friston, K. J. MRI and PET coregistration—a cross validation of statistical parametric mapping and automated image registration. NeuroImage 5, 271–279 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Takuwa, H. et al. Reproducibility and variance of a stimulation-induced hemodynamic response in barrel cortex of awake behaving mice. Brain Res. 1369, 103–111 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Croxson, P. L., Kyriazis, D. A. & Baxter, M. G. Cholinergic modulation of a specific memory function of prefrontal cortex. Nat. Neurosci. 14, 1510–1512 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Goldman, P. S., Rosvold, E. H. & Mishkin, M. Evidence for behavioral impairment following prefrontal lobectomy in the infant monkey. J. Comp. Physiol. Psychol. 70, 454–463 (1970).

    Article  CAS  PubMed  Google Scholar 

  41. Minamimoto, T., La Camera, G. & Richmond, B. J. Measuring and modeling the interaction among reward size, delay to reward, and satiation level on motivation in monkeys. J. Neurophysiol. 101, 437–447 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ichise, M. et al. Noninvasive quantification of dopamine D2 receptors with iodine-123-IBF SPECT. J. Nucl. Med. 37, 513–520 (1996).

    CAS  PubMed  Google Scholar 

  43. McLaren, D. G. et al. A population-average MRI-based atlas collection of the rhesus macaque. NeuroImage 45, 52–59 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Suma, J. Kamei, R. Yamaguchi, Y. Matsuda, Y. Sugii, A. Maruyama, T. Okauchi, T. Kokufuta, Y. Iwasawa, T. Watanabe, A. Tanizawa, S. Shibata, N. Nitta, Y. Ozawa, M. Fujiwara, M. Nakano, T. Minamihisamatsu, S. Uchida and S. Sasaki for their technical assistance. We also thank S. Hiura for 3D printing of the grids. This study was supported by the following grants and organizations: MEXT/JSPS KAKENHI grant numbers JP15H05917, JP15K12772 and JP18H04037 (to T.M.), JP16H02454 (to M. Takada), JP19K08138 (to Y.N.), and JP18H05018, JP19K07811 and JP20H04596 (to N.M.); AMED grant numbers JP20dm0107146 (to T.M.), JP19dm0207003 (to M. Takada), JP20dm0107094 and JP18dm0207007 (to T.S.), JP20dm0307021 (to K.-i.I.), JP20dm0307007 (to T.H.), and JP20dm0207072 (to M.H.); JST PRESTO grant number JPMJPR1683 (to K.-i.I.); QST President’s Strategic Grant (Creative Research) (to N.M.); the Cooperative Research Program at PRI, Kyoto University; the National Bio-Resource Project ‘Japanese Monkeys’ of MEXT, Japan; and U24DK116195, the NIMH Psychoactive Drug Screening Program and the Michael Hooker Distinguished Professorship to B.L.R.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: T.M. Formal analysis: Y.N., N.M., K.O., K.M. and T.M. Investigation: Y.N., N.M., H.T., Y.H., K.O., B.J., M. Takahashi, X.-P.H., S.T.S., J.F.D., T.U., A.F., J.G.E., K.K., C.S., M.O. and M.S. Resources: B.J., Y.X., J.L., K.-i.I., Y.T., J.N., M. Takada and J.J. Writing (original draft): Y.N., N.M. and T.M. Visualization: Y.N., N.M., H.T., Y.H., K.O., B.J., K.M. and T.M. Supervision: M.-R.Z., T.S., M. Takada, M.H., J.J., B.L.R. and T.M. Project administration: B.L.R. and T.M. Funding acquisition: Y.N., N.M., T.H., K.I., M. Takada, T.S., M.H., J.J., B.L.R., and T.M. Writing (review and editing): all authors.

Corresponding authors

Correspondence to Bryan L. Roth or Takafumi Minamimoto.

Ethics declarations

Competing interests

Y.N., N.M., B.J., T.S., M.H. and T.M. are named as inventors on a patent application (PCT/JP2019/024834; status: patent pending) claiming subject matter related to the results described in this paper. The remaining authors declare no competing interests.

Additional information

Peer review information Nature Neuroscience thanks Mikhail Shapiro and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Supplementary Tables 1 and 2.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagai, Y., Miyakawa, N., Takuwa, H. et al. Deschloroclozapine, a potent and selective chemogenetic actuator enables rapid neuronal and behavioral modulations in mice and monkeys. Nat Neurosci 23, 1157–1167 (2020). https://doi.org/10.1038/s41593-020-0661-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-020-0661-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing