Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Probing neural codes with two-photon holographic optogenetics

Abstract

Optogenetics ushered in a revolution in how neuroscientists interrogate brain function. Because of technical limitations, the majority of optogenetic studies have used low spatial resolution activation schemes that limit the types of perturbations that can be made. However, neural activity manipulations at finer spatial scales are likely to be important to more fully understand neural computation. Spatially precise multiphoton holographic optogenetics promises to address this challenge and opens up many new classes of experiments that were not previously possible. More specifically, by offering the ability to recreate extremely specific neural activity patterns in both space and time in functionally defined ensembles of neurons, multiphoton holographic optogenetics could allow neuroscientists to reveal fundamental aspects of the neural codes for sensation, cognition and behavior that have been beyond reach. This Review summarizes recent advances in multiphoton holographic optogenetics that substantially expand its capabilities, highlights outstanding technical challenges and provides an overview of the classes of experiments it can execute to test and validate key theoretical models of brain function. Multiphoton holographic optogenetics could substantially accelerate the pace of neuroscience discovery by helping to close the loop between experimental and theoretical neuroscience, leading to fundamental new insights into nervous system function and disorder.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two-photon holographic optogenetics.
Fig. 2: Improving the effective spatial fidelity of multiphoton holographic optogenetics.
Fig. 3: Approaches to extend multiphoton holographic optogenetics.
Fig. 4: Multiple approaches to using multiphoton optogenetics to reveal neural codes underlying behavior.
Fig. 5: Examples of using multiphoton holographic optogenetics to address neural codes and plasticity rules.

Similar content being viewed by others

References

  1. Borst, A. & Theunissen, F. E. Information theory and neural coding. Nat. Neurosci. 2, 947–957 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Kumar, A., Rotter, S. & Aertsen, A. Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding. Nat. Rev. Neurosci. 11, 615–627 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Shadlen, M. N. & Newsome, W. T. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18, 3870–3896 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ronzitti, E. et al. Recent advances in patterned photostimulation for optogenetics. J. Optics 19, 113001 (2017).

    Article  CAS  Google Scholar 

  5. Anselmi, F., Ventalon, C., Bèguea, A., Ogdenb, D. & Emiliani, V. Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning. Proc. Natl Acad. Sci. USA 108, 19504–19509 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dhawale, A. K., Hagiwara, A., Bhalla, U. S., Murthy, V. N. & Albeanu, D. F. Non-redundant odor coding by sister mitral cells revealed by light addressable glomeruli in the mouse. Nat. Neurosci. 13, 1404–1412 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fan, L. Z. et al. All-optical electrophysiology reveals the role of lateral inhibition in sensory processing in cortical layer 1. Cell 180, 521–535.e18 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marshel, J. H. et al. Cortical layer-specific critical dynamics triggering perception. Science 365, eaaw5202 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pégard, N. C. et al. Three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT). Nat. Commun. 8, 1228 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Mardinly, A. R. et al. Precise multimodal optical control of neural ensemble activity. Nat. Neurosci. 21, 881–893 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Packer, A. M., Russell, L. E., Dalgleish, H. W. P. & Häusser, M. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat. Methods 12, 140–146 (2015).

  12. Packer, A. M. et al. Two-photon optogenetics of dendritic spines and neural circuits. Nat. Methods 9, 1202–1205 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Papagiakoumou, E. et al. Scanless two-photon excitation of channelrhodopsin-2. Nat. Methods 7, 848–854 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hernandez, O. et al. Three-dimensional spatiotemporal focusing of holographic patterns. Nat. Commun. 7, 11928 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ronzitti, E. et al. Submillisecond optogenetic control of neuronal firing with two-photon holographic photoactivation of Chronos. J. Neurosci. 37, 10679–10689 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chaigneau, E. et al. Two-photon holographic stimulation of ReaChR. Front. Cell. Neurosci. 10, 234 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Yang, W., Carrillo-Reid, L., Bando, Y., Peterka, D. S. & Yuste, R. Simultaneous two-photon imaging and two-photon optogenetics of cortical circuits in three dimensions. eLife 7, e32671 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Forli, A. et al. Two-photon bidirectional control and imaging of neuronal excitability with high spatial resolution in vivo. Cell Rep. 22, 3087–3098 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Andrasfalvy, B. K., Zemelman, B. V., Tang, J. & Vaziri, A. Two-photon single-cell optogenetic control of neuronal activity by sculpted light. Proc. Natl Acad. Sci. USA. 107, 11981–11986 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rickgauer, J. P., Deisseroth, K. & Tank, D. W. Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields. Nat. Neurosci. 17, 1816–1824 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Papagiakoumou, E., de Sars, V., Oron, D. & Emiliani, V. Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses. Opt. Express 16, 22039–22047 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Robinson, N. T. M. et al. Targeted activation of hippocampal place cells drives memory-guided spatial behavior. Cell 183, 1586–1599.e10 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rickgauer, J. P. & Tank, D. W. Two-photon excitation of channelrhodopsin-2 at saturation. Proc. Natl Acad. Sci. USA 106, 15025–15030 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Prakash, R. et al. Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat. Methods 9, 1171–1179 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sridharan, S. et al. High performance microbial opsins for spatially and temporally precise perturbations of large neuronal networks. Preprint at bioRxiv https://doi.org/10.1101/2021.04.01.438134 (2021).

  27. Shemesh, O. A. et al. Temporally precise single-cell-resolution optogenetics. Nat. Neurosci. 20, 1796–1806 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gunaydin, L. A. et al. Ultrafast optogenetic control. Nat. Neurosci. 13, 387–392 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Baker, C. A., Elyada, Y. M., Parra, A. & Bolton, M. M. L. Cellular resolution circuit mapping with temporal-focused excitation of soma-targeted channelrhodopsin. eLife 5, e14193 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wu, C., Ivanova, E., Zhang, Y. & Pan, Z. H. rAAV-mediated subcellular targeting of optogenetic tools in retinal ganglion cells in vivo. PLoS ONE 8, e66332 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lim, S. T., Antonucci, D. E., Scannevin, R. H. & Trimmer, J. S. A novel targeting signal for proximal clustering of the Kv2.1 K+ channel in hippocampal neurons. Neuron 25, 385–397 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Govorunova, E. G., Sineshchekov, O. A., Janz, R., Liu, X. & Spudich, J. L. Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science 349, 647–650 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Govorunova, E. G. et al. Extending the time domain of neuronal silencing with cryptophyte anion channelrhodopsins. eNeuro 5, ENEURO.0174-18.2018 (2018).

  34. Berndt, A. Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science 25, 420–424 (2014).

    Article  CAS  Google Scholar 

  35. Vierock, J. et al. BiPOLES: a tool for bidirectional dual-color optogenetic control of neurons. Preprint at bioRxiv https://doi.org/10.1101/2020.07.15.204347 (2020).

  36. Akerboom, J. et al. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front. Mol. Neurosci. 6, 2 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. dal Maschio, M., Donovan, J. C., Helmbrecht, T. O. & Baier, H. Linking neurons to network function and behavior by two-photon holographic optogenetics and volumetric imaging. Neuron 94, 774–789.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Forli, A., Pisoni, M., Printz, Y., Yizhar, O. & Fellin, T. Optogenetic strategies for high-efficiency all-optical interrogation using blue-light-sensitive opsins. eLife 10, e63359 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Daigle, T. L. et al. A suite of transgenic driver and reporter mouse lines with enhanced brain-cell-type targeting and functionality. Cell 174, 465–480.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chan, K. Y. et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 20, 1172–1179 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Miyashita, T., Shao, R., Chung, J., Pourzia, O. & Feldman, D. E. Long-term channelrhodopsin-2 (ChR2) expression can induce abnormal axonal morphology and targeting in cerebral cortex. Front. Neural Circuits 7, 8 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Antinucci, P. et al. A calibrated optogenetic toolbox of stable zebrafish opsin lines. eLife 9, e54937 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chettih, S. N. & Harvey, C. D. Single-neuron perturbations reveal feature-specific competition in V1. Nature 567, 334–340 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Saunders, A., Johnson, C. A. & Sabatini, B. L. Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons. Front. Neural Circuits 6, 47 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gill, J. V. et al. Precise holographic manipulation of olfactory circuits reveals coding features determining perceptual detection. Neuron https://doi.org/10.1016/j.neuron.2020.07.034 (2020).

  46. Keller, D., Erö, C. & Markram, H. Cell densities in the mouse brain: a systematic review. Front. Neuroanat. https://doi.org/10.3389/fnana.2018.00083 (2018).

  47. Hage, T. A. et al. Distribution and strength of interlaminar synaptic connectivity in mouse primary visual cortex revealed by two-photon optogenetic stimulation. Preprint at bioRxiv https://doi.org/10.1101/2019.12.13.876128 (2019).

  48. Daie, K., Svoboda, K. & Druckmann, S. Targeted photostimulation uncovers circuit motifs supporting short-term memory. Nat. Neurosci. https://doi.org/10.1038/s41593-020-00776-3 (2021).

  49. Chen, I. W. et al. In vivo submillisecond two-photon optogenetics with temporally focused patterned light. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.1785-18.2018 (2019).

  50. Zhang, Z., Russell, L. E., Packer, A. M., Gauld, O. M. & Häusser, M. Closed-loop all-optical interrogation of neural circuits in vivo. Nat. Methods https://doi.org/10.1038/s41592-018-0183-z (2018).

  51. Peron, S. P., Freeman, J., Iyer, V., Guo, C. & Svoboda, K. A cellular resolution map of barrel cortex activity during tactile behavior. Neuron https://doi.org/10.1016/j.neuron.2015.03.027 (2015).

  52. Stringer, C. et al. High-precision coding in visual cortex. Cell https://doi.org/10.1016/j.cell.2021.03.042. (2021).

  53. Picot, A. et al. Temperature rise under two-photon optogenetic brain stimulation. Cell Rep. https://doi.org/10.1016/j.celrep.2018.06.119 (2018).

  54. Lin, J. Y. A user’s guide to channelrhodopsin variants: features, limitations and future developments. Exp. Physiol. https://doi.org/10.1113/expphysiol.2009.051961 (2011).

  55. Lin, J. Y., Lin, M. Z., Steinbach, P. & Tsien, R. Y. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys. J. https://doi.org/10.1016/j.bpj.2008.11.034 (2009).

  56. Kato, H. E. et al. Crystal structure of the channelrhodopsin light-gated cation channel. Nature https://doi.org/10.1038/nature10870 (2012).

  57. Oda, K. et al. Crystal structure of the red light-activated channelrhodopsin Chrimson. Nat. Commun. https://doi.org/10.1038/s41467-018-06421-9 (2018).

  58. Kato, H. E. & Nureki, O. Crystal structure of channelrhodopsin, a light-gated cation channel—all cations lead through the monomer. Biophysics https://doi.org/10.2142/biophysics.9.57 (2013).

  59. Kim, Y. S. et al. Crystal structure of the natural anion-conducting channelrhodopsin GtACR1. Nature 561, 343–348 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sofroniew, N. J., Flickinger, D., King, J. & Svoboda, K. A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging. eLife https://doi.org/10.7554/eLife.14472 (2016).

  61. Stirman, J. N., Smith, I. T., Kudenov, M. W. & Smith, S. L. Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain. Nat. Biotechnol. 34, 857–862 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yu, C.-H., Stirman, J. N., Yu, Y., Hira, R. & Smith, S. L. Diesel2p mesoscope with dual independent scan engines for flexible capture of dynamics in distributed neural circuitry. Preprint at bioRxiv https://doi.org/10.1101/2020.09.20.305508 (2020).

  63. Go, M. A., Mueller, M., Castañares, M. L., Egger, V. & Daria, V. R. A compact holographic projector module for high-resolution 3D multi-site two-photon photostimulation. PLoS ONE https://doi.org/10.1371/journal.pone.0210564 (2019).

  64. Yang, S. J. et al. Extended field-of-view and increased-signal 3D holographic illumination with time-division multiplexing. Opt. Express https://doi.org/10.1364/oe.23.032573 (2015).

  65. Mizrahi, A., Crowley, J. C., Shtoyerman, E. & Katz, L. C. High-resolution in vivo imaging of hippocampal dendrites and spines. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.5218-03.2004 (2004).

  66. Dombeck, D. A., Harvey, C. D., Tian, L., Looger, L. L. & Tank, D. W. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat. Neurosci. https://doi.org/10.1038/nn.2648 (2010).

  67. Jung, J. C., Mehta, A. D., Aksay, E., Stepnoski, R. & Schnitzer, M. J. In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. J. Neurophysiol. https://doi.org/10.1152/jn.00234.2004 (2004).

  68. Accanto, N. et al. Multiplexed temporally focused light shaping through a gradient index lens for precise in-depth optogenetic photostimulation. Sci. Rep. https://doi.org/10.1038/s41598-019-43933-w (2019).

  69. Meng, G. et al. High-throughput synapse-resolving two-photon fluorescence microendoscopy for deep-brain volumetric imaging in vivo. eLife https://doi.org/10.7554/eLife.40805 (2019).

  70. Moretti, C., Antonini, A., Bovetti, S., Liberale, C. & Fellin, T. Scanless functional imaging of hippocampal networks using patterned two-photon illumination through GRIN lenses. Biomed. Opt. Express https://doi.org/10.1364/boe.7.003958 (2016).

  71. Jennings, J. H. et al. Interacting neural ensembles in orbitofrontal cortex for social and feeding behaviour. Nature https://doi.org/10.1038/s41586-018-0866-8 (2019).

  72. Andermann, M. L. et al. Chronic cellular imaging of entire cortical columns in awake mice using microprisms. Neuron https://doi.org/10.1016/j.neuron.2013.07.052 (2013).

  73. Low, R. J., Gu, Y. & Tank, D. W. Cellular resolution optical access to brain regions in fissures: imaging medial prefrontal cortex and grid cells in entorhinal cortex. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1421753111 (2014).

  74. Antonini, A. et al. Extended field-of-view ultrathin microendoscopes for high-resolution two-photon imaging with minimal invasiveness in awake mice. eLife https://doi.org/10.7554/eLife.58882 (2020).

  75. Horton, N. G. et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics https://doi.org/10.1038/nphoton.2012.336 (2013).

  76. Ouzounov, D. G. et al. In vivo three-photon imaging of activity of GcamP6-labeled neurons deep in intact mouse brain. Nat. Methods https://doi.org/10.1038/nmeth.4183 (2017).

  77. Rowlands, C. J. et al. Wide-field three-photon excitation in biological samples. Light Sci. Appl. https://doi.org/10.1038/lsa.2016.255 (2017).

  78. Szabo, V., Ventalon, C., De Sars, V., Bradley, J. & Emiliani, V. Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope. Urology https://doi.org/10.1016/j.neuron.2014.11.005 (2014).

  79. Göbel, W., Kerr, J. N. D., Nimmerjahn, A. & Helmchen, F. Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective. Opt. Lett. https://doi.org/10.1364/ol.29.002521 (2004).

  80. Ozbay, B. N. et al. Three dimensional two-photon brain imaging in freely moving mice using a miniature fiber coupled microscope with active axial-scanning. Sci. Rep. https://doi.org/10.1038/s41598-018-26326-3 (2018).

  81. Čižmár, T. & Dholakia, K. Exploiting multimode waveguides for pure fibre-based imaging. Nat. Commun. https://doi.org/10.1038/ncomms2024 (2012).

  82. Turtaev, S. et al. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging. Light Sci. Appl. https://doi.org/10.1038/s41377-018-0094-x (2018).

  83. Plöschner, M., Tyc, T. & Čižmár, T. Seeing through chaos in multimode fibres. Nat. Photonics https://doi.org/10.1038/nphoton.2015.112 (2015).

  84. Sawinski, J. et al. Visually evoked activity in cortical cells imaged in freely moving animals. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.0903680106 (2009).

  85. Zong, W. et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat. Methods https://doi.org/10.1038/nmeth.4305 (2017).

  86. Xue, Y., Waller, L., Adesnik, H. & Pégard, N. Three-dimensional multi-site random access photostimulation (3D-MAP). Preprint at bioRxiv https://doi.org/10.1101/2020.06.28.176503 (2020).

  87. Jazayeri, M. & Afraz, A. Navigating the neural space in search of the neural code. Neuron 93, 1003–1014 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Salzman, C. D., Britten, K. H. & Newsome, W. T. Cortical microstimulation influences perceptual judgements of motion direction. Nature https://doi.org/10.1038/346174a0 (1990).

  89. Murphey, D. K. & Maunsell, J. H. R. Behavioral detection of electrical microstimulation in different cortical visual areas. Curr. Biol. https://doi.org/10.1016/j.cub.2007.03.066 (2007).

  90. Huber, D. et al. Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature https://doi.org/10.1038/nature06445 (2008).

  91. Houweling, A. R. & Brecht, M. Behavioural report of single neuron stimulation in somatosensory cortex. Nature https://doi.org/10.1038/nature06447 (2008).

  92. Douglass, A. D., Kraves, S., Deisseroth, K., Schier, A. F. & Engert, F. Escape behavior elicited by single, channelrhodopsin-2-evoked spikes in zebrafish somatosensory neurons. Curr. Biol. https://doi.org/10.1016/j.cub.2008.06.077 (2008).

  93. Penfield, W. & Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60, 389–443 (1937).

    Article  Google Scholar 

  94. Graziano, M. S. A., Taylor, C. S. R. & Moore, T. Complex movements evoked by microstimulation of precentral cortex. Neuron https://doi.org/10.1016/S0896-6273(02)00698-0 (2002).

  95. Harrison, T. C., Ayling, O. G. S. & Murphy, T. H. Distinct cortical circuit mechanisms for complex forelimb movement and motor map topography. Neuron https://doi.org/10.1016/j.neuron.2012.02.028 (2012).

  96. Xu, S., Jiang, W., Poo, M. & Dan, Y. Activity recall in a visual cortical ensemble. Nat. Neurosci. 15, 449–455 (2012).

  97. Allen, W. E. et al. Thirst regulates motivated behavior through modulation of brainwide neural population dynamics. Science https://doi.org/10.1126/science.aav3932 (2019).

  98. Carrillo-Reid, L., Han, S., Yang, W., Akrouh, A. & Yuste, R. Controlling visually guided behavior by holographic recalling of cortical ensembles. Cell https://doi.org/10.1016/j.cell.2019.05.045 (2019).

  99. Russell, L. E. et al. The influence of visual cortex on perception is modulated by behavioural state. Preprint at bioRxiv https://doi.org/10.1101/706010 (2019).

  100. Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M. & Harris, K. D. High-dimensional geometry of population responses in visual cortex. Nature https://doi.org/10.1038/s41586-019-1346-5 (2019).

  101. Aitchison, L. et al. Model-based Bayesian inference of neural activity and connectivity from all-optical interrogation of a neural circuit. in Advances in Neural Information Processing Systems (eds. Guyon, I. et al.) 3486–3495 (Curran Associates, 2017).

  102. Krook-Magnuson, E., Armstrong, C., Oijala, M. & Soltesz, I. On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat. Commun. 4, 1376 (2013).

    Article  PubMed  CAS  Google Scholar 

  103. Newman, J. P. et al. Optogenetic feedback control of neural activity. eLife https://doi.org/10.7554/eLife.07192 (2015).

  104. Grosenick, L., Marshel, J. H. & Deisseroth, K. Closed-loop and activity-guided optogenetic control. Neuron https://doi.org/10.1016/j.neuron.2015.03.034 (2015).

  105. Prsa, M., Galiñanes, G. L. & Huber, D. Rapid integration of artificial sensory feedback during operant conditioning of motor cortex neurons. Neuron https://doi.org/10.1016/j.neuron.2017.01.023 (2017).

  106. Vinje, W. E. & Gallant, J. L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science https://doi.org/10.1126/science.287.5456.1273 (2000).

  107. Tang, S. et al. Large-scale two-photon imaging revealed super-sparse population codes in the V1 superficial layer of awake monkeys. eLife https://doi.org/10.7554/eLife.33370 (2018).

  108. Fries, P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu. Rev. Neurosci. https://doi.org/10.1146/annurev.neuro.051508.135603 (2009).

  109. Dlesmann, M., Gewaltig, M. O. & Aertsen, A. Stable propagation of synchronous spiking in cortical neural networks. Nature https://doi.org/10.1038/990101 (1999).

  110. Ray, S. & Maunsell, J. H. R. Differences in gamma frequencies across visual cortex restrict their possible use in computation. Neuron https://doi.org/10.1016/j.neuron.2010.08.004 (2010).

  111. Villette, V. et al. Ultrafast two-photon imaging of a high-gain voltage indicator in awake behaving mice. Cell https://doi.org/10.1016/j.cell.2019.11.004 (2019).

  112. Wu, J. et al. Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo. Nat. Methods https://doi.org/10.1038/s41592-020-0762-7 (2020).

  113. Averbeck, B. B., Latham, P. E. & Pouget, A. Neural correlations, population coding and computation. Nat. Rev. Neurosci. https://doi.org/10.1038/nrn1888 (2006).

  114. Rumyantsev, O. I. et al. Fundamental bounds on the fidelity of sensory cortical coding. Nature https://doi.org/10.1038/s41586-020-2130-2 (2020).

  115. Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17, 1500–1509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Feldman, D. E. The spike-timing dependence of plasticity. Neuron https://doi.org/10.1016/j.neuron.2012.08.001 (2012).

  117. Carrillo-Reid, L., Yang, W., Bando, Y., Peterka, D. S. & Yuste, R. Imprinting and recalling cortical ensembles. Science https://doi.org/10.1126/science.aaf7560 (2016).

  118. Alejandre-García, T., Kim, S., Pérez-Ortega, J. & Yuste, R. Intrinsic excitability mechanisms of neuronal ensemble formation. Preprint at bioRxiv https://doi.org/10.1101/2020.07.29.223966 (2020).

  119. Dan, Y. & Poo, M. M. Spike timing-dependent plasticity of neural circuits. Neuron https://doi.org/10.1016/j.neuron.2004.09.007 (2004).

  120. Liu, X. et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature https://doi.org/10.1038/nature11028 (2012).

  121. Kulkarni, R. U. et al. In vivo two-photon voltage imaging with sulfonated rhodamine dyes. ACS Cent. Sci. https://doi.org/10.1021/acscentsci.8b00422 (2018).

  122. Lebedev, M. A. & Nicolelis, M. A. L. Brain–machine interfaces: past, present and future. Trends Neurosci. https://doi.org/10.1016/j.tins.2006.07.004 (2006).

  123. Schwartz, A. B. Cortical neural prosthetics. Annu. Rev. Neurosci. https://doi.org/10.1146/annurev.neuro.27.070203.144233 (2004).

  124. Histed, M. H., Bonin, V. & Reid, R. C. Direct activation of sparse, distributed populations of cortical neurons by electrical microstimulation. Neuron https://doi.org/10.1016/j.neuron.2009.07.016 (2009).

  125. Gerchberg, R. W. & Saxton, W. O. Practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972).

  126. Zhu, G., Van Howe, J., Durst, M., Zipfel, W. & Xu, C. Simultaneous spatial and temporal focusing of femtosecond pulses. Opt. Express https://doi.org/10.1364/opex.13.002153 (2005).

  127. Oron, D., Tal, E. & Silberberg, Y. Scanningless depth-resolved microscopy. Opt. Express https://doi.org/10.1364/opex.13.001468 (2005).

  128. Accanto, N. et al. Multiplexed temporally focused light shaping for high-resolution multi-cell targeting. Optica https://doi.org/10.1364/optica.5.001478 (2018).

  129. Ronzitti, E., Emiliani, V. & Papagiakoumou, E. Methods for three-dimensional all-optical manipulation of neural circuits. Front. Cell. Neurosci. https://doi.org/10.3389/fncel.2018.00469 (2018).

  130. Carrillo-Reid, L., Yang, W., Kang Miller, J., Peterka, D. S. & Yuste, R. Imaging and optically manipulating neuronal ensembles. Annu. Rev. Biophys. https://doi.org/10.1146/annurev-biophys-070816-033647 (2017).

  131. Papagiakoumou, E., Ronzitti, E. & Emiliani, V. Scanless two-photon excitation with temporal focusing. Nat. Methods https://doi.org/10.1038/s41592-020-0795-y (2020).

  132. Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. https://doi.org/10.1146/annurev-neuro-061010-113817 (2011).

  133. Vaziri, A. & Emiliani, V. Reshaping the optical dimension in optogenetics. Curr. Opin. Neurobiolol. https://doi.org/10.1016/j.conb.2011.11.011 (2012).

  134. Cottam, J. C. H., Smith, S. L. & Häusser, M. Target-specific effects of somatostatin-expressing interneurons on neocortical visual processing. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.2624-13.2013 (2013).

  135. Zhu, P. et al. Optogenetic dissection of neuronal circuits in zebrafish using viral gene transfer and the Tet system. Front. Neural Circuits https://doi.org/10.3389/neuro.04.021.2009 (2009).

  136. Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature https://doi.org/10.1038/nature10360 (2011).

  137. Papagiakoumou, E. et al. Two-photon optogenetics by computer-generated holography. Neuromethods https://doi.org/10.1007/978-1-4939-7417-7_10 (2018).

  138. Golan, L., Reutsky, I., Farah, N. & Shoham, S. Design and characteristics of holographic neural photo-stimulation systems. J. Neural Eng. https://doi.org/10.1088/1741-2560/6/6/066004 (2009).

  139. Nikolenko, V. et al. SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators. Front. Neural Circuits https://doi.org/10.3389/neuro.04.005.2008 (2008).

  140. Dal Maschio, M. et al. Simultaneous two-photon imaging and photo-stimulation with structured light illumination. Opt. Express https://doi.org/10.1364/oe.18.018720 (2010).

  141. Paluch-Siegler, S. et al. All-optical bidirectional neural interfacing using hybrid multiphoton holographic optogenetic stimulation. Neurophotonics https://doi.org/10.1117/1.nph.2.3.031208 (2015).

  142. Spampinato, G. et al. All-optical interrogation of a direction selective retinal circuit by holographic wave front shaping. Preprint at bioRxiv https://doi.org/10.1101/513192 (2019).

  143. McRaven, C. et al. High-throughput cellular-resolution synaptic connectivity mapping in vivo with concurrent two-photon optogenetics and volumetric Ca2+ imaging. Preprint at bioRxiv https://doi.org/10.1101/2020.02.21.959650 (2020).

  144. Zhang, J., Pégard, N., Zhong, J., Adesnik, H. & Waller, L. 3D computer-generated holography by non-convex optimization. Optica https://doi.org/10.1364/optica.4.001306 (2017).

  145. Hossein Eybposh, M., Caira, N. W., Atisa, M., Chakravarthula, P. & Pégard, N. C. DeepCGH: 3D computer-generated holography using deep learning. Opt. Express https://doi.org/10.1364/oe.399624 (2020).

  146. Sun, B. et al. Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time. Light Sci. Appl. https://doi.org/10.1038/lsa.2017.117 (2018).

  147. Papagiakoumou, E. et al. Functional patterned multiphoton excitation deep inside scattering tissue. Nat. Photonics https://doi.org/10.1038/nphoton.2013.9 (2013).

  148. Bañas, A., & Glückstad, J. Holo-GPC: holographic generalized phase contrast. Opt. Commun. https://doi.org/10.1016/j.optcom.2017.01.036 (2017).

  149. Linnenberger, A. M. Advanced SLMs for microscopy. SPIE BIOS Proceedings 10502, https://doi.org/10.1117/12.2290455 (2018).

  150. Thalhammer, G., Bowman, R. W., Love, G. D., Padgett, M. J. & Ritsch-Marte, M. Speeding up liquid crystal SLMs using overdrive with phase change reduction. Opt. Express https://doi.org/10.1364/oe.21.001779 (2013).

Download references

Acknowledgements

We thank H. Bounds and I. Oldenburg for critical review of the manuscript. This work was supported by the New York Stem Cell Foundation and NIH grants UF1NS107574, R01MH117824 and U19 NS107613. H.A. is a New York Stem Cell Robertson Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hillel Adesnik.

Ethics declarations

Competing interests

H.A. is a co-inventor of 3D-SHOT, which is discussed in this Review (US Patent and Trademark Office, provisional patent application no. 62-429,017).

Additional information

Peer review information Nature Neuroscience thanks Adam Packer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adesnik, H., Abdeladim, L. Probing neural codes with two-photon holographic optogenetics. Nat Neurosci 24, 1356–1366 (2021). https://doi.org/10.1038/s41593-021-00902-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-021-00902-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing